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Background: This study addresses the predictive modeling of Enlarged Perivascular Spaces (EPVS) in neuroradiology and 
neurology, focusing on their impact on Cerebral Small Vessel Disease (CSVD) and neurodegenerative disorders.
Methods: A retrospective analysis was conducted on 587 neurology inpatients, utilizing LASSO regression for variable selection and 
logistic regression for model development. The study included comprehensive demographic, medical history, and laboratory data 
analyses.
Results: The model identified key predictors of EPVS, including Age, Hypertension, Stroke, Lipoprotein a, Platelet Large Cell Ratio, 
Uric Acid, and Albumin to Globulin Ratio. The predictive nomogram demonstrated strong efficacy in EPVS risk assessment, validated 
through ROC curve analysis, calibration plots, and Decision Curve Analysis.
Conclusion: The study presents a novel, robust EPVS predictive model, providing deeper insights into EPVS mechanisms and risk 
factors. It underscores the potential for early diagnosis and improved management strategies in neuro-radiology and neurology, 
highlighting the need for future research in diverse populations and longitudinal settings.
Keywords: Enlarged Perivascular Spaces, cerebral small vessel disease, predictive model, risk factors, neuro-radiology, LASSO 
regression

Introduction
In the interdisciplinary domain of neuro-radiology and neurology, the significance of Enlarged Perivascular Spaces 
(EPVS) is increasingly recognized,1,2 especially in relation to their impact on Cerebral Small Vessel Disease (CSVD)2,3 

and other neurodegenerative disorders. EPVS, commonly observed phenomena in brain MRI, traditionally considered 
benign manifestations of cerebral aging and small vessel changes, are now understood to be linked with complex 
conditions such as stroke,4 cognitive impairment, Alzheimer’s, and Parkinson’s disease.5–9

The unique morphology and distribution of EPVS in neuroimaging offer a distinct perspective for exploring cerebral 
microenvironments. Despite this growing recognition of their neuropathological importance, the clinical implications and 
mechanisms of EPVS remain elusive.10,11 Notably, in clinical neurology, the absence of quantitative assessments and 
robust diagnostic predictive models for EPVS limits their utility in disease management and therapeutic decision-making.

This study, through a retrospective analysis of 587 neurology inpatients, including CSVD patients and a control 
group, aims to bridge this gap. Incorporating a comprehensive array of 88 variables, including head MRI images, 
demographics, medical histories, and a spectrum of laboratory markers, we employ LASSO regression for key variable 
selection, followed by logistic regression modeling. The model is visualized using Nomograms and further validated 
through ROC, Calibration, and DCA curves to ensure accuracy and applicability.

Our objective is to develop an accurate and practical diagnostic model for EPVS, utilizing a comprehensive statistical 
approach. As EPVS are increasingly recognized as indicators of underlying cerebral pathologies that may affect the 
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progression and treatment of various neurodegenerative and vascular conditions, a robust predictive model is essential. 
Such a model would allow clinicians to identify patients at high risk of adverse outcomes earlier, enabling more targeted 
interventions. This advancement is expected to improve patient management significantly, highlighting the need for 
advanced diagnostic tools to address the complex presentations of EPVS. We anticipate that this model will enhance the 
diagnosis and treatment of CSVD and related conditions, offering novel insights and substantial contributions to 
neuroscience and geriatric medicine.

Materials and Methods
Study Population and Design
This retrospective study, undertaken at a major hospital in Baoding, China, between January 2020 and June 2022, was 
dedicated to discovering imaging markers indicative of cerebral small vessel disease (CSVD). Comprehensive analysis of 
existing patient records was methodically conducted to ensure thorough data evaluation. Participants aged 55 older above 
who underwent complete cranial magnetic resonance imaging (MRI) scans were included. These scans encompassed T1- 
weighted axial, T2-weighted axial, FLAIR, and axial susceptibility-weighted imaging techniques. The inclusion criteria 
for CSVD were based on radiological criteria, including evidence of lacunar infarcts, white matter hyperintensities, and 
microbleeds characteristic of small vessel disease. The selection criteria were carefully developed to accurately represent 
this patient cohort, with specific emphasis on the integrity and precision of the MRI sequences used to diagnose CSVD. 
Criteria for exclusion were established to filter out any instances potentially skewing the results. This encompassed 
patients with subpar MRI scans, notable histories of stroke, or severe concurrent medical conditions likely to affect the 
study outcomes. These conditions included, but were not limited to, significant cardiac ailments (like acute myocardial 
infarction or severe heart failure), major infections, pronounced respiratory failure, advanced renal or hepatic disorders, 
tumors, or any other ailments that could lead to irregular laboratory findings. Additionally, cases indicative of non- 
vascular causes of CSVD, such as multiple sclerosis, brain tumors, or demyelinating diseases of the central nervous 
system, were excluded, along with records lacking ample clinical or lab data. In strict compliance with data privacy 
norms, all patient records were anonymized, ensuring the removal of personal identifiers before analysis. This procedure 
adhered closely to data protection regulations.

