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Abstract: The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 
(CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing 
capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure 
of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å  resolution reveals a groove 
accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. 
The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the 
spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory 
strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the 
application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule 
activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological 
fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements 
attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9’s 
undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation 
using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and 
the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, 
challenges, future prospects, and clinical applications are discussed. 
Keywords: CRISPR/Cas9, sgRNA, genome editing, off-target effects, spatiotemporal control, clinical translation

Introduction
Clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) are a class of 
microbial defense mechanisms against mobile genetic elements, plasmids, and phage infections.1,2 This endonuclease 
system has been proposed as an innovative tool for genome editing, genome imaging, epigenetic modulation, and 
transcriptional perturbation. The genome editing technology by using CRISPR/Cas9 is used to precisely manipulate 
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functional genes involved in disease progression, correct disease-initiating mutations, activate tumor suppressor genes, 
and inactivate activated oncogenes.3–5 CRISPR/Cas9 technology can be used to treat a variety of infectious and genetic 
diseases such as metabolic disorders, cardiovascular diseases, Alzheimer’s disease, and human immunodeficiency virus 
(HIV) infections,6,7 because of its simple design and ability to simultaneously edit multiple sites.8

Other DNA editing approaches such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases 
(TALENs) are also used for DNA editing. The DNA editing approach of these techniques is based on tedious protein 
engineering, specific to each DNA-recognition domain to be targeted.9 However, because these nucleases are specified by 
different proteins, these approaches are becoming less recognized.10 However, the CRISPR/Cas9 genome editing system is 
a far simpler approach, as it is based on a 20-nt gRNA sequence.4 The CRISPR/Cas9 system is swiftly implemented as 
a powerful tool in genetic engineering because of its simple structure and ability to edit any DNA sequence.11

Despite these promising developments, precise spatial dimensions and long-term control are still necessary for 
CRISPR/Cas9-mediated genome editing in complex biological systems.12,13 Thus, CRISPR/Cas9 must be localized to 
certain cells at a specific time to prevent unnecessary gene disruption during certain phases of cell differentiation and 
tissue development.14 Furthermore, the most significant concerns regarding CRISPR/Cas9 genome-editing therapy are 
off-target effects and a few other genotoxicity issues that worsen as Cas9 activity increases.12,15 Thus, in complex 
biological systems, to maximize the therapeutic efficacy of CRISPR/Cas9 by minimizing its off-target activity and 
genotoxicity, spatiotemporal control of this genome-editing system must be precisely achieved.16,17

To date, spatiotemporal control of CRISPR/Cas9-mediated genome editing is still considered a formidable task in 
clinical applications.16,18 To overcome this challenge, physical approaches and genetic and chemical regulations are 
constantly being studied to explore full control of the CRISPR/Cas9 system.19 The roles of cell-specific promoters, small- 
molecule activators/inhibitors, bioresponsive delivery approaches, and control by thermal/optical/magnetic/ultrasonic 
activation of the CRISPR/Cas9 system have been studied.20–22 Each approach has its limitations and most of the 
strategies are used by in vitro cell lines; however, their programmable applications under in vivo conditions continue 
to struggle. Thus, a thorough knowledge of precise spatiotemporal control over CRISPR/Cas9 by using different methods 
is needed to utilize this genome-editing tool for innovative applications.

This review discusses the current updates on CRISPR/Cas9 biology and its mechanisms of action. In addition, the 
innovative roles of genetic, physical, and chemical elements that can regulate spatiotemporal control of CRISPR/Cas9 
activity are discussed. In addition, off-target measurement approaches, challenges, future prospects, and clinical transla-
tion are discussed.

Innovative Advances in CRISPR/Cas9 System
In 1987, Japanese researchers discovered numerous tandem repeats in the E. coli genome that had not been previously 
identified. They did not publicize these findings due to a lack of information about its biological significance.23 However, 
these sequences were first named as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in 2002, but 
their actual function was still unclear.24 In 2005, three distinct research teams demonstrated that the CRISPR loci are 
important for bacterial adaptive immunity.25 Some researchers reported that the resistance of bacteria to phages might be 
altered by the integration of viral gene sequences.26 In 2008, it was found that small segments of CRISPR-incorporated 
non-coding RNA may lead the CRISPR-associated (Cas) proteins to the target-specific DNA region, enabling them to 
carry out a protective function.27 Deltcheva et al unraveled some novel locations for crRNA development and showed 
a correlation between trans-coding crRNA (tracrRNA) and pre-crRNA maturation and processing.28 Further studies 
conducted in vivo in 2012 revealed that when mature crRNA pairs base-wise with tracrRNA, it generated two distinct 
RNA structures that guided the CRISPR-associated protein Cas9 to cleave double-stranded (ds) DNA.29 Later, the Cong 
and Mali research groups employed two distinct type II Cas systems to create DNA cuts in cell cultures and made 
genome editing with the CRISPR/Cas9 system feasible.30 By 2020, a plethora of CRISPR/Cas9-based tools for DNA and 
RNA gene editing had been produced following the discovery of the technology, and the field has advanced quickly ever 
since31 (Figure 1).
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CRISPR/Cas9 Biology and Its Mechanism of Action
The CRISPR/Cas system is a marvel of microbial defense approach. Different microbes (bacteria and most archaea) have 
evolved this smart RNA-guided adaptive immune system encoded by the CRISPR loci and CRISPR-associated (cas) 
genes. This system allows microbes to acquire immunity against infection using mobile genetic elements, plasmids, and 
bacteriophages32,33 (Figure 2). The exposure of invading plasmids or phage genetic elements leads to the formation of 
new spacers through the integration of small fragments of their DNA into the CRISPR repeat-spacer array within the host 
chromosome.34 This integration of new foreign genetic sequences provides the host access to the genetic history of all 
prior infections and helps it to defend similar invaders in the future.35,36

Short mature CRISPR RNAs (crRNAs) are key players in the CRISPR/Cas system, which are produced through 
endonucleolytic cleavage and enzymatic processing by subsequent transcription of the CRISPR array.1 A short segment 
of RNA, known as a spacer, is followed by the crRNA at its 5ʹ end which complements the sequence from the foreign 
genetic element and the CRISPR repeat sequence is contained at the 3ʹ end. Hybridization between the protospacer 

Figure 1 A timeline of the innovative discoveries in CRISPR/Cas9 system as identification, structure-functional relationship, and its role in different clinical trials.
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(complementary foreign target sequence) and crRNA spacer initiates the destruction of sequence-specific invading RNA 
or DNA by Cas nucleases upon subsequent infection.37,38 Thus, the CRISPR/Cas9 system is a smart assembly between 
the Cas9 protein and crRNA, forming crRNA-effector complexes that interact with foreign DNA targets and destroy 
matching sequences.39,40 Furthermore, a protospacer adjacent motif (PAM), a short-conserved sequence (2–5 bp), is 
positioned adjacent to the crRNA-target sequence, that plays a critical role in DNA targeting.41,42 In most CRISPR/Cas 
systems, it serves as a crucial double-check in the selection of the target DNA and its subsequent degradation.

