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Introduction: Chronic coronary artery disease (CAD) management often relies on myocardial contrast echocardiography (MCE), yet 
its effectiveness is limited by subjective interpretations and difficulty in distinguishing hibernating from necrotic myocardium. This 
study explores the integration of machine learning (ML) with radiomics to predict functional recovery in dyskinetic myocardial 
segments in CAD patients undergoing revascularization, aiming to overcome these limitations.
Methods: This prospective study enrolled 55 chronic CAD patients, dividing into training (39 patients, 205 segments) and testing sets 
(16 patients, 68 segments). Dysfunctional myocardial segments were identified by initial wall motion scores (WMS) of ≥2 (hypokin-
esis or higher). Functional recovery was defined as a decrease of ≥1 grade in WMS during follow-up echocardiography. Radiomics 
features were extracted from dyssynergic segments in end-systolic phase MCE images across five cardiac cycles post- “flash” impulse 
and processed through a five-step feature selection. Four ML classifiers were trained and compared using these features and MCE 
parameters, to identify the optimal model for myocardial recovery prediction.
Results: Functional improvement was noted in 139 out of 273 dyskinetic segments (50.9%) following revascularization. Receiver 
Operating Characteristic (ROC) analysis determined that myocardial blood flow (MBF) was the most precise clinical predictor of 
recovery, with an area under the curve (AUC) of 0.770. Approximately 1.34 million radiomics features were extracted, with nine 
features identified as key predictors of myocardial recovery. The random forest (RF) model, integrating MBF values and radiomics 
features, demonstrated superior predictive accuracy over other ML classifiers. Validation of the RF model on the testing dataset 
demonstrated its effectiveness, evidenced by an AUC of 0.821, along with consistent calibration and clinical utility.
Conclusion: The integration of ML with radiomics from MCE effectively predicts myocardial recovery in CAD. The RF model, 
combining radiomics and MBF values, presents a non-invasive, precise approach, significantly enhancing CAD management.
Keywords: coronary artery disease, myocardial contrast echocardiography, radiomics, machine learning, myocardial recovery 
prediction, random forest

Introduction
In patients with chronic coronary artery disease (CAD), not all viable myocardium regains contractile function after 
revascularization. Myocardium that can partially or fully recover contractile function is termed hibernating myocardium 
(HM).1 The presence of HM is a key factor in functional recovery post-revascularization.2,3 Revascularization in 
myocardial segments without recovery potential offers neither therapeutic benefit nor clinical improvement, and it 
increases the risks of procedural complications and healthcare costs.4,5 Therefore, detailed assessment of myocardial 
viability is essential to target potentially recoverable myocardium and enhance the efficacy of CAD interventions.
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It is known that myocardial perfusion imaging is crucial for identifying HM. Positron emission tomography (PET) is 
considered the gold standard for assessing myocardial viability, as it reflects regional myocardial blood flow.6 However, 
the high cost of PET scanners and the use of radioactive tracers, which pose potential risks to patients and require 
specialized facilities and stringent protocols, limit its widespread application in routine clinical practice. In contrast, 
myocardial contrast echocardiography (MCE) is increasingly recognized for its ability to identify HM. Recommended by 
the European Society of Cardiology for initial screening in patients suspected of myocardial ischemia,7 MCE utilizes safe 
and non-toxic microbubble contrast agents to provide insights into myocardial perfusion. By highlighting areas with 
preserved microcirculation indicative of HM, MCE effectively visualizes myocardial perfusion and viability. 
Additionally, MCE equipment does not require complex infrastructure, making it accessible in most hospital settings. 
These attributes significantly lower the barriers to its clinical application, enabling broader and more routine use in 
developing revascularization strategies for chronic CAD.

Recent studies have highlighted the value of MCE in predicting myocardial recovery following the restoration of 
normal blood flow in CAD patients.8–10 Despite these significant contributions, MCE is confronted with inherent 
limitations. Its reliance on visual interpretation can introduce subjectivity, potentially resulting in variable outcomes 
across different operators. This reliance on manual analysis renders the process time-intensive and susceptible to human 
error, both in data acquisition and interpretation phases. Moreover, there is evidence suggesting that the visual 
interpretation of MCE might overestimate the severity of myocardial ischemia, potentially leading to inaccurate 
prognostic evaluations.11,12 This risk of overestimation highlights the importance for more objective and reliable methods 
in evaluating myocardial viability post-revascularization to ensure appropriate therapeutic interventions.