Owing to the retrospective nature of the study, the need for individual informed consent was waived by the 
Institutional Review Board (IRB). This waiver was granted under the premise that the study involved minimal risk to 
participants, focusing on the analysis of anonymized, pre-existing patient records. The ethics of this study, including the 
consent waiver, was thoroughly reviewed and approved by the Institutional Ethics Committee of the Affiliated Hospital 
of Hebei University, Baoding, China (Approval Number HDFYLL-KY-2023-060). This committee’s comprehensive 
evaluation ensured that the study adhered to the highest ethical standards, as set forth in the 1964 Declaration of Helsinki 
and its later amendments, particularly concerning patient privacy, data confidentiality, and ethical research practices.

MRI Acquisition and Assessment for EPVS
In this study, participants underwent brain MRI examinations using a 1.5T MRI scanner (Siemens, Munich, Germany) to 
assess the presence of Enlarged Perivascular Spaces (EPVS). The MRI protocol was specifically tailored to enhance the 
detection of EPVS and included axial T1-weighted, T2-weighted fluid-attenuated inversion recovery (FLAIR), and 
particularly, axial T2*-weighted gradient-recalled echo (GRE) sequences. Imaging parameters were precisely calibrated 
to optimize the visualization of EPVS: a slice thickness of 5 mm with a 1-mm interslice gap was uniformly applied 
across all sequences. The T2*-weighted GRE sequence, pivotal for EPVS identification, had repetition time (TR)/echo 
time (TE) parameters set at 560/23 ms. EPVS are recognized in neuroimaging as cerebrospinal fluid-filled spaces that 
follow the course of penetrating arteries and veins within the brain. They are typically observed in T2-weighted and 
FLAIR sequences. On these sequences, EPVS appear as hyperintense (bright) structures, reflecting their fluid content and 
distinguishing them from the surrounding brain parenchyma.1,2 It is essential to differentiate EPVS from other similar 
appearing structures such as lacunar infarcts or dilated Virchow-Robin spaces. Special attention is needed for lesions 
located in regions prone to artifacts, like near air-filled cavities. The identification and accurate mapping of EPVS were 
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independently carried out by two experienced neuroimaging specialists, Yan Hou and Huan Zhou, who were blinded to 
the clinical information of the participants to minimize assessment bias. The interrater reliability of their evaluations was 
measured using the intraclass correlation coefficient (ICC). An ICC value of 0.87 was achieved, indicating a high level of 
agreement, thus reflecting the consistency between the raters in identifying EPVS.

Clinical Blood Biochemistry Analysis
In this retrospective patient cohort study, we amassed an extensive dataset, encapsulating 81 distinct laboratory 
parameters. This dataset incorporated comprehensive blood biochemistry markers, including complete blood count, 
renal and liver function tests, electrolyte levels, coagulation profiles, glucose levels (random and fasting), lipid profiles, 
cardiac enzymes, thyroid functions, and homocysteine levels. These markers collectively painted a detailed clinical 
portrait of each participant’s health.

Clinical Evaluation
Additionally, a detailed clinical evaluation was conducted for each participant, encompassing demographic data 
collection and a comprehensive medical history review. Special attention was given to hypertension, diabetes, 
hypercholesterolemia, carotid artery atherosclerosis, and stroke history. Hypertension was diagnosed based on 
blood pressure readings or antihypertensive medication use, diabetes through fasting glucose levels, OGTT2h 
readings, or hypoglycemic treatment, and hypercholesterolemia was identified by elevated total or LDL cholesterol 
levels. Carotid atherosclerosis was determined through historical data or ultrasound findings. This comprehensive 
approach ensured an in-depth assessment of each patient’s health status, contributing significantly to the study’s 
findings.