According to the current classification of CRISPR/cas loci, CRISPR systems are divided into two classes (Class 1 and 
Class 2) divided into six types (I–VI) based on the effector Cas proteins.43,44 Both crRNA and a distinct set of Cas 
proteins have been used for each type of CRISPR interference.45 Unlike type I and type III CRISPR systems, which use 
a large multi-Cas protein complex for crRNA binding and target sequence destruction, type II CRISPR systems use 
a single DNA endonuclease as Cas9.39

During the expression process, an extra noncoding RNA called trans-activating crRNA (tracrRNA) is required 
(Figure 2). It is a small RNA molecule working together with crRNA to guide the Cas protein in targeting specific 
DNA sequence. In type II CRISPR systems, tracrRNAs are required for crRNA maturation.46 A distinct dual RNA 
hybrid structure forms between tracrRNA and crRNA repeat sequences.46 This dual RNA guide directs the Cas9 
endonuclease protein to cleave any DNA sequence with an adjacent PAM and a complementary 20-nucleotide (nt) 
target sequence.47,48 A novel innovation has been achieved in the history of the CRISPR/Cas9 endonuclease system by 
generating chimeric single-guide RNA (sgRNA), a combination of tracrRNA and crRNA, into a single RNA transcript. It 
maintains the functionality of Cas9-based sequence-specific DNA cleavage and streamlines the endonuclease system.48 

The guide RNA (spacer) sequence within the crRNA can be changed to target any desired DNA sequence by using this 
novel and straightforward two-component CRISPR/Cas9 system.48
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Figure 2 Diagrammatic representation of CRISPR/Cas9 action mechanism in a bacterial cell as adaptation, expression, and interference stages. Invasion of bacteriophage 
DNA or plasmid fragments are incorporated as a protospacer to bacterial CRISPR array as new spacers. It is followed by pre-CRISPR RNA transcription and mature crRNA: 
tracrRNA are formed subsequently. Activation of Cas9 protein occurs by binding with sgRNA for subsequent re-infection with bacteriophage or new plasmids.
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CRISPR/Cas9 system indeed creates a blunt-ended double-stranded break (DSB) of invading double stranded DNA or any 
sequence of interest.7,48 After a DSB is created in a DNA sequence, two repair pathways come into play including homology- 
directed repair (HDR) or by error-prone non-homologous end joining (NHEJ). These repair systems have varying levels of 
accuracy and efficiency.49,50 HDR results in precise genome modification using a homologous repair template. Whereas, in 
contrast, NHEJ results in small random insertions and/or deletions (indels) at the cleavage site (Figure 3).

Cas9 Enzyme
SpCas9 consists of a single large multidomain multifunctional protein (160 kDa) with 1368 amino acid residues. This 
genome-editing tool requires Cas1, Cas2, and Csn2 during the foreign DNA acquisition step,51 and RNase III is involved in 
the processing of pre-crRNA to mature sgRNA.46,52 The three-dimensional computer modeling of CRISPR/Cas9 repre-
sented as mesh model, ribbon representation or space filling model has helped comprehensively to understand the structural 
and functional relationships between its different protein domains (Figure 4a–c). The SpCas9 protein in its apo form (pre- 
binding state) consists of two distinct lobes: a recognition (REC) lobe and a nuclease (NUC) lobe (Figures 4 and 5). The 
REC lobe is divided into three ⍺-helix regions, a bridge helix spanning 60–93 residues, REC1 region (94–179, 308–713 
residues), and REC2 domain spanning from 180 to 307 residues. The NUC lobe is composed of RuvC (residues 1–59, 718– 
769, 909–1098), HNH (residues 775–908), and a PAM-interacting (PI) domain spanning 1099–1368 residues53 (Figure 4d). 
Additionally, a Cas9-specific fold with a PAM-interacting (PI) site is visible in the elongated C-terminal domain (CTD).

This DNA endonuclease system possesses two distinct domains that snip dsDNA 3bp upstream of the PAM. These 
two nuclease domains include the HNH-like nuclease domain and Ruv-C like nuclease domain. The HNH-like nuclease 
domain cleaves the target DNA strand complementary to the gRNA sequence, and the RuvC-like nuclease domain 
cleaves the nontarget DNA strand.48,54 Additionally, Cas9 plays a role in the maturation of crRNA and acquisition of 
spacer sequences.55

In apo-Cas9 state, the PAM recognition region is largely disordered, indicating that apo-Cas9 is maintained in an 
inactive configuration and cannot recognize the target DNA before gRNA binding occurs52 (Figure 5a). This finding 
indicates that in the presence of gRNA or hairpin, apo-Cas9 can also bind DNA nonspecifically and rapidly detach from 
nonspecific sites.56 Thus, Cas9 endonuclease is inactive in the absence of bound gRNA,48 thus supporting its function as 
an RNA-guided endonuclease system.57
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Figure 3 Diagrammatic representation of double-strand DNA break by CRISPR/Cas9 and the repair mechanism of DSB by NHEJ and HDR approaches. The NHEJ results in 
gene-knockout in the absence of any donor DNA and leads to the formation of random indels. The HDR approach works in the presence of donor DNA for precise 
nucleotide substitution.

International Journal of Nanomedicine 2024:19                                                                                   https://doi.org/10.2147/IJN.S455574                                                                                                                                                                                                                       

DovePress                                                                                                                       
5339

Dovepress                                                                                                                                                     Allemailem et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Significant conformational changes in the three-dimensional structure of CRISPR/Cas9 occur for its mode of action, 
as shown by X-ray structures obtained at various active stages.58,59 The different stages of the S. pyogenes CRISPR/Cas9 
editing pathway have been resolved as free Cas9 with a protein data bank (www.rcsb.org) (PDB 4CMQ),57 sgRNA- 
bound Cas9 (PDB 4ZT0),59 Cas9 in association with target DNA and incomplete nontarget DNA with PAM sequence 
(PDB 4UN3),58 and Cas9 in association with both target DNA and complete nontarget DNA (PDB 5F9R).59 The sgRNA 
associated Cas9 from S. pyogenes (PDB 4CMQ and PDB 4ZT0) were determined at a resolution of 3.09 Å  and 2.9 Å , 
respectively.57,59 The helical REC domain undergoes a significant rearrangement upon sgRNA binding, resulting in 
a shift of the REC III domain of approximately 65 Å to accommodate the sgRNA59 (Figure 5b). A further shift in the 
REC II domain occurs by binding of the target DNA and PAM containing an incomplete nontarget DNA strand to the 
Cas9:sgRNA complex (PDB 4UN3).58 Melting of foreign DNA occurs via Cas9:sgRNA-based PAM recognition, 
resulting in a DNA:RNA hybrid formation (Figure 5c).56,58

For the cleavage of the nontarget DNA strand, RuvC most likely uses a two-metal-ion catalytic mechanism,53,57 while 
the HNH nuclease domain adopts a characteristic ββα-metal fold and most likely uses a one-metal-ion mechanism for the 
cleavage of the target strand DNA. Nucleic acid cleavage by one-metal ion- and two-metal ion-dependent activities is 
conserved for aspartate and histidine residues.60 This is consistent with mutating either the RuvC domain (D10A) or 
HNH (H840A), which converts Cas9 into nickase, whereas mutations in both these domains result in dead Cas9 (dCas9). 
This Cas9 variant exhibited intact RNA-guided DNA binding, whereas endonuclease activity was abolished.60

CRISPR/Cas9 Effector Complex Assembly
In order to accomplish site-specific identification and cleavage with full functionality, Cas9 must be assembled with 
sgRNA (crRNA-tracrRNA complex) (Figure 5b).48,57 The positively charged groove at the interface between the NUC 
and REC lobes accommodates the negatively charged sgRNA target DNA heteroduplex53 (Figure 4). Three motifs (RuvC 
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Figure 4 The Spy Cas9-sgRNA-DNA ternary complex three-dimensional structure, as found in the Protein Data Bank (PDB) (https://www.rcsb.org, PDB ID: 4OO8), edited 
by using software developed by UCSF Chimera. (a) Mesh model of CRISPR/Cas9 system to elucidate proper shape of sgRNA-DNA within protein interior. (b) Ribbon 
representation of CRISPR/Cas9. (c) Space filling model of CRISPR/Cas9 to show different domain organization. (d) Domain organization and their amino acid residue 
numbers.
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I–III) make up the RuvC domain in the NUC lobe which interact with the PI domain to generate a positively charged 
surface that interacts with the sgRNA 3ʹ tail. The HNH domain lies between the RuvC II–III motifs and the rest of the 
protein forms only a few contacts.