Radiomics, a novel approach in medical imaging endorsed by the European Society of Radiology,13 addresses the 
limitations of traditional MCE. By extracting quantitative features from digital images, radiomics transitions from 
subjective visual interpretations to objective, data-driven analysis.14 This technique has potential applications in various 
medical imaging areas, offering more detailed and nuanced information extraction which could, theoretically, enhance 
diagnostic accuracy and prognostic assessments.15 However, the challenge with radiomics lies in its generation of large, 
complex datasets. Integration of artificial intelligence (AI), particularly machine learning (ML), is essential to manage 
and interpret these datasets.16 ML algorithms can identify clinically relevant parameters, potentially improving analyses 
in medical imaging contexts.17 Recent studies have shown the effectiveness of integrating ML in medical imaging, 
indicating a potential for improved diagnostic performance and outcome prediction.18,19 While the synergistic potential 
of radiomics and ML is promising,20 research into their combined application in specific areas like MCE for CAD 
patients is still developing. These technologies hold the possibility for advancements in chronic CAD management, but 
further exploration is needed to fully establish their clinical effectiveness and relevance in improving the accuracy of 
myocardial recovery predictions after revascularization.

Therefore, the objective of this study is to address the existing gaps by developing and validating an ML model based 
on radiomics from MCE, enhancing myocardial recovery prediction in chronic CAD patients after revascularization. This 
study aims to refine and personalize CAD treatment strategies by leveraging the objective, data-driven insights provided 
by radiomics combined with the predictive power of ML.

Materials and Methods
This prospective study was ethically approved by the Ethics Committee at The People’s Hospital of Yuhuan (Approval 
No: 2020–073), and conducted in accordance with the Declaration of Helsinki. Informed consent was obtained in writing 
from all participants. Strict confidentiality measures were applied to anonymize patient-specific data, ensuring privacy 
throughout the research process.

Sample Size
The minimum sample size required for this study, which aims to predict the probability of successful myocardial 
recovery in chronic CAD patients after revascularization, was calculated using the Power Analysis and Sample Size 
(PASS) software. Assuming a null hypothesis proportion (P0) of 0.4, based on previous literature reports,8,9 and an 
alternative hypothesis proportion (P1) of 0.5, based on clinical observations, a two-sided test with 80% power and a 5% 
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significance level was employed. The software estimated that a minimum of 191 dyssynergic myocardial segments would 
be necessary to detect significant effects.

Study Population
Between July 2020 and July 2022, 77 patients with chronic CAD and resting left ventricular dysfunction were recruited 
for this study. These participants were all scheduled for coronary revascularization procedures. The inclusion criteria for 
this study were as follows: 1) significant coronary artery stenosis, defined as greater than 70% diameter stenosis, in at 
least one major coronary artery, as verified through coronary angiography; 2) left ventricular ejection fraction (LVEF) < 
45%; 3) presence of wall motion abnormalities in at least two contiguous segments, identified by resting echocardio-
graphy; and 4) maintenance of sinus rhythm. The study excluded individuals with: 1) prior percutaneous coronary 
intervention (PCI) or coronary artery bypass grafting; 2) unstable angina; 3) recent myocardial infarction (< 6 weeks); 4) 
atrial fibrillation; 5) severe valvular disease; 6) comorbid cardiomyopathy; 7) loss to follow-up; and 8) segments poorly 
visualized by echocardiography.

In the initial cohort, 55 patients were successfully enrolled and subsequently completed the follow-up phase, with 
a total of 273 dyssynergic myocardial segments identified from 880 segments. Revascularization through PCI was 
determined independently of the MCE results, adhering to established clinical guidelines.21 For the development and 
validation of the ML model, the study population was randomly divided into training and testing cohorts at a 7:3 ratio, 
while simultaneously ensuring a comparable proportion of dyssynergic segments between the two cohorts. This resulted 
in 39 patients in the training set with 205 dyskinetic segments (representing 32.9%) and 16 patients in the testing set with 
68 dyskinetic segments (representing 26.6%), enabling robust model training and unbiased performance evaluation.

Echocardiographic Protocol
Echocardiographic evaluation was conducted using a GE Vivid E95 ultrasound system with an M3S probe (GE 
Healthcare, Sunnyvale, CA, USA). Two skilled operators, unaware of the patients’ clinical information, performed 
both two-dimensional echocardiography and MCE within one week before the revascularization. A follow-up echocar-
diography to assess myocardial recovery was scheduled 6–9 months post-revascularization. Measurements of LVEF were 
carried out using the Simpson’s biplane method. Segmental wall motion was evaluated in a standard 16-segment model, 
supplemented by speckle-tracking longitudinal strain bull’s eye plot for reference. Each segment was graded on a scale as 
follows: 1 for normal motion, 2 for hypokinesis, 3 for akinesis, and 4 for dyskinesis. Dysfunctional myocardial segments 
were identified based on initial wall motion scores (WMS) of 2 (hypokinesis) or higher. Functional recovery of these 
segments was determined by a decrease of ≥1 grade in the WMS, as observed in follow-up echocardiography compared 
to baseline measurements.