Statistical Analysis
In the statistical component of our study for developing a EPVS prediction model, we scrutinized a cohort comprising 
587 individuals. This cohort was bifurcated into two distinct groups: a primary training group consisting of 412 
participants and a validation group with 175 participants, adhering to a ratio of 7:3. This strategic segmentation was 
essential for the thorough training of the model and its subsequent validation phase. We transformed continuous variables 
into categories for the EPVS prediction model. This practice, widely recognized in risk prediction research, enhances the 
model’s interpretability and general applicability. The process of categorization, pivotal in clinical data handling, 
simplifies interpretation and enhances clinical relevance.12,13 The cutoffs for these categories were determined using 
R software. Variables without predetermined cutoffs were pragmatically segregated into binary or trinary categories. 
These categorical variables were represented as frequencies and percentages. To examine the baseline characteristics 
across EPVS-positive and EPVS-negative groups, we applied suitable statistical tests based on the data type. The χ2 tests 
or Fisher’s exact tests were utilized for categorical data analysis. The training group underwent a variable selection 
process via the Least Absolute Shrinkage and Selection Operator (LASSO) regression technique. LASSO regression, 
renowned for minimizing overfitting and honing in on pertinent predictors, is reinforced by cross-validation. The ideal 
lambda value was ascertained using the lambda.1se criterion, which selects the most regularized model within one 
standard error of the minimal cross-validation error. Significant predictors identified from LASSO regression were 
integrated into a binary logistic regression framework to pinpoint independent predictors for EPVS. We constructed 
a nomogram from these predictors to visually depict the risk factors and their relative significance in predicting EPVS. 
The nomogram’s performance was evaluated through Receiver Operating Characteristic Curve (ROC) analysis by 
computing the Area Under the Curve (AUC). Calibration plots, which juxtapose predicted probabilities against actual 
outcomes, were generated to assess the model’s precision. Additionally, we conducted Decision Curve Analysis (DCA) 
to ascertain the clinical utility of our model, evaluating net benefits across various probability thresholds. All statistical 
procedures were executed using R software (version 4.3.0). We deemed a p-value below 0.05 as indicative of statistical 
significance. This comprehensive statistical approach guarantees a robust and reliable framework for our EPVS predic-
tion model, contributing to the nuanced understanding of EPVS in our study population.
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Results
Baseline Characteristics
From January 2020 through June 2022, our preliminary assessment for the EPVS predictive model encompassed 683 
candidates. Careful screening led to the exclusion of 96 individuals who met one or more exclusion criteria, culminating 
in a focused cohort of 587 patients. This cohort was systematically categorized into a training group of 412 individuals 
and a validation group comprising 175 individuals. The delineation of these groups, alongside the comprehensive process 
of inclusion and exclusion, is depicted in Figure 1. Comprehensive baseline characteristics of the participants are 
systematically compiled in Table 1. This analysis highlights the presence of statistically significant disparities (P < 
0.05) across 29 of the 88 variables examined, between groups identified with EPVS and those without. These findings 
cover a spectrum of biomarkers, underscoring the multifaceted nature of EPVS. Conversely, the remaining 59 variables 
demonstrated no significant differences, suggesting a uniformity in certain aspects of the study population. The 29 
biomarkers with significant differences included: Hypertension, Gender, Stroke, Carotid Atherosclerosis, Age, 
Creatinine, Lipoprotein a, Homocysteine, Mean Corpuscular Hemoglobin Concentration, Mean Platelet Volume, 
Monocyte Count, Platelet Large Cell Ratio, Uric Acid, Chloride, International Normalized Ratio, Fibrinogen, 
Apolipoprotein A1, Apolipoprotein B100, Apolipoprotein E, Alanine Aminotransferase, Albumin, Thyroxine, 
Systemic Inflammation Response Index, Urea, Carbon Dioxide Content in Plasma, Low-Density Lipoprotein, 
Lymphocyte-to-Monocyte Ratio, Monocyte-to-HDL Ratio, Albumin to Globulin Ratio. Among the 88 variables ana-
lyzed, 59 biomarkers did not exhibit significant differences when comparing the EPVS and non-EPVS groups. These 
biomarkers include: Diabetes, Hyperlipidemia, White Blood Cell Count, Red Blood Cell Count, Hemoglobin, 
Hematocrit, Mean Corpuscular Volume, Mean Corpuscular Hemoglobin, Platelet Count, Platelet Distribution Width, 
Plateletcrit, Neutrophil Percentage, Lymphocyte Percentage, Monocyte Percentage, Eosinophil Percentage, Basophil 
Percentage, Neutrophil Count, Lymphocyte Count, Eosinophil Count, Basophil Count, Random Glucose, Potassium, 
Sodium, Calcium, Magnesium, Serum Phosphate, Prothrombin Time, Prothrombin Time Ratio, Activated Partial 
Thromboplastin Time, Thrombin Time, Fasting Glucose, Hemoglobin A1c, Total Cholesterol, Triglycerides, High- 
Density Lipoprotein, Very Low-Density Lipoprotein, ApoA1 to ApoB100 Ratio, Creatine Kinase, Creatine Kinase- 
MB, Alpha-Hydroxybutyrate Dehydrogenase, Aspartate Aminotransferase, Lactate Dehydrogenase, Alkaline 
Phosphatase, Gamma-Glutamyl Transferase, Total Protein, Globulin, Total Bilirubin, Direct Bilirubin, Unconjugated 