DNA target specificity is conferred by the 20-nt crRNA spacer sequence, and tracrRNA plays a fundamental role in 
Cas9 recruitment.4 Within the spacer region of crRNA lies a sequence, the so-called seed sequence of RNA nucleotides, 
which is crucial for target specificity.61,62 While any close homology in the seed region with any DNA sequence 
frequently results in off-target binding events, any mismatch in the seed region either drastically reduces or completely 
eliminates the target DNA binding and cleavage.63

Figure 5 Proposed mechanisms of target DNA recognition and its cleavage by CRISPR/Cas9. (a) sgRNA, binding to apo-Cas9 state with largely disordered PAM-interacting 
cleft, undergoes large conformational changes to achieve the active target recognition state. (b) Functionally active Cas9. in pre-target state with REC and NUC lobes. 
becomes ready for target search. (c) Cas9 is further activated through PAM recognition. (d) Cas9 follows progressive R-loop formation, RNA strand invasion, and local 
DNA melting. (e) R-loop expansion is followed by directional unwinding of target DNA. (f) A complete process of concerted target DNA cleavage occurs by HNH allosteric 
switch.
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Cas9 undergoes substantial structural rearrangement upon guide RNA binding, from an inactive conformation to 
a DNA recognition conformation (Figure 5b). The most noticeable changes occur in the REC lobe, particularly in Hel-III, 
as it moves ~65 Å  toward the HNH domain by sgRNA binding. However, fewer conformational changes occur when 
Cas9 binds to the target DNA and the PAM sequence. This suggests that Cas9 undergoes significant structural 
reorganization before binding to its target DNA, highlighting the idea that guide RNA loading largely controls Cas9 
enzymatic activity.57

Because of its CTD and RuvC, Cas9 interacts with sgRNA stem loop 2 less frequently. However, several direct 
connections were seen between the repeat-antirepeat duplex and stem loop 1 as well as between the linker region and 
stem loops 1 and 2 via Hel-I (Figure 4). Furthermore, because sgRNA lacks a 3ʹ tracrRNA tail, no RNA–protein 
interaction was observed for stem loop 3 in the sgRNA-Cas structure.53,64 In summary, stem loop 1 and the repeat- 
antirepeat duplex are necessary for the formation of the gRNA-Cas9 complex, but stem loop 2, stem loop 3, and the 
linker are not necessary for the function65 but may play a role in the stabilization of gRNA binding to help active 
complex formation66,67 (Figure 4).

Target Search and Recognition
The binding of gRNA to Cas9 complements the search for target DNA sites.59 Target recognition depends on base 
pairing between the target DNA’s protospacer and the 20-nt spacer region, as well as the conserved PAM next to the 
target site.47,48 The PAM sequence68 performs self- and non-self-sequence discrimination, and any mutation in PAM 
prevents Cas9 cleavage activity.48 A host immune response can be evaded by bacteriophage by this mutation.69,70 For 
commonly used SpCas9, the native PAM sequence is 5ʹ-NGG-3ʹ, where N represents any of the four DNA bases. After 
a three-dimensional collision, Cas9 dissociates swiftly from the DNA with an inappropriate PAM sequence, and vice 
versa.71,72 Local DNA melting is triggered adjacent to the nucleation site at an appropriate target site with a proper PAM 
match (Figure 5c). RNA strand invasion creates an RNA-DNA hybrid and a displaced DNA strand (R-loop) from the 
PAM proximal to the distal end (Figure 5d).73,74

The middle channel that divides the REC and NUC lobes encases the RNA-DNA hybrid, which Cas9 detects 
regardless of its sequence. This implies that instead of recognizing the nucleobases of the guide target heteroduplex, 
Cas9 recognizes its shape. Different SpCas9 variants have been shown of the induced fit mechanism, Cas9 recognizes the 
noncanonical PAM sequence via an induced-fit mechanism.75,76 Additionally, some modified Cas9 variants showed 
structural plasticity for PAM recognition, highlighting the critical function of PAM recognition in initiating target DNA 
unwinding.73 Cas9-PAM interactions promote Watson–Crick base pairing between the target DNA strand and guide RNA 
and enable local structural modifications to stabilize the nearby DNA duplex.58,64

Straight upstream of PAM, a sharp kink turn in the target strand is observed; this kink-turn configuration is important 
for driving the transition of the target DNA strand from guiding RNA pairing to pairing with a nontarget strand 
(Figure 5d). Additional biochemical and single-molecule investigations have demonstrated a connection between PAM 
acknowledgment and the local destabilization of nearby sequences.48,56 This suggests that the interaction between the 
phosphate lock loop and +1 phosphate upon PAM recognition contributes to the stabilization of RNA-DNA hybridization 
and local DNA duplex melting.58 Previous studies have shown that a mismatch of two base pairs adjacent to PAM fully 
inhibits binding and the introduction of DNA bubbles into the target DNA, hence promoting strong cleavage and 
removing the requirement for the formation of DNA-RNA heteroduplexes.56 Cas9 significantly bends the DNA helix and 
change the duplex trajectory. Thus, a bend from 180° to almost 150° in bound DNA is observed (Figure 5d). Cas9 
mediated DNA bending facilitates strand separation and prevents rehybridization (R-loop collapse) (Figure 5e).

Target Cleavage
The Cas9 enzyme is activated to cleave DNA upon PAM recognition, followed by DNA-RNA duplex formation.56 The 
RuvC domain of Cas9 consisted of three split RuvC motifs and the HNH domain is located in the middle portion of the 
protein. Specific nuclease domains cut each strand of target DNA at a specific position; three base pairs distant from the 
NGG PAM sequence (Figure 3). Target cleavage of DNA causes most blunt-ended double-strand breaks (DSBs).47,48 

However, Cas9 nickase (D10A or H840A), a variant of wild-type (WT) Cas9, can cut only one strand of a DNA duplex, 
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resulting in a single-stranded break.47 A double nick-induced DSB can be performed on target DNA to enhance genome- 
editing specificity by pairing sense and antisense sgRNAs targeting Cas9 nickases on opposite strands.77