MCE Procedure
MCE was executed in conjunction with routine echocardiography before revascularization. The procedure involved 
imaging in apical 4-chamber, 2-chamber, and long-axis views, employing a continuous low power setting with 
a mechanical index of 0.1. A contrast agent, prepared by mixing 59 mg of SonoVue (Bracco, Imaging B.V., 
Switzerland) with 5 mL saline, was administered intravenously at 2.5 mL with a flow rate of 1 mL/min. Upon achieving 
optimal opacification of the ventricular cavity and myocardium, the ultrasound system was switched to the “flash” 
impulse (transient high mechanical index impulses) to disrupt the microbubbles within the myocardium. This was 
followed by a return to low-power scanning to observe microbubble replenishment. Images captured 15 beats after the 
“flash” impulse from each apical view were recorded and later converted into cine-loop format for replenishment curve 
analysis. Furthermore, images acquired at end-systolic triggering, 5 beats after the “flash” impulse, were also recorded 
from these views for additional radiomics analysis.

Replenishment Curve Fitting
The offline analysis of MCE images was conducted using GE Q-analysis software. As illustrated in Figure 1, the method 
involved the placement of sampling points within the dyssynergic segments of the myocardium to track the region of 
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interest (ROI) dynamically. The replenishment curve was then evaluated based on a predefined perfusion model 
represented by the equation yðtÞ ¼ A½1?ekt� þ B. This process facilitated the computation of key parameters crucial 
for understanding myocardial perfusion dynamics: the “A” value, representing myocardial blood volume; the “k” value, 
indicating myocardial perfusion velocity; and the “B” value, denoting tissue intensity. Subsequently, the product of the 
“A” and “k” values was calculated to estimate local myocardial blood flow (MBF).

Image Segmentation Process
For the segmentation process, 3D Slicer software (version 5.0.2) was utilized to delineate the contours of dyssynergic 
myocardial segments as ROI, adhering to the standard 16-segment model for reference. This task was executed by two 
experienced sonographers who outlined each myocardial segment to ensure consistency and reliability. The segmentation 
involved tracing the dyssynergic segments across five consecutive cardiac cycles at the end-systolic phase of MCE 
images following the “flash” impulse. Labels from the first to the fifth cycle are illustrated in Figure 2. The software 
initially automated the identification of myocardial regions by detecting grayscale differences in pixels. Subsequent 
manual refinement was applied to these automated outlines to precisely define the boundaries of the dyssynergic 
segments. The finalized contours were saved in the nrrd (Nearly Raw Raster Data) file format, ensuring the accuracy 
and reproducibility of the data for further radiomics analysis.

Radiomics Feature Extraction
The extraction of radiomics features was conducted using the Pyradiomics open-source toolkit, transforming segmented 
medical images into a high-dimensional, structured format for detailed myocardial perfusion analysis. All images were 
standardized through resampling to a uniform resolution of 1×1 mm using nearest-neighbor interpolation. From each 
ROI, 1314 distinct features were derived, encompassing 12 shape, 18 first-order statistical, and 75 textural features from 
the original images. To further enhance the analysis, we applied six preprocessing filters to the first-order and textural 
features, generating an additional 1209 filtered features. These filters were selected to capture various aspects of 
myocardial texture and structure. The Exponential Filter was used to enhance higher intensity values, highlighting subtle 
variations in high-intensity myocardial regions. The Gradient Filter emphasized edges and boundaries, aiding in the 

Figure 1 Analysis of MCE replenishment curve. Sampling points in myocardial segments are shown on the left, with the derived replenishment curves on the right. 
Parameters “A”, “k”, and “B” from the perfusion model yðtÞ ¼ A½1?ekt� þ B are used to assess myocardial perfusion.
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identification of textural differences. The Logarithm Filter reduced the dynamic range to accentuate subtle variations in 
lower-intensity areas. The Square Filter intensified the effect of higher pixel values, while the Square-root Filter 
enhanced lower intensity values to differentiate areas of minimal perfusion. Finally, the Wavelet Filter decomposed 
the image to capture both spatial and frequency information, providing a comprehensive view of myocardial texture and 
structure. All extracted features were collated and organized in an Excel spreadsheet, preparing for the next stage of 
feature selection and analytical processing.