Figure 1 Flow diagram of the selection of eligible patients.

https://doi.org/10.2147/IJGM.S464356                                                                                                                                                                                                                                 

DovePress                                                                                                                                   

International Journal of General Medicine 2024:17 2516

Li et al                                                                                                                                                                 Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 Baseline Characteristics: Comparing EPVS Patients with Non-EPVS Patients

Variables Total (n = 587) Non-EPVS (n = 293) EPVS (n = 294) p

Hypertension, n (%) < 0.001
Normal 189 (32) 125 (43) 64 (22)

Level1 251 (43) 94 (32) 157 (53)

Level 2 109 (19) 56 (19) 53 (18)
Level 3 38 (6) 18 (6) 20 (7)

Gender, n (%) 0.004

Female 307 (52) 171 (58) 136 (46)
Male 280 (48) 122 (42) 158 (54)

Stroke, n (%) < 0.001
NO 443 (75) 249 (85) 194 (66)

YES 144 (25) 44 (15) 100 (34)

Carotid atherosclerosis, n (%) 0.001
NO 245 (42) 142 (48) 103 (35)

YES 342 (58) 151 (52) 191 (65)

Age, n (%) < 0.001
≤66 376 (64) 219 (75) 157 (53)

>66 211 (36) 74 (25) 137 (47)

Creatinine (μmol/L), n (%) < 0.001
≤82 500 (85) 268 (91) 232 (79)

>82 87 (15) 25 (9) 62 (21)

Lipoprotein a (mg/L), n (%) < 0.001
≤500 497 (85) 279 (95) 218 (74)

>500 90 (15) 14 (5) 76 (26)

Homocysteine (μmol/L), n (%) < 0.001
≤15 310 (53) 179 (61) 131 (45)

>15 277 (47) 114 (39) 163 (55)

Mean Corpuscular Hemoglobin Concentration (g/L), n (%) 0.003
≤337 313 (53) 138 (47) 175 (60)

>337 274 (47) 155 (53) 119 (40)

Mean Platelet Volume (fl), n (%) 0.018
≤10 318 (54) 144 (49) 174 (59)

>10 269 (46) 149 (51) 120 (41)

Monocyte Count (×109/L), n (%) 0.007
≤0.44 295 (50) 164 (56) 131 (45)

>0.44 292 (50) 129 (44) 163 (55)

Platelet Large Cell Ratio, n (%) 0.009
≤0.25 295 (50) 131 (45) 164 (56)

>0.25 292 (50) 162 (55) 130 (44)

Uric Acid (μmol/L), n (%) 0.009
≤298 298 (51) 165 (56) 133 (45)

>298 289 (49) 128 (44) 161 (55)

Chloride (mmol/L), n (%) 0.028
≤104 328 (56) 150 (51) 178 (61)