Proposed Model for CRISPR/Cas9-Based DNA Targeting and Cleavage
Based on the current structural and systematic research, a detailed Cas9 mechanistic model was generated based on the 
activation of gRNA binding and recognition of target DNA (Figure 5). In this model, a major conformational 
rearrangement of Cas9 occurs via guide RNA binding.57,59 This conformational change shifts the inactive Cas9 state 
to the DNA recognition state6,59 (Figure 5b). For target binding and strand invasion, the RNA seed sequence A-form 
conformation is preordered and prepositioned for PAM interrogation and recognition.59 The Cas9 binding to PAM allows 
the enzyme to quickly search nearby DNA for the target sequence.73,78 Once Cas9 discovers a specific target with 
a suitable PAM, duplex unwinding is initiated73,79 (Figure 5d). The phosphate lock loop stabilizes unwound target DNA. 
To pair the bases, it positions the first base of the target DNA to flip and rotate upward toward the gRNA.58,64 The flipped 
base interacts with Cas9 on the nontarget strand to enable duplex unwinding.64,80

The Cas9 conformational changes that result from base pairing between the guide RNA and target facilitate the invasion 
of the gRNA strand beyond the seed region.53 The base pairing is propagated to the 5´end of the guide sequence once the 
non-seed regions are sequentially released from the constraint.56,73 This advanced base pairing further promotes strenuous 
conformational changes in Cas9 until an active state is achieved.81,82 After extensive annealing of the target DNA and 
gRNA, HNH eventually achieves a stable active conformation for target strand cutting.64,80 These HNH conformational 
changes instantaneously lead to conformational changes in loop linkers, which direct the RuvC catalytic center to interact 
with the nontarget strand for concerted cleavage64,83 (Figure 5f). After the target DNA is cleaved, Cas9 remains closely 
linked until other biological components are removed from the enzyme, allowing for additional activity.56

Targeting Approaches of CRISPR/Cas9
The Delivering CRISPR/Cas9 components into desired cells is a crucial step in the gene editing process. It allows the 
Cas9 nuclease and sgRNA to reach their target location in the genome and make the desired edits. It is highly significant 
to consider the appropriate, safe, and accurate delivery method to transport the CRISPR/Cas9 system to specific cellular 
location, particularly in vivo, and aiming for the correct sequence inside the nucleus. Different approaches including 
viral, nanomaterial-based, and physical methods are used to target CRISPR/Cas9 system within target cells. The viral 
vectors include lentivirus (LV), adenovirus (AV) and adeno-associated virus (AAVs), nanomaterial-based nanoparticles 
(NPs) and physical methods by microinjection and electroporation are commonly used to target this genome editing tool 
within specific cells.84,85

Delivery by Viral Vectors
Some viral vectors are commonly used to deliver CRISPR/Cas9 genome editing components to desired cells. Adeno- 
associated viruses (AAV), including lentivirus and adenovirus, have been effectively employed in in vivo studies86 and 
only very rarely induce immunological responses in humans.87 The genomic size of SpCas9 alone is around 4.3 kbp, 
whereas the maximal size that a single AAV vector can transport is approximately 4.7 kbp.88 AAVs do not cause any 
other disorders; however, the primary drawback of AAV is its small package size, which necessitates the use of many 
AAVs in order to contain all CRISPR components, including gRNA and Cas protein.87

A viable solution to the packaging problem is to divide the Cas9 protein into two AAV (AAV-split-Cas9) vectors 
rather than one.89 Large size vectors raise the possibility of off-targeting and mutation, as previously mentioned.90 To 
decrease off-targeting and boost delivery effectiveness, a smaller Cas9 protein must be used and spliced into two AAV 
vectors.91 The use of ribonucleoprotein (RNP) complexes, such as recombinant CRISPR-Cpf1 Ribonucleoprotein 
(CRISPR-Cpf1-RNP) inhibited off-target activity in mouse cells,92 is another method to lessen the risk of off-targeting 
associated with delivery modalities. Additionally, based on these findings, Mout and associates used Cas9-RNP 
techniques, which have about 95% success rate in cultivated cells.93 Consequently, there is a much lower chance of 
subsequent mutations and off-targeting that arise from the ongoing expression of viral vectors.94
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Delivery by Non-Viral Vectors
Non-viral delivery vectors including lipid and inorganic nanoparticles (NPs) offer a more strategy of CRISPR/Cas9 
transport.95 The non-viral delivery strategy such as nanoparticle-based delivery permits more frequent gene therapy injection 
with less immunogenicity risk, reduced exposure to nucleases, and improved targeting precision.95 Moreover, non-viral 
vectors are more capable of integrating into the conveyed genome than viral vectors without compromising their capacity.96

Cas9 mRNA/sgRNA delivery has also been investigated by using alternative methods, including extracellular vehicles 
(EVs),97 nanogels,98 and polyplex micelles.99 Membrane-related vehicles (EVs) consisting of proteins, lipids, and nucleic 
acids have gained popularity as RNA carriers because of their unique signal transmission capacity and innate biocompat-
ibility. Conversely, extracellular vesicle-based systems have been effectively applied in both in vitro and in vivo settings and 
are less expensive and safer than the other method.100 The transport and efficiency percentage of the CRISPR system into 
the targeted area is another difficulty, particularly in cancer therapy where entire editing efficiency is required.88

Regulation of CRISPR/Cas9 Activity
Recent comprehensive knowledge about the role of PAM and the role of crRNA and tracrRNA, which are now often 
engineered as single guide RNA (gRNA), has uplifted the applications of CRISPR/Cas9 to new heights. The CRISPR/ 
Cas9 system currently has enormous potential for treating HIV, cancer, genetic, metabolic, Alzheimer’s, and cardiovas-
cular diseases.101 Despite these inspiring possibilities, more precise control over spatial dimensions and time is a basic 
requirement for handling CRISPR/Cas9 activity in complex biological systems.12,13 Additionally, CRISPR/Cas9-based 
genome-editing perturbations at undesirable genetic loci must be avoided during specific phases of cellular differentiation 
and tissue development. Thus, strict localization of this endonuclease-based genome editing tool at certain time in 
specific cells or tissues is of utmost importance.14 Furthermore, genotoxicity and off-target effects of CRISPR/Cas9 are 
the most important issues that can be enhanced by increasing the activity of Cas9.12,15 Therefore, to minimize the off- 
target activity and genotoxicity of CRISPR/Cas9 and expand its therapeutic efficacy, proper spatiotemporal control of this 
endonuclease system must be achieved.16,102

To date, precise spatiotemporal control over CRISPR/Cas9 remains a formidable challenge for robust implementation 
in clinical applications.18 For this purpose, thorough knowledge of the different factors responsible for the genetic and 
physicochemical regulation of CRISPR/Cas9 is of principal importance in strengthening its conditional control. Figure 6 
provides a brief diagrammatic presentation of various methods, including chemical, physical, and genetic strategies, for 
the spatiotemporal control of CRISPR/Cas9 in biological systems.103

It is crucial to have complete knowledge of the functions of these small-molecule promoters that are specific to cells, 
inhibitors, and bioresponsive delivery vehicles. In addition, spatiotemporal control by thermal/optical/magnetic/ultrasonic 
activation of the CRISPR/Cas9 system maximizes its application in different clinical applications.20–22 However, all of 
these strategies are suboptimal and have some shortcomings (Table 1). Therefore, the majority of CRISPR/Cas9 
regulation strategies have only been tested in cell lines in vitro. It is unclear if this genome editing system is suitable 
for in vivo applications given the abundance of genetic and spatiotemporal regulators. Therefore, systematic comparisons 
of various approaches to precisely regulate the spatiotemporal activity of CRISPR/Cas9 gene editing are essential.