Data Preprocessing
Prior to the selection and analysis, all data underwent a comprehensive preprocessing phase to ensure analytical fairness. 
This phase included the normalization of both the radiomics features and the clinical data. Continuous variables 
underwent Z-score normalization, standardized to a mean of zero and standard deviation of one. Categorical variables 
were converted to binary format, marked as “0” or “1”. For the predictive model, clinical outcomes were determined by 
functional recovery in dysfunctional myocardial segments. Segments showing ≥1 grade decrease in WMS were classified 
as “0” (recovered), while others were classified as “1” (not recovered).

Radiomics Feature Selection
The selection of radiomics features predictive of myocardial following revascularization was conducted through 
a structured multi-step approach. Initially, the interobserver reliability was assessed using the intraclass correlation 
coefficient (ICC), with a threshold of 0.80 indicating acceptable agreement. To identify potential predictors of myocardial 
recovery, we utilized the Wilcoxon rank sum (WRS) test, a non-parametric method suitable for comparing the distribu-
tions of radiomics features between myocardial segments that showed recovery and those that did not after revascular-
ization. Features with false discovery rate-adjusted P-values below 0.1 were identified as potential predictors of recovery. 
Further refinement was achieved using the minimum redundancy maximum relevance (mRMR) algorithm, which 
selected the top 10 features per cardiac cycle based on their relevance and minimal redundancy, totaling 50 features 
across five cycles. The final selection stage employed least absolute shrinkage and selection operator (LASSO) logistic 
regression to isolate the most predictive features for myocardial recovery post-revascularization. Figure 3 presents the 

Figure 2 Sequential MCE images from end-systolic phases following the “flash” impulse across five cardiac cycles. (A–E) represent the first through fifth cycles, respectively. 
The green segment indicates the mid-anterior dyssynergic myocardial segment, and the yellow segment denotes the apical anterior dyssynergic myocardial segment.
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entire workflow of the radiomics feature analysis, illustrating the sequential steps taken to develop and refine our 
predictive model.

ML Models Derivation and Testing
To predict the likelihood of recovery failure, four established ML classifiers were deployed: logistic regression (Logit), 
random forests (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost). Models were developed 
using MCE parameters, radiomics features, and a combination of both. The training phase for each data subset involved 
10-fold cross-validation and a grid search algorithm to fine-tune hyperparameters and prevent overfitting. It allowed for 
the division of the training data into interchangeable sets for training and validation, enabling reliable model evaluation 
and ensuring high precision and generalizability. The entire process of algorithm selection, cross-validation, and 
hyperparameter optimization was conducted using the Scikit-Learn library in Python. For the RF classifier, 
a configuration of 500 trees was established, with node splitting based on the square root of the total number of features. 
The SVM employed a radial basis function (RBF) kernel, suitable for non-linear data, with the cost parameter and 
gamma for the RBF kernel optimized via grid search in the ranges [0.1, 1, 10] and [0.001, 0.01, 0.1], respectively. 
XGBoost parameters were set to a learning rate of 0.02, a maximum tree depth of 4, and an ensemble of 600 trees, 
determined through grid search to balance complexity and accuracy.

After derivation, each model underwent comprehensive internal validation, assessing discrimination, calibration, and 
clinical utility. The relative standard deviation (RSD) of prediction accuracy from 10-fold cross-validation was recorded 
to further evaluate model consistency. The optimal model was selected based on superior discrimination, satisfactory 
stability, credibility, and clinical applicability. Model performance was further quantified through accuracy, precision, 
recall, kappa, and F1 scores derived from the confusion matrix. Moreover, an extensive evaluation of the optimal model 
was conducted using a designated testing cohort to further assess its predictive performance.

Figure 3 Workflow for radiomics analysis: segmentation of images, extraction and selection of features. This process includes delineation of dyssynergic myocardial 
segments in accordance with the 16-segment model across five consecutive cardiac cycles at the end-systolic phase of MCE images, following the “flash” impulse. Three 
classes of radiomics features (shape, first-order, texture) were extracted per ROI, augmented with additional first-order and textural features through six filters. A four-step 
selection protocol (inter-observer consistency, WRS test, mRMR algorithm, and LASSO regression) was employed to identify primary indicators of myocardial recovery.
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Statistical Analysis
Statistical assessments were conducted employing methodologies congruent with the data typology. Continuous variables 
following a normal distribution were evaluated using independent samples t-tests, and chi-square tests were utilized for 
the analysis of categorical variables. Skewed continuous variables and ordinal data were examined using the WRS test. 
Model discrimination was quantified by the area under the receiver operating characteristic (ROC) curve, commonly 
known as the AUC. Calibration of each model was assessed through calibration curve analysis alongside the Brier score. 
Decision curve analysis (DCA) was employed to determine the clinical utility by quantifying net benefits across various 
threshold probabilities. Execution of these statistical processes was carried out using IBM SPSS Statistics (v 22.0, SPSS 
Inc.) and Python (v 3.7.1).