>104 259 (44) 143 (49) 116 (39)

International Normalized Ratio, n(%) 0.009
≤0.98 306 (52) 169 (58) 137 (47)

>0.98 281 (48) 124 (42) 157 (53)

Fibrinogen (g/L), n (%) 0.003
≤2.88 296 (50) 166 (57) 130 (44)

>2.88 291 (50) 127 (43) 164 (56)

(Continued)
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Bilirubin, Bile Acid, Triiodothyronine, Free Triiodothyronine, Free Thyroxine, Thyroid-Stimulating Hormone, Systemic 
Immune-Inflammatory Index, Neutrophil-to-Lymphocyte Ratio, Neutrophil-to-Monocyte Ratio, Neutrophil-to-HDL 
Ratio, Lymphocyte-to-HDL Ratio.

Variable Selection
In our study to develop a predictive model for Enlarged Perivascular Spaces (EPVS), we initially focused on a dataset of 
88 variables, including demographic details and a wide range of medical and laboratory data. Confronted with the 
challenge of multicollinearity and overfitting due to the high number of explanatory variables, we adopted the Least 
Absolute Shrinkage and Selection Operator (LASSO) regression. This method, implemented using R’s “glmnet 

Table 1 (Continued). 

Variables Total (n = 587) Non-EPVS (n = 293) EPVS (n = 294) p

Apolipoprotein A1 (g/L), n (%) 0.029

≤1.03 296 (50) 134 (46) 162 (55)
>1.03 291 (50) 159 (54) 132 (45)

Apolipoprotein B100 (g/L), n (%) 0.006

≤0.79 297 (51) 131 (45) 166 (56)
>0.79 290 (49) 162 (55) 128 (44)

Apolipoprotein E (mg/L), n (%) 0.029

≤37 296 (50) 134 (46) 162 (55)
>37 291 (50) 159 (54) 132 (45)

Alanine Aminotransferase (U/L), n (%) 0.015

≤40 303 (52) 136 (46) 167 (57)
>40 284 (48) 157 (54) 127 (43)

Albumin (g/L), n (%) 0.018

≤40 377 (64) 174 (59) 203 (69)
>40 210 (36) 119 (41) 91 (31)

Thyroxine (μg/dL), n (%) 0.023

≤7 294 (50) 161 (55) 133 (45)
>7 293 (50) 132 (45) 161 (55)

Systemic Inflammation Response Index, n (%) 0.007
≤1.23 293 (50) 163 (56) 130 (44)

>1.23 294 (50) 130 (44) 164 (56)

Urea (mmol/L), n (%) < 0.001
≤5.4 303 (52) 177 (60) 126 (43)

>5.4 284 (48) 116 (40) 168 (57)

Carbon Dioxide Content in Plasma (mmol/L), n (%) 0.002
≤27 384 (65) 173 (59) 211 (72)

>27 203 (35) 120 (41) 83 (28)

Low-Density Lipoprotein (mmol/L), n (%) 0.023
≤2.89 295 (50) 133 (45) 162 (55)

>2.89 292 (50) 160 (55) 132 (45)

Lymphocyte-to-Monocyte Ratio, n (%) < 0.001
≤3.47 294 (50) 125 (43) 169 (57)

>3.47 293 (50) 168 (57) 125 (43)

Monocyte-to-HDL Ratio, n (%) 0.043
≤0.39 293 (50) 159 (54) 134 (46)

>0.39 294 (50) 134 (46) 160 (54)

Albumin to Globulin Ratio, n (%) 0.003
≤1.50 304 (52) 133 (45) 171 (58)

>1.50 283 (48) 160 (55) 123 (42)

Note: P < 0.05 indicates statistical significance.
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package”, was particularly advantageous in handling numerous predictors, effectively minimizing the risk of overfitting 
while addressing multicollinearity. We further refined the model through a ten-fold cross-validation process, applying the 
1SE criterion to optimize the regularization parameter λ (Figure 2A and B). This systematic approach led us to identify 
thirteen key indicators significantly associated with EPVS, namely Stroke, Age, Creatinine, Lipoprotein a, 
Homocysteine, Platelet Large Cell Ratio, Uric Acid, Chloride, Alanine Aminotransferase, Urea, Lymphocyte-to- 
Monocyte Ratio, Albumin to Globulin Ratio, and Hypertension (Table 2). These variables, which retained non-zero 
coefficients in the LASSO model, not only enhance the model’s robustness and accuracy but also provide valuable 
insights into the pathophysiological mechanisms underpinning EPVS.