Genetic Regulation
Various techniques have been used to engineer new Cas9 variants with a high fidelity. These approaches include the 
rational, nonrational, and combined methods. A rational method involves structural and/or functional expertise, particu-
larly point mutations or computational modelling, to engineer new Cas9 variant designs.108 Nonrational methods are 
evolution-based approaches that involve high-throughput screening through random mutagenesis.109 Using both struc-
ture-guided and direct evolution, new Cas9 variants are being engineered.

Different high-fidelity Cas9 variants have been generated through simple amino acid substitutions in the wild-type 
(WT) Cas9 protein. These variants included eSpCas9, evoCas9, HypaCas9, Sniper-Cas9, SpCas9-HF1, SpCas92Pro and 
xCas9 3.7.20,110,111 These engineered Cas9 variants exhibited reduced off-target effects and/or potential cleavage 
activities to different degrees. Consequently, choosing the correct Cas9 variant is crucial, but difficult. WT Cas9 has 
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been designed to accommodate nuclease-dead (dCas9), catalytically inactive, or Cas9 nickase form.112 This Cas9 form 
binds the DNA precisely and specifically under the control of sgRNA, but does not cleave it.113 For the purpose of 
genetic regulation, different transcriptional activators or repressors are recruited by dCas9 for targeted gene activation or 
repression (Figure 7).

In addition, genetic modifiers have been employed to achieve specific epigenetic modifications at some genomic locations 
using dCas9. General examples of some key molecules or structures that are used as modular CRISPR fusion systems include 
AcrIIA 1–4, VP16 multiple copies, VP64, numerous sgRNAs, KRAB, p65, SID4X, etc.114,115 Some cell-specific promoters 
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Figure 6 Different strategies of spatiotemporal (physical, chemical, and genetic) control used in CRISPR/Cas9 genome-editing approach.

Table 1 Advantages and Disadvantages of Different Regulators of CRISPR/Cas9 Activity

Control Type Advantage Disadvantage Reference

Cell-specific promoters Efficient specificity of gene editing in the 

spatial dimension and low level off-target 

potential

Cumbersome in assessment of more promoter with 

high cell specificity and activity

[104]

Small molecule activators Easy synthesis with higher cell permeable 

and nonimmunogenic and good gene editing 
efficiency

Higher cytotoxicity with substantial background activity 

and lack of broad dynamic range

[8]

Small molecule inhibitors Easy to synthesize with good cell 
permeability capacity and nonimmunogenic

The identification and screening is difficult with high 
background activity and lacks easy tunability in clinical 

application.

[8]

Light control Easy tunability, low toxicity and noninvasive 

with reversible properties

Tissues demonstrate strong absorption of light, limited 

to a narrow spectral range and require long exposure 

time

[12]

(Continued)
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used to achieve genetic regulation of CRIPR/Cas9 include the CD4 promoter, egg cells, liver cells, macrophage-specific 
promoters, and erythrocyte-specific gata1 promoters104,116 (Figure 7).

Transcription Activation of CRISPR/Cas9 Through Modular Fusion Systems
The regulatory activity of the CRISPR/Cas9 system can be demonstrated through the attachment of protein-interacting 
RNA aptamers. This allows the system to recruit a variety of transcription activation domains, such as p65 and VP64, to 
improve gene expression (Figure 7a). It has been noted that sgRNA constructs with various RNA hairpin structures, such 
as Com, MS2, or PP7 RNA hairpins, significantly drive reporter gene expression. These RNA hairpins can recruit 
protein-interacting RNA aptamers such as Com, MCP, or PCP attached to the VP64 activation domain, which causes 
target gene expression117 (Figure 7d).

Owing to mutations in the RuvC and HNH nuclease domains, dCas9 is unable to cleave DNA strands, but can still 
target loci with the assistance of sgRNA.118 A target gene can be basically transcriptionally activated by binding dCas9- 
sgRNA to certain small-molecule activation domains like p65AD, Rta, and VP64119,120 (Figure 7c). For instance, dCas9 
was fused with VP64 or p65 activation domains to create dCas9-p65 and dCas9-VP64, respectively.119,121 Targeting the 
Gal4 upstream activation sequence (UAS), these sgRNA-bound fusion proteins were concurrently transfected into HEK- 
293 T cells, which expressed a green fluorescent protein (GFP). However, HEK-293T cells transfected with dCas9-p65 or 
dCas9-VP64 fusion proteins showed a 12- or 25-fold increase in GFP fluorescence intensity, respectively, when 
expressing dCas9 alone.119

Different optimization approaches can also be used to further improve the transcription activation efficiency. 
Activation domain VP16 can be added to multiple copies (dCas9-VP48, VP96, or VP192) (Figure 7b). It has been 
documented that the insertion of multiple sgRNAs or the tripartite activator domain VPR occurred when 12 VP16 repeats 
were fused with dCas9 (dCas9-VP192). This system efficiently activated and enhanced the expression levels of target 
genes 70-fold.122 dCas9-VP64 was used as a scaffold connected to Rta and p65 to create a dCas9-VP64-p65-Rta tripartite 
activator, also known as dCas9-VPR (Figure 7c).123,124 The transcriptional activity was enhanced by this three-part 
fusion system.

Transcription Repression
The dCas9/sgRNA complex inhibits the RNA polymerase to prevent transcriptional elongation, resulting in sequence- 
specific gene suppression.113,125 Enhanced transcriptional repression efficiency can be achieved by fusing dCas9/sgRNA 
with small-molecule transcription repression domains such as KRAB, MXII, and SID4X (Figure 7f).117,119 The CS 
domain of HP1, KRAB domain of Kox1, and WRPW domain of Hes1 are examples of inhibitory chromatin modifier 
domains that, when coupled with dCas9/sgRNA, effectively suppress expression of the GFP reporter gene in HEK-293- 
GFP reporter cells.119 Nonetheless, in contrast to the dCas9-expressing cells, the dCas9-KRAB fusion protein-expressing 
cells displayed a five-fold decrease in fluorescence signal, whereas the dCas9-WRPW or dCas9-CS fusion protein- 
expressing cells showed a two-fold reduction in the GFP signal.119 Combining sgRNA with small-molecule transcrip-
tional repression domains is another method of transcriptional repression to suppress the expression of a particular gene. 

Table 1 (Continued). 

Control Type Advantage Disadvantage Reference

Ultrasound control Potential gene editing specificity, noninvasive 

and has good transfer efficiency

Lacks easy tunability in clinical applications, is less 

reversible and is not fully explored

[105]

Heat control Potential gene editing specificity, easy 

tunability and is noninvasive

It has low photothermal conversion potential with long 

exposure time and face difficulty in screening of more 
heat shock promoters

[106]

Magnetic control It possesses potential gene editing 
specificity, has low cytotoxicity and is not 

disturbed by biological tissues

The screening of magnetic sensing material is difficult 
and have not been fully explored

[107]
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Figure 7 Different strategies used to genetically regulate the CRISPR/Cas9 genome-editing tool. (a) Small molecule activation domains for example p65, Rta, and VP64 can 
be used as target gene transcriptional activators when fused with dCas9. (b and c) For improved transcription activation, VP16 multiple copies or a tripartite activator 
domain fusion as VPR (a fusion of Rta, p65AD, and VP64) can be added to dCas9. (d) RNA binding polypeptides (Com, PCP, or MCP) are recruited via RNA aptamer (PP7, 
MS2, or Com) in order to facilitate sgRNA engineering. (e) Interaction of dCas9 with target site epigenetic regulatory enzyme domains (HTD/HMT, TET/DNMT, or HDAC/ 
HAT). (f) Fusion of various repressor domains (KRAB, MXI1, and SID4X) for transcriptional repression of dCas9. (g) Cas9-mRNA and sgRNA transcription using a CRISPR/ 
Cas9 plasmid driven by a specific promoter occurs in target cells but not in nontarget cells. (h) Induction of up-regulation or some endogenous loci by targeting the enhancer 
or promoter region of endogenous genes by dCas9 activator/inhibitor fusion.
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An sgRNA construct was obtained by fusing the RNA-binding domain, Com, with the repression domain, Com-KRAB, 
to target the transcription start site. This approach led to significant GFP repression compared to dCas9 alone.117

Epigenetic Modification
dCas9 participates in epigenetic modification by fusing epigenetic modifying enzymes, such as histone acetyltransferase 
(HAT)/deacetylase (HDAC) and histone demethylase (HDM)/methyltransferase (HMT). These Cas9-epigenetic modify-
ing enzyme constructs have been used to expand the action on the target genome to enhance functional tasks and control 
different epigenetic states126 (Figure 7e).