Result
Patient Cohort Characteristics
Figure 4 presents the criteria and process for patient selection, along with the derivation and validation of the predictive 
model in this study, which included 55 patients with chronic CAD. Of these, 44 were males with an average age of 63.27 
± 7.61 years. All participants successfully completed the prescribed echocardiographic protocol and underwent success-
ful revascularization without any adverse events. Post-revascularization follow-up indicated wall motion improvements 
in 139 segments (50.9%, 139/273). The observed rates of wall motion improvement between the training and testing sets 
were 50.7% and 51.5%, respectively, with no statistically significant difference (P-value = 0.916). Table 1 further 
illustrates that the baseline characteristics of the patients and myocardial segments were balanced across both datasets, 
showing no significant differences (all P-values > 0.05).

MCE and Myocardial Recovery Prediction
MCE was employed to predict myocardial recovery in 205 dyskinetic segments from a training set, where 104 segments 
showed recovery and 101 exhibited no improvement in wall motion. The efficacy of MCE parameters, namely A, k, and 
MBF, in predicting functional recovery was assessed through ROC curve analysis. Figure 5 demonstrates that MBF 
achieved the most notable AUC at 0.770 (95% CI: 0.706 to 0.826), indicating its superior performance for myocardial 
recovery. When a preoperative MBF threshold of ≤1 dB2/s was applied, the sensitivity for predicting the recovery six 
months following revascularization was determined to be 70.30%, with a specificity of 74.04%. Additionally, the positive 
predictive value and negative predictive value of MBF was 72.45% and 71.97%, respectively. MBF was then normalized 
using the Z-score method and incorporated into ML models to enhance the prognostication of functional recovery in 
dyskinetic myocardial segments.

Radiomics Analysis
In the radiomics analysis of this study, 6570 features were extracted from dyssynergic myocardial segments across five 
successive cardiac cycles at the end-systolic phase post-“flash” using MCE images, contributing 1314 distinct features 
per cycle. Following normalization, the inter-observer reliability assessment revealed that, on average, 65%, 68%, 73%, 
75%, and 70% of features from the first to fifth cardiac cycles, respectively, achieved an ICC of 0.80 or higher. The WRS 
test further refined this dataset, yielding 122, 107, 126, 120, and 123 features for the respective cycles, correlated with 
segmental function recovery. Further refinement through the mRMR algorithm isolated the top 10 features from each 
cycle, based on relevance and minimal redundancy, leading to a final set of 50 features per segment. The concluding 
feature selection stage, utilizing LASSO logistic regression, identified nine radiomics features significantly correlated 
with segmental function recovery, comprising four from the second cardiac cycle, three from the third, and two from the 
fourth. The LASSO selection process is depicted in Figure 6. Detailed descriptions and weights of the selected radiomics 
features are provided in Supplemental Table S1. Figure 7 presents a heatmap of the nine identified features, demonstrat-
ing minimal inter-feature correlation. The highest correlation coefficient among these features does not exceed 0.3, 
suggesting low collinearity and emphasizing the unique contribution of each feature to the prediction of functional 
recovery in myocardial segments.
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ML Model Derivation and Evaluation
An extensive evaluation of ML models was conducted to predict the likelihood of recovery failure in chronic CAD 
patients. The assessment encompassed four ML classifiers: Logit, SVM, RF, and XGBoost. These classifiers were applied 

Figure 4 Flowchart illustrating patient selection and cohort allocation for the development and testing of ML models aimed at myocardial recovery prediction.
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to three distinct data sets: normalized MBF values, nine selected radiomic features, and a combined dataset integrating 
both elements.

Table 2 compares the efficacy of each model, while Figure 8A–I depict the performance of models utilizing MBF 
data, radiomics features, and the combined dataset, respectively. For models trained on MBF data, Logit and SVM 
exhibited superior performance in discrimination (AUC: 0.780–0.782) and excelled across various confusion matrix 
indicators. However, according to the DCA analysis, their utility was restricted to a threshold probability range of 30%- 
70%. In contrast, the RF model, trained specifically on radiomics features, exhibited the highest discriminative capability 
(AUC: 0.858), outperforming MBF-based models in terms of discrimination, accuracy, precision, kappa, BSD, and F1 
score. Notably, its DCA curve demonstrated a consistent net benefit across the entire 0–100% threshold probability range. 
Further investigation of models utilizing the combined dataset highlighted the enhanced discriminative ability of the RF 
classifier (AUC: 0.901) and improved accuracy and kappa values, although with a minor reduction in calibration.