Figure 2 (A and B) Screening of variables based on LASSO regression model in the Training Group (412 patients). (A) This figure provides a visual representation of the 
LASSO model’s coefficient profiles for 88 features utilized in predicting EPVS risk. It graphically illustrates the variation of each feature’s coefficient with the logarithm of 
lambda (log(λ)), showcasing the LASSO method’s characteristic effect of coefficient shrinkage. (B) LASSO Regression Cross-Validation Results. This figure demonstrates the 
performance assessment of our model under varying λ parameters in LASSO regression, employing cross-validation. It features a vertical dashed line on the left, signifying 
λmin, indicative of the model’s optimal performance. To its right, another dashed line marks λ1SE, denoting a model that’s marginally more parsimonious. Annotations above 
each line display the count of variables chosen at these specific λ values.

Table 2 Coefficients and lambda.1SE Value of the LASSO Regression

Variable Coefficient Lambda.1SE

Stroke 0.11838 0.04690

Age 0.062982
Creatinine 0.034576

Lipoprotein a 0.252345

Homocysteine 0.051053
Platelet Large Cell Ratio −0.03175

Uric Acid 0.054832

Chloride −0.00904
Alanine Aminotransferase −0.02463

Urea 0.0313

Lymphocyte-to-Monocyte Ratio −0.0189
Albumin to Globulin Ratio −0.03958

Hypertension 0.038038

Notes: Lambda.1SE denotes the Lambda value chosen using the 1 Standard Error Rule.
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Multivariable Analyses
In the multivariable analysis segment of our study, we incorporated thirteen variables selected through LASSO regression 
into a binary logistic regression analysis. This process elucidated that seven factors—Age, Hypertension, Stroke, 
Lipoprotein a, Platelet Large Cell Ratio, Uric Acid, and Albumin to Globulin Ratio—had a significant association 
with the likelihood of EPVS (P<0.05), as elaborated in Table 3. These results underscore their importance as independent 
predictors in the context of EPVS. Other variables, such as Creatinine, Homocysteine, Chloride, Alanine 
Aminotransferase, Urea, and Lymphocyte-to-Monocyte Ratio, were part of the analysis but did not show significant 
statistical relevance in this context.

Predictive Model Development
In our EPVS risk assessment study, we constructed a predictive model using binary logistic regression. This model, 
outlined in a nomogram (Figure 3), incorporates significant variables like Age, Hypertension, Stroke, Lipoprotein a, 
Platelet Large Cell Ratio, Uric Acid, and Albumin to Globulin Ratio. The nomogram assigns individual scores to these 
variables, reflecting their relative importance in predicting EPVS risk. By summing these scores, it provides an overall 
risk estimation. The model’s integration of varied factors, spanning clinical and biochemical markers, offers 
a comprehensive tool for evaluating EPVS risk, thus supporting more nuanced clinical decision-making.

Table 3 Binary Logistic Regression Analysis

B SE OR CI Z P

Age 0.765 0.252 2.150 1.31–3.52 3.035 0.002
Hypertension 1.171 0.552 3.220 1.09–9.51 2.122 0.034

Stroke 0.899 0.283 2.460 1.41–4.28 3.177 0.001

Lipoprotein a 2.435 0.431 11.420 4.91–6.57 5.651 0.000
Platelet Large Cell Ratio −0.747 0.244 0.470 0.29–0.76 −3.063 0.002

Uric Acid 0.880 0.244 2.410 1.49–3.89 3.605 0.000

Albumin to Globulin Ratio −0.598 0.241 0.550 0.34–0.88 −2.483 0.013

Notes: P < 0.05 indicates statistical significance.