Cell-Specific Promoter
The construction of cell-specific promoters is a novel strategy to counteract undesired side effects of CRISPR/Cas9 in 
nontarget cells. gene editing and reduce the undesirable side effects of this genome editing tool in nontarget cells, is to 
directly construct cell-specific Cas9-nuclease promoters in target cells116 (Figure 7g). Using organ-specific promoters, the 
CRISPR/Cas9 system has been developed to induce gene editing in zebrafish, C. elegans, macrophages, 
hepatocytes,127,128 and monocytes.129,130 To create the Cas9 macrophage-specific expression plasmid pM330 (CD68- 
Cas9 plasmid), the original chicken β-actin promoter of the Cas9 expression plasmid, pX330, was substituted with 
a macrophage-specific promoter (CD68).104 To create a CLANpM330/sgNtn1 platform, sgRNA targeting Ntn1 (sgNtn1) 
was encoded in plasmid pM330 and encapsulated using cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN).104 

Without interfering with other cell types, these CLAN nanoparticles (NPs) effectively led to Ntn1 knockout in monocytes 
and Cas9 protein expression.104

Additionally, the promoter or enhancer region can be specifically activated via dCas9-activator fusion, which can also 
cause the target gene to be upregulated. This represents another method for conducting spatiotemporal control of 
CRISPR/Cas9 gene editing (Figure 7h).131 By fusing the dCas9 protein to the catalytic core of the human acetyltransfer-
ase p300, a programmable CRISPR/Cas9-based acetyltransferase component was created. This component could catalyze 
the acetylation of histone H3 lysine 27 at its target site, resulting in robust expression of the target gene by activating 
enhancers and promoters.132

Chemical Control
Chemical methods primarily consist of three approaches to enhance the spatiotemporal control of CRISPR/Cas9-based 
gene editing: (a) Cas9 activity regulation through the fusion of WT Cas9 or dCas9 with self-splicing inteins, (b) Cas9 
inhibition using anti-CRISPR proteins or degrons, and (c) designing bioresponsive delivery carriers to regulate CRISPR/ 
Cas9 release in particular cells or tissues.133

Small-Molecule Activators
Conformational changes in some proteins are controlled by molecules such as rapamycin and 4-hydroxytamoxifen 
(4-HT). Hence, Cas9 spatiotemporal control is also attained by conformational changes through the addition of small 
molecules (Figure 6). In this vista, an intein (412 amino acid residues) was inserted at two different sites (Ser219 and 
Cys574) of Cas9. The addition of 4-HT resulted in the removal of intein through a conformational and self-cleavage 
reaction, which eventually caused reactivation of the Cas9 protein.134 Furthermore, compared with WT Cas9, the 
efficiency of protein activation is determined by the protein insertion site and can range from three- to ten-fold. 
Additionally, the ratio of on-target to off-target effects produced by this strategy can increase up to 25 times.134 In 
another study, 4-HT was used to turn Cas9 variant activity on or off in human cells.135 Cas9 is sequestered in the 
cytoplasm by the hormone-binding domain of the estrogen receptor (ERT2) in conjunction with a Cas9 variant. However, 
the presence of 4-HT causes this fusion product to move within the nucleus, and the Cas9/sgRNA complex shows 
evidence of gene editing.135

In one study, split fragments of Cas9 protein were produced, and chemically induced dimerization of these fragments 
by small molecules was a good choice to control the conformational changes of this endonuclease system.136,137 Two 
distinct sites (Arg535 and Glu573) produce split Cas9 fragments. As a result, Cas9 C- and N-terminal fragments were 
formed, which subsequently bound to the FKBP rapamycin binding domain (FRB) and FK506 binding protein 12 
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(FKBP).138 Rapamycin-induced heterodimerization leads to the activation and conditional reconstitution of split-Cas9.138 

Furthermore, to prevent spontaneous reconstitution, the Cas9 fragments were spatially separated into different cellular 
compartments. The N- and C-terminal Cas9 fragments were linked to a nuclear export signal (NES) and a nuclear 
localization signal (NLS), respectively, resulting in reduced basal activity of Cas9 in the absence of rapamycin.

Oligonucleotide Conjugates
Recently, research has been conducted on site-specific oligonucleotide-Cas9 conjugates to increase the precision and 
effectiveness of gene editing.139 For HDR-dependent gene editing by Cas9, sufficient donor DNA templates (single- 
stranded oligodeoxynucleotides or ssODNs) are typically needed and insufficient donor DNA templates reduce the efficiency 
of HDR. To create a new Cas9 mutant, azide-containing noncanonical amino acids have been used to alter Cas9.139 These 
variations can bind to DNA adapters modified by dibenzyl cyclooctyne (DBCO) or ssODNs modified by DBCO. HDR-based 
gene editing efficiency can be increased by recruiting ssODNs to the cleavage complex in both the forms.139

Suffice it to say, small-molecule activators are important for the spatiotemporal regulation of CRISPR/Cas9 activity. 
However, some challenges still exist that need to be overcome to further use this genome editing strategy. These 
challenges include: (a) some small molecules, such as doxycycline and rapamycin, induce strong gene toxicity in both 
nontargeted and targeted cells;120 (b) small-molecule activators have a restricted dynamic range because dCas9 exhibits 
some background activity when certain small-molecule activators are absent,67,140 thereby interfering with precise 
spatiotemporal control of CRISPR/Cas9-based gene editing.

Small-Molecule Inhibitors
Inhibition of Cas9 Activity by Anti-CRISPR Protein
Elevated and persistent Cas9 activity often leads to off-target effects, genotoxicity, and chromosomal translocations. 
Thus, Cas9 nuclease activity must be curbed precisely within a narrow time frame after proper target editing.8 Recent 
studies have demonstrated that a class of small molecules, such as anti-CRISPR (Acr) proteins, obtained from a furious 
co-evolutionary arms race between phages and bacteria, can mediate deactivation of the CRISPR/Cas9 genome editing 
system.141,142 Small molecules called anti-CRISPR proteins are delivered into cells via plasmids or proteins that act as 
on/off switches. This is an important way to control the spatiotemporal editing of the CRISPR/Cas9 gene (Figure 6).