Remarkably, this model achieved a precision of 1.000, significantly reinforcing confidence in future decision-making 
for CAD management based on predictive outcomes. The DCA curve for the combined dataset model also substantiated 
its comprehensive net benefit across the entire 0–100% threshold probability range. In light of these findings, the RF 
classifier, employing a combination of MBF values and radiomics features, is identified as the optimal model for 
predicting segmental function recovery in CAD patients.

Table 1 Comparative Analysis of Training and Testing Sets

Item Training Set (n=39) Testing Set (n=16) P value

Patient characteristics

Age, years 64.33 ± 7.58 60.69 ± 7.30 0.107a

Gender - Male, n(%) 30 (76.9%) 14 (87.5%) 0.373b

History of myocardial infarction, n (%) 19 (48.7%) 5 (31.3%) 0.235b

CAD Profile Single-vessel, n (%) 24 (61.5%) 10 (62.5%) 0.746c

Two-vessel, n (%) 11 (28.2%) 6 (37.5%)

Three-vessel, n (%) 4 (10.2%) 0 (0.0%)

Diameter stenosis, % 81.85 ± 6.97 83.19 ± 6.82 0.517a

LVEF, % 48.56 ± 6.30 50.50 ± 5.70 0.293a

Myocardial segment analysis

Total segments, n 624 256

Dyskinetic segments, n (%) 205 (32.9%) 68 (26.6%) 0.067b

Baseline WMS 2, n (%) 123 (60.0%) 38 (55.9%) 0.729c

3, n (%) 66 (32.2%) 27 (39.7%)

4, n (%) 16 (7.8%) 3 (4.4%)

MCE parameters A, dB 4.04 ± 0.98 3.84 ± 1.00 0.150a

k, dB/s 0.27 (0.20, 0.34) 0.27 (0.21, 0.34) 0.729c

MBF, dB2/s 1.02 (0.71, 1.47) 0.98 (0.73, 1.20) 0.670c

Wall motion improvement, n (%) 104 (50.7%) 35 (51.5%) 0.916b

Notes: aFor independent sample t-test, bFor chi-square test, and cFor WRS test.
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Figure 5 ROC curve analysis comparing the predictive values of A, k, and MBF (A*k) for functional recovery in dyskinetic myocardial segments. MBF demonstrates the 
highest AUC, indicating its superior prognostic value over A and k.

Figure 6 Illustration of feature selection and weights via LASSO logistic regression. Part (A) displays the distribution of LASSO coefficients, highlighting the process of identifying 
the most predictive features for myocardial recovery. Part (B) presents a bar chart detailing the names and corresponding weights of these nine selected features, visually 
representing their relative importance within the model. In the wavelet-transformed images, the low and high-frequency coefficient blocks are denoted as “L” and “H”, respectively.
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Validation of the Optimal Model with the Testing Set
The efficacy of the RF model in predicting myocardial recovery was validated using the testing dataset. This model analyzed 
MBF and radiomics data to estimate the likelihood of functional non-improvement in dyskinetic segments. These predictions 
were compared with actual outcomes of wall motion improvement, employing ROC, calibration, and DCA curves, as 
depicted in Figure 9. Despite a minor decrease in performance compared to the training dataset, the RF model retained 
significant discriminative power, evidenced by an AUC of 0.821. The calibration curve indicated high concordance between 
predicted probabilities and observed events, especially when predictions exceeded a 30% probability threshold. DCA further 
validated the model’s clinical utility, showing notable net benefits for thresholds above 30%. These findings established the 
RF model as a valuable tool for myocardial recovery prediction after revascularization.

Discussion
In this preliminary study, an integration of ML techniques with radiomics derived from MCE images is introduced for 
predicting functional recovery in myocardial segments after revascularization. This innovative method stands out by 
extracting and analyzing radiomics features from dyssynergic segments, captured across five successive cardiac cycles at 
the end-systolic phase subsequent to the “flash” impulse in MCE. Employing ML algorithms, particularly the RF 
classifier, enables effective interpretation of these intricate and possibly non-linear features. The study identifies nine 
critical radiomics features, in conjunction with MBF values from MCE, as crucial predictors. The RF model, integrating 
these elements, demonstrates superior predictive capability compared to traditional MCE replenishment curve analysis. 
This refined approach presents a non-invasive, accurate method for preoperative evaluation of viable myocardium, 
offering significant potential to enhance clinical decision-making and overall management of chronic CAD.