Figure 3 The figure presents a nomogram for estimating the likelihood of EPVS in patients. This nomogram calculates risk scores based on six specific indicators. Each 
indicator is aligned with a corresponding scale to determine its point value. The total score, summed from these individual points, is then located on the “Total Points“ axis. 
The probability of EPVS, as indicated by the nomogram, corresponds to this total score on the ”EPVS” probability scale.
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Predictive Model Validation
Our EPVS risk prediction nomogram underwent extensive validation, incorporating ROC curve analysis, calibration 
plots, and Decision Curve Analysis (DCA) across both training and validation cohorts. The ROC analysis indicated 
significant discriminative ability, with AUC values of 0.815 (95% CI: 0.774–0.856) for the training cohort and 0.770 
(95% CI: 0.701–0.839) for the validation cohort, suggesting strong predictive accuracy (Figure 4A and B). Sensitivity 
and specificity were 69.5% and 77.8% in the training set, and 57.0% and 85.4% in the validation set, respectively 
(Figure 4A and B). Additionally, the Positive Predictive Value (PPV) was 0.732 and the Negative Predictive Value (NPV) 
was 0.725 in the training set, while in the validation set, the PPV was 0.713 and the NPV was 0.744, providing further 
insight into the model’s performance. Calibration plots for both sets (Figure 5A and B) demonstrated close alignment 
between predicted and observed EPVS risks, underscoring the nomogram’s precision. The DCA (Figure 6A and B) 
emphasized the nomogram’s practical utility in clinical decision-making, showing a significant improvement over 
standard care protocols. These collective validation techniques affirm the nomogram’s robustness and applicability as 
a valuable tool for EPVS risk assessment in clinical environments.

Discussion
In our study, we established a comprehensive predictive model for Enlarged Perivascular Spaces (EPVS) by analyzing 
a wide range of variables. Key findings indicate that Age, Hypertension, Stroke, Lipoprotein a, Platelet Large Cell Ratio, 
Uric Acid, and Albumin to Globulin Ratio are significant predictors of EPVS. This model enhances our understanding of 
EPVS, providing a nuanced approach to predicting its occurrence. Our findings highlight the importance of these 
variables in EPVS risk assessment, offering valuable insights for early detection and management in clinical settings. 
This research contributes significantly to the current literature on cerebral small vessel diseases, particularly in the 
context of neuro-radiology and neurology.

These findings not only align with existing literature but also offer new insights into the pathophysiological 
mechanisms underlying EPVS. Age emerged as a significant predictor of EPVS, potentially reflecting changes in 
cerebral vascular structure and function with advancing years. This observation is consistent with theories of cerebro-
vascular aging, which posit vascular aging as a critical factor in various neurodegenerative diseases.14,15 The significant 
associations of hypertension and stroke with EPVS underscore the importance of vascular health in the cerebral 

Figure 4 (A and B) Receiver Operating Characteristic (ROC) Curves for EPVS Predictive Model in Training Set (A) and Validation Set (B). The ROC curves plot the 
sensitivity against the specificity for various threshold levels.
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microenvironment. These factors may contribute to the development of EPVS by affecting vascular integrity and 
hemodynamics. The studies by Klarenbeek et al and Gao et al support this notion.16,17 The significant correlation with 
lipoprotein a suggests a role for lipid metabolism abnormalities in the development of EPVS. This may relate to 
atherosclerosis and vascular inflammation,18,19 known risk factors for cerebrovascular disease. The significant relation-
ships of platelet large cell ratio and uric acid with EPVS may indicate the influence of blood components and metabolic 
status in the development of EPVS. Yang et al also found an independent association between serum uric acid levels and 
EPVS.20 The significance of the albumin to globulin ratio may reflect the impact of protein metabolic status on 
cerebrovascular health. Studies by Deveci and Gazi (2021) and Chen et al suggest a potential link between this ratio 
and cardiovascular diseases and stroke.21,22 In summary, our study contributes to the existing literature by not only 

Figure 5 (A and B) showcase the calibration plots for our EPVS predictive model, utilizing data from the training and testing sets, respectively. These plots are instrumental 
in comparing the probabilities of EPVS predicted by our nomogram with the actual observed frequencies, thereby evaluating the model’s accuracy in predicting real-world 
outcomes.