To date, various Acr proteins have been identified, including AcrIIAs, AcrIIIB, AcrIICs, AcrIFs, AcrVAs and 
AcrVIA.143,144 Among these, AcrIIAs and AcrIICs have the greatest potential to control gene editing by inhibiting 
Cas9 activity.145 Furthermore, AcrIIA4 cannot bind to Cas9 alone; it can only bind to the assembled Cas9/sgRNA 
complex.146 The weaker binding of Cas9/sgRNA to target DNA caused by the fusion of Cas9/sgRNA and AcrIIA4 
inhibits Cas9-mediated gene editing in human cells.147

Degradation of Cas9 by Small Molecules
In some circumstances, inhibition of Cas9 activity is overruled by its timely degradation by small molecules.148,149 There 
are two strategies for degrading Cas9: (1) colocalization of the target protein and specific ubiquitination, which results in 
the proteasomal degradation pathway, and (2) direct fusion of degrons with the target protein, leading to its 
degradation.150,151 In one study, Cas9 was bound to the FKBP12F36V variant, which can bind to the E2/E3 ubiquitin 
ligase through dTAG addition. This causes the fusion protein to be ubiquitinated and degraded.152 However, it is more 
practical to fuse Cas9 directly with degrons (ER50 and DHFR) (Figure 6). When the VEGF gene was edited using the 
Cas9-ER50 or Cas9-DHFR systems and treated with different concentrations of 4OHT or TMP, an increased on-target to 
off-target ratio was observed.153 These small-molecule inhibitors limit the CRISPR/Cas9 gene editing activity in 
particular cells or within a short-time window.140,153

Physical Control
The efficient spatiotemporal precision and non-invasiveness of CRISPR/Cas9 by physical control have increased in 
popularity in recent years.114,120 This approach uses the CRISPR/Cas9 gene-editing platform in addition to some physically 
responsive components, such as heat-responsive, optical-responsive, magnetic-responsive, and ultrasound-responsive 
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components (Figure 6). Proper stimulation by different physical factors leads to a wide range of controls over CRISPR/ 
Cas9, such as structure, function, activity, expression, transport, and release, to precisely control the time and space 
dimensions. Some physical strategies, such as light, heat, ultrasound, and magnets, are discussed below which significantly 
affect the CRISPR/Cas9 spatiotemporal activity.

Light
Over the past decade, a wide variety of photoresponsive molecules have been screened to optically control the CRISPR 
gene editing technique.153,154 Some photoresponsive molecules, such as spiropyrans, azobenzene derivatives, and 
molecules with o-nitrobenzyl moieties, readily undergo ester bond cleavage or photoisomerization in the presence of 
light.155,156 These characteristics of photoresponsive molecules have been used to control the CRISPR/Cas9 gene-editing 
system. To date, three main approaches have been devised for photocontrol of the CRISPR/Cas9 system.

The first method modifies Cas9 nuclease activity using light. In this case, photoinducible dimerization domains (pMag 
and nMag) were fused to a photoactivatable split Cas9 (paCas9) containing N- and C-terminal fragments (Figure 6).157,158 

In the absence of light, the split Cas9 fragments were inactive. In contrast, blue light stimulation promotes and reinstates 
heterodimerization of Cas9 fragments via pMag-nMag interactions.157–159 The specificity of paCas9 nuclease targeting was 
comparable to that of WT Cas9. After exposure to blue light, paCas9 can be effectively used to control spatiotemporal 
editing of CRISPR genes. In contrast, psCas9 is an engineered photoswitchable Cas9 with a single-protein architecture.160 

A light-dissociable dimeric fluorescent protein (pdDronpa1) was inserted into the PI and REC2 domains of this Cas9 type 
(Figure 6).161,162 The inserted pdDRonpa1 domains homodimerized and sterically inhibited psCas9 activity in the absence 
of light (500 nm). However, 500 nm wavelength light illuminated the complex and dissociated pdDronpa1, resulting in 
transcriptional regulation by the restoration of Cas9 activity and its gene editing function.160,162

Similarly, the Cas9-RsLOV2 monomer was created by combining the R. sphaeroides LOV domain (RsLOV2) with 
Cas9 (Figure 6).163 Two Cas9-RsLOV2 monomers homodimerize in the absence of light, thereby strongly inhibiting 
Cas9 activity. In contrast, Cas9-RsLOV2 dimer dissociation and reversion to monomer forms were facilitated by blue 
light. This form exhibits a high nuclease activity and strong target specificity.161,163

Another method for controlling the effect of light illumination on Cas9 activity involves inserting a photocaged lysine 
into a particular endonuclease domain, which is important for RNA binding, making Cas9 inactive.164 After two minutes 
of UV light exposure, the photocaged group was eliminated, and Cas9 activity was restored, leading to subsequent gene 
editing and transcriptional upregulation.

An optogenetic two-hybrid system comprising two independent components is the second method used to expand the 
functionality of the Cas9 protein by photoinduction. It consists of a cryptochrome circadian clock 2 (CRY2) linked to 
a different effector domain (activating effectors) to form a CRY2-activator complex, and the dCas9 system as a genomic 
anchor fused to the photosensitive cryptochrome-interacting CIBI protein (Figure 6).158,165 Blue light (~450 nm) 
irradiation attracts the CIBI-effector complex, which then assembles to form the dCas9-CIBI-CYR2-effector 
complex.158,166 Nevertheless, the activation of treated cells is reversed by dark incubation.158,167

The third approach used light to control sgRNA activity. In this strategy, a photocleavable ssDNA oligonucleotide, 
termed the protector, is coupled to sgRNA at a specific site (Figure 6).168 This photocleavable protector can hybridize 
with sgRNA in the presence of UV light, which prevents sgRNA:DNA base pairing until the ssDNA oligonucleotide is 
photolyzed. Consequently, sgRNA is released to bind the target DNA once more and carry out subsequent gene editing; 
this tactic is irreversible.

Ultrasound
The application of ultrasound (US) to regulate payload release from various carriers has garnered increasing interest, 
along with light and heat applications.105,127,169 Different nanomotors convert external energy or chemical fuels into 
mechanical motion that can be used for propelled motion or cargo transportation. This property has led to attractive 
characteristics that enable their implementation in drug delivery and biosensing.170,171 US-driven nanomotors can swiftly 
penetrate plasma membranes and intracellular spaces to sustain acoustic activity. This property makes them suitable 
vehicles for intracellular drug delivery.172 In this scenario, US-propelled nanomotors were employed as carriers to 
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introduce the Cas9/sgRNA system, within cells, under US activation.105 Cas9/sgRNA-AuNW complexes were created by 
attaching a Cas9/sgRNA expression plasmid via disulfide bonds to the surface of gold nanowires (AuNWs). This 
complex produced an active movement to facilitate internalization into the cytoplasm under US activation (Figure 6).

Microbubble conjugate nanoliposomes (MB-NLs) were effectively employed as Cas9/sgRNA complex carriers, 
greatly enhancing local delivery to target sites upon US activation.169 Similarly, androgenic alopecia therapy was 
performed using MB-NLs to deliver Cas9/sgRNA.169 The delivery of Cas9/sgRNA complexes in dermal papilla cells 
is enhanced by the sonoporation of carrier particles by MB cavitation at high acoustic wave US frequencies (1–5 
MHz).169 The safe transportation of gene editing systems at specific sites has been demonstrated by the local delivery of 
MB-NL and Cas9/sgRNA-AuNW complexes through US stimulation.