Figure 7 Heatmap of selected radiomics features. This heatmap visualizes the correlations among the nine predictive radiomics features for myocardial recovery, with 
correlation coefficients ranging between −0.25 and 1.00. Red shades represent positive correlations, whereas blue shades indicate negative correlations. Notably, the 
maximum correlation observed among these features is 0.3, highlighting their low collinearity.
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In myocardial recovery following revascularization, the balance between viable hypocontractile and fibrotic tissues in 
dysfunctional segments is crucial.22 MCE is recognized for its precision in evaluating regional functional recovery,23,24 

yet it relies heavily on visual interpretation. Even with advanced software for replenishment curve analysis in dyssy-
nergic segments, the critical placement of the ROI is still predominantly manual, introducing potential inaccuracies. In 
this study, an AUC of 0.770 for MBF in predicting segmental recovery suggested limitations in predictive reliability. 
Utilizing a diagnostic threshold of ≤1 dB2/s, the observed positive and negative predictive values indicated that 
approximately 30% of myocardial segments might exhibit outcomes contrary to MBF predictions. This discrepancy 
could be attributed to the distribution of viable myocardium across myocardial layers.25 Significant subendocardial 
fibrosis, despite normal MBF in the epicardial and mid-myocardial layers, might impede functional recovery after 
revascularization.26 Additionally, energy distribution within the acoustic field could lead to unexpected functional 
recovery in low MBF areas.8 Radiomics, however, addresses these visual limitations by extracting comprehensive data 
from dyssynergic segments in MCE images, thus eliminating issues related to ROI placement and subjective observation 
of myocardial perfusion.27,28 By leveraging comprehensive data analysis, radiomics offers a more objective and thorough 
approach, potential enhancing the accuracy of myocardial viability assessment and functional recovery prediction after 
revascularization.

In this study, a high mechanical index pulse was applied to instantaneously obliterate myocardial microbubbles within 
the myocardium during MCE. The ensuing five cardiac cycles following this disruption, specifically in the systolic phase, 
were targeted for radiomics analysis. This specific selection is critical as it captures the replenishment phase of 
microbubbles into the myocardial tissue. Focusing on these initial cycles is essential for observing the myocardium in 
its reperfusion state, which assists in differentiating perfusion conditions across different myocardial segments.29 

Additionally, the emphasis on end-systolic images is crucial because during systole, the myocardium thickens and 
the minute intramyocardial vessels collapse, predominantly leaving the capillaries as the main contributors to the 
microbubble signal.30 Analyzing images from this specific phase effectively minimizes interference from intramyocardial 
vessel signals, thus allowing for a more accurate extraction of radiomics features indicative of myocardial perfusion and 
viability.

Our investigation entailed an extensive extraction of features, resulting in 6570 radiomics features from each 
dyssynergic myocardial segment across a training set comprising 205 segments. This process required managing 
approximately 1.34 million data points, creating a highly dimensional multi-omics dataset. Such complexity extends 

Table 2 Performance Comparison of ML Classifiers for Segmental Function Recovery Prediction Using Different Training Data

Training Data ML Classifier Accuracy Precision Recall Kappa F1 Score BSD Brier Score

MBF values Logit 0.683 0.619 0.722 0.368 0.667 0.074 0.012

SVM 0.683 0.619 0.722 0.368 0.667 0.105 0.011

RF 0.634 0.609 0.778 0.235 0.683 0.096 0.071

XGBoost 0.610 0.520 0.722 0.226 0.605 0.093 0.058

Radiomics features Logit 0.707 0.688 0.611 0.399 0.647 0.098 0.004

SVM 0.756 0.684 0.722 0.505 0.703 0.090 0.009

RF 0.805 0.900 0.556 0.540 0.710 0.076 0.002

XGBoost 0.732 0.846 0.500 0.424 0.643 0.095 0.017

Combined MBF and radiomics features Logit 0.756 0.722 0.722 0.505 0.722 0.083 0.005

SVM 0.780 0.737 0.778 0.557 0.757 0.096 0.006

RF 0.878 1.000 0.611 0.751 0.714 0.064 0.007

XGBoost 0.756 0.846 0.611 0.493 0.710 0.094 0.008
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beyond the analytical scope of traditional linear models like Logit, which typically struggle with high-dimensional and 
intricate data interactions. Thus, ML techniques were employed, offering a methodologically superior approach to 
manage this complexity.31,32 Through detailed feature selection, our analysis streamlined these features into nine key 
radiomics attributes, significantly correlated with myocardial recovery. Integrated with MBF values, these features 
formed the basis of our predictive models. Among the evaluated ML models, the RF model was identified as the most 
effective, demonstrating high accuracy even in the testing dataset. The effectiveness of the RF model stems from its 
capability to efficiently manage large datasets and its robustness against overfitting, adeptly handling non-linearities and 
interactions among features, thus making it highly suitable for complex datasets.33