Figure 6 (A and B) These figures illustrate the Decision Curve Analysis (DCA) for the EPVS predictive model in both training (A) and validation (B) sets. The DCA plots 
show the model’s net benefit at various decision thresholds, compared to two extremes: treating every patient or none. The horizontal line in each plot indicates no 
treatment benefit, while the diagonal line suggests universal treatment. The model’s curves, deviating from these lines, demonstrate its practical value, balancing the 
advantages and drawbacks of model-based treatment decisions.
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corroborating previous findings on traditional risk factors like hypertension but also by introducing and substantiating the 
role of additional biochemical markers in the pathogenesis of EPVS. The integration of these diverse predictors offers 
a more comprehensive understanding of EPVS, paving the way for future research and potential therapeutic 
interventions.

Our study is distinguished by its thorough data collection and advanced statistical methods, such as LASSO 
regression, which enhance the predictive precision of our EPVS model. This comprehensive and analytical approach 
significantly contributes to our understanding of EPVS’s multifaceted nature and sets a benchmark for future clinical and 
policy-related research in this field. However, the retrospective design of our study introduces certain limitations, 
including potential selection and information biases. These limitations restrict our ability to establish causality and 
may affect the generalizability of our findings. The specific patient population and healthcare setting of our study further 
constrain the broader application of our results. To overcome these limitations, future research should consider 
prospective studies with a more diverse patient cohort, which would help in validating and expanding upon our findings. 
This would enable a more balanced and extensive understanding of EPVS and its implications in diverse clinical settings.

Our study presents a pivotal advancement in understanding EPVS, marked by the development of a robust predictive 
model. Incorporating a comprehensive array of clinical and laboratory variables, our model demonstrates significant 
predictive power for EPVS, validated through extensive statistical analysis. However, it’s crucial to recognize the 
inherent limitations due to its retrospective nature, the specific patient population involved, and the absence of data on 
different stroke subtypes, which could influence the interpretations of EPVS associations. The absence of certain clinical 
outcomes such as hospital mortality rates also limits broader outcome assessments. While our focus was on identifying 
predictors of EPVS rather than post-hospitalization outcomes, future research could benefit from including these 
outcomes and detailed stroke subtype data to provide a more comprehensive view of the clinical trajectory of patients 
with EPVS. Future research should focus on prospective studies, expanding validation across diverse populations to 
enhance the model’s universal applicability. Investigating additional variables and conducting longitudinal studies would 
offer deeper insights into EPVS progression and impact. Moreover, exploring the effectiveness of various interventions 
on EPVS could lead to novel treatment strategies, significantly improving patient care in neurology and geriatric 
medicine. This comprehensive approach paves the way for groundbreaking contributions to the field, with the potential 
to transform clinical practices and patient outcomes globally.

This study represents a significant stride in understanding and predicting EPVS, a crucial aspect of cerebral small 
vessel diseases. Our comprehensive predictive model, informed by a diverse array of clinical and laboratory variables, 
has demonstrated notable efficacy in assessing EPVS risk. This model’s integration of key factors like age, hypertension, 
and specific biochemical markers offers a refined tool for early detection, potentially guiding more effective management 
strategies in neuro-radiology and neurology. However, the inclusion of stroke subtype data could further refine the 
predictive capabilities by distinguishing between the effects of different stroke mechanisms on EPVS formation. While 
our findings enrich the current understanding of EPVS, they also spotlight the necessity for future research. Future 
investigations could examine the integration of genetic markers and detailed lifestyle data, aiming to enhance persona-
lized predictions and interventions. Additionally, longitudinal studies would provide valuable insights into the progres-
sion and long-term impact of EPVS across different populations. Prospective studies, broader population validations, and 
exploration of additional variables are essential to deepen our understanding and enhance the model’s applicability.

Conclusions
This study developed a predictive model for EPVS that incorporates clinical and biochemical markers, demonstrating 
significant predictive accuracy for CSVD. Key predictors identified include age, hypertension, stroke history, lipoprotein 
a, platelet large cell ratio, uric acid, and albumin to globulin ratio. These findings enrich our understanding of the risk 
factors for EPVS and underscore the potential for early intervention and targeted treatment strategies.

Our results underscore the value of using advanced statistical techniques such as LASSO regression for effective 
predictor selection in complex datasets. Future research should aim to validate these findings in broader populations and 
investigate the longitudinal impact of EPVS, thus enhancing the model’s clinical applicability and supporting persona-
lized medicine approaches in neurology and geriatric care.
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