Notably, the critical radiomics features for predicting myocardial recovery were predominantly sourced from 
the second to fourth cardiac cycles, which more distinctly reveal perfusion differences in the myocardium compared 
to the first and fifth cycles. These features, which include two first-order and seven textural types, intricately quantify 
intensity uniformity, variability, and outliers in myocardial tissue. Such nuanced characteristics are challenging to discern 

Figure 8 Evaluative comparisons of ML models for predicting segmental function recovery after revascularization. (A–I) correspond to model performances using MCE 
values, radiomic features, and a combined dataset, respectively. The analyses, encompassing ROC, calibration, and DCA curves, indicate a notable predictive accuracy of 
models using the combined dataset. Specifically, the RF classifier demonstrates superior performance with its robust AUC values and consistent calibration and DCA 
metrics, establishing it as the most effective model for function recovery prediction.
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through conventional visual inspection, necessitating advanced computational techniques for their extraction. 
Sophisticated preprocessing methods, including multiple filters, were crucial in identifying these features and their 
association with myocardial recovery.

To our knowledge, this study is the first to explore myocardial perfusion imaging parameters from MCE using 
a radiomics-based ML approach to enhance the prediction accuracy of myocardial recovery after coronary revascular-
ization. The ML-based model developed in this study surpassed previous studies that utilized traditional myocardial 
perfusion imaging methods such as single-photon emission computed tomography (SPECT), speckle tracking echocar-
diography, and MCE, which reported AUCs ranging from 0.7 to 0.8 for myocardial function recovery prediction.8,11,34,35 

This demonstrates the substantial potential of the MCE radiomics-based ML model in identifying visually subtle yet 
highly predictive image features. Although a few reports exist on radiomics-based ML approaches in myocardial function 
prediction,19 including the findings of Arian et al36 which showed that MRI radiomics features combined with ML 

Figure 9 Assessment of the RF model for predicting myocardial recovery in the test set. (A) depicts the ROC curve, demonstrating the model’s substantial discriminative 
ability with an AUC of 0.821. (B) shows the calibration curve, reflecting the concordance between the predicted probabilities and observed outcomes when predicted 
probabilities above a 30% threshold. (C) presents the DCA curve, illustrating the notable net benefits at similar probability thresholds.
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algorithms provided prognostic information regarding myocardial function in patients after coronary artery bypass 
grafting with an AUC similar to our report at 0.78, this study represents the first application of a radiomics-based ML 
approach in MCE. Furthermore, the integration of MBF into the model further enhanced predictive accuracy. This 
highlights the significance of merging radiomics features with clinical parameters, affirming that while radiomics is 
promising in predictive analysis, the inclusion of clinical data is essential for more comprehensive and accurate 
predictions.

In this initial exploration of combining radiomics and ML in MCE for myocardial recovery prediction after 
revascularization, the results are indeed promising but not without limitations. Constrained by its single-center design 
and a limited cohort size, the study’s applicability across broader populations is uncertain. Moreover, the absence of post- 
revascularization coronary angiography to exclude restenosis might compromise the accuracy of our findings. 
Inconsistencies in MCE protocols across various institutions could also impact the reproducibility and efficacy of the 
proposed radiomics-based ML models. Additionally, the follow-up period, limited to 6–9 months, may not be sufficient 
to capture delayed myocardial recovery, particularly as some HM may take over a year to recover.37 Lastly, while the 
proposed ML model demonstrates impressive performance within this study, its robustness needs external validation in 
diverse clinical settings. To overcome these limitations, future research should be directed towards multi-center studies 
with larger sample sizes and extended follow-up durations. Such studies would help validate and refine these models, 
deepening our understanding of myocardial recovery mechanisms and improving therapeutic strategies for chronic CAD.

In summary, this study has effectively demonstrated the efficacy of the RF model, which integrates radiomics features 
from MCE and MBF values, for predicting the functional recovery of dyskinetic myocardial segments in chronic CAD 
patients undergoing revascularization. The incorporation of a radiomics-based ML approach signifies a significant 
advancement in precision medicine, offering a more nuanced and data-driven method for prognostic evaluation. This 
enhanced accuracy and predictive capability of our RF model facilitate a more customized approach in CAD manage-
ment, potentially improving individualized therapeutic strategies.
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