Heat
A recent review examined the use of heat shock and photothermal effects to remotely control gene expression.173 This 
method is separated into two groups based on heat shock. In one category, the spatiotemporal release of CRISPR/Cas9 
from carriers is regulated by heat shock. Lipid-encapsulated gold nanoparticles (AuNPs) were used to create an 
engineered thermosensitive CRISPR/Cas9 release system173 (Figure 6). In contrast to cationic AuNPs, nucleus- 
targeting TAT peptides and cations were added to AuNPs via sulfhydryl linkage. Electrostatic interactions were then 
used to abridge the negatively charged Cas9-sgPlk-1 plasmid (CP) on the cationic AuNPs, resulting in the formation of 
the AuNP/CP (ACP) complex. Localized surface plasmon resonance (LSPR) of AuNPs has the potential to produce heat 
through photothermal effects. Under 514 nm laser irradiation, the AuNPs could localize the heat to cause TAT/CP release 
from the AuNPs. To potentially knock down the target gene (Plk-1) and prevent cancer in vivo, the TAT moiety guides 
the TAT/CP complex into the nucleus.173

Using a photothermal trigger system, a semiconductor polymer brush (SPPFs) was created using the CRISPR/Cas9 
release mechanism. This system has a photothermal transducer and NIR-II imaging capabilities.174 Using its NIR-II 
imaging capabilities, this system could monitor in real time the distribution of gene-editing instruments under the control 
of a remote photothermal trigger. The system consists of three components: (a) SPPFs, which act as photothermal 
transducers, payload carriers, and NIR-II imaging agents; (b) dexamethasone, which binds to nuclear glucocorticoid 
receptors and wraps the core of SPPF NPs; and (c) CRISPR/Cas9 cassettes, which attach to PF to edit target genes.174 

LACP or SPPFs-CRISPR/Cas9 systems enable a novel method for spatiotemporal control of CRISPR gene editing 
through spatiotemporal control of the photothermal-trigger system.

Heat shock can spatiotemporally activate the heat shock promoter (Phsp) in CRISPR/Cas9 cassettes. This results in 
conditional gene editing at different developmental stages in different cell types.120,175 In this regard, heat shock 
exposure led to the successfully controlled expression of the CRISPR/Cas9 plasmid and conditional knockout of genes 
in C. elegans. The CRISPR/Cas9 system showed powerful and time-bound target gene editing under the control of Phsp, 
led by a heat-shock system.106

Recent innovations have led to the generation of more convenient switches to control the on/off activity of Phsp 
through photothermal effects by combining Phsp with photothermal carriers.120 In this case, a Cas9 plasmid driven by 
HSP, heat shock factor (HSF), and cationic polymer-coated Au nanorods (APCs) were combined to create a nano- 
CRISPR system.120 By inducing a conformational change in the HSF monomer to form an HSF trimer, APC serves as 
both a local heat source and a carrier of the plasmid delivery system. It activates HSP to promote Cas9 endonuclease 
gene expression.120 The off-switching of the NIR-II irradiation system led to the disappearance of the photothermal 
effect. A drop in temperature induces HSF decomposition and inactivation of the CRISPR/Cas9 plasmid transcription 
process. This method fine-tunes gene editing by NIR-II irradiation at several in vivo and in vitro time points, with ease 
and precision.120

Magnetic Field
Certain molecular behaviors can be altered by magnetic nanomaterials, both in vivo and in vitro, when exposed to an 
external magnetic field.176,177 A CRISPR/Cas9 carrier system for non-invasive delivery and on-demand release in target 
cells or tissues was built using these magnetic nanomaterials (Figure 6).178 To deliver a Cas9/gRNA gene-editing 
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nanoformulation system affixed to magneto-electric nanoparticles (MENPs), a magnetically guided system was 
developed.178 This nanomaterial (MENPCas9/gRNA) can pass through the barrier (BBB) when driven by a magnetic 
field. This system has the potential to modify HIV-1 and decrease latent HIV-1 infection in HIV (HC69)/microglial 
cells.178 These 20–30 nm-sized ferromagnetic MENPs are safe (up to 50 μg). An AC magnetic field can induce 
polarization changes in these molecules. This breaks down the linkages between MENPs and Cas9/gRNA, allowing 
Cas9/gRNA to be released in target tissues when needed. This is followed by mutations or gene knockouts.178

A recombinant MNP vaculoviral vector (MNP-BV-CRISPR) was designed to mediate CRISPR/Cas9 system-based 
gene editing using a magnetic field at a specific site.107 Once exposed to a magnetic field, these nanoparticles disperse 
and migrate as nanomagnets in the aqueous buffers.107 Furthermore, these NPs can be rendered inactive by the serum 
complement system, which functions as an off switch for gene editing. An external magnetic field provides an on-switch 
by locally regulating the margination and cell entry of NPs, thereby enabling targeted gene editing.107 Although not 
thoroughly investigated, MNP-BV-CRISPR and MENPs-Cas9/gRNA are magnetically stimulated to carry out the 
spatiotemporal regulation of CRISPR in in vivo gene editing.

The spatiotemporal control over CRISPR/Cas9 activity by genetic regulation, chemical control and physical control 
have tremendously advanced the applications of this genome editing tool but all these approaches still have some 
drawbacks which are listed in Table 1.

CRISPR/Cas9 Facilitated DNA Base-Editing and Prime-Editing
A Cas9-induced DSB is created during CRISPR-mediated genome editing, and it can be repaired using HDR or NHEJ 
methods.179 HDR is a mechanism that can be used to precisely restore the DNA sequence by inserting a specific DNA 
template, however it is not very efficient approach and has a high rate of unwanted indel mutations that outweigh any 
possible benefits from fixing the mutation.7 Moreover, because HDR-mediated editing depends on homologous recom-
bination, it can only target dividing cell types, which narrows the spectrum of disorders that can be treated.180 CRISPR/ 
Cas-mediated single-base-pair editing techniques have been developed recently to get circumvent these restrictions.181

Base-pair changes in the genomic DNA are the primary cause of many hereditary illnesses and undesired features. By 
using recent innovative approach of CRISPR/Cas technologies for base-editing, point mutations can be introduced into 
cellular DNA directly without causing a DSB. So far, adenine base-editors (ABEs) and cytosine base-editors (CBEs) 
have been identified as two groups of DNA base-editors. All the four transition mutations (A→G, G→A, C→T, and 
T→C) are installable by these base editors (Bes). In addition to base-editing, CRISPR/Cas system is used to induce 
prime-editing (PE) as well and now all twelve transition and transversion changes, as well as minor insertion or deletion 
alterations are performed by this genome editing tool.182 In short, DNA base-editing and prime-editing technologies 
allow for exact, programmable substitutions of nucleotides without the need for donor templates.

As a therapeutic tool, DNA base-editing and prime-editing hold great promise for correcting disease-causing 
mutations in the human genome. By focusing on the four transition mutations, over 25% of human pathogenic single 
nucleotide polymorphisms (SNPs) can be fixed, and up to 89% of known genetic variations linked to human disease 
could potentially be fixed using prime editing.183 Since viral vectors have a limited capacity for packaging, DNA 
base-editing and primer-editing may be especially well suited for the repair of large genes in cases when vector- 
mediated delivery of the target gene is not practical.184 Additionally, base-editing can be used to treat autosomal 
dominant diseases, for which gene augmentation is not a good strategy because the affected gene must be silenced or 
eliminated.

Some of the potential applications of DNA base-editors and prime-editors include editing of large genes, targeting 
autosomal dominant diseases, editing of premature stop codons, and editing of splice-site variants.182 However, before 
this platform can reach its full potential, there are still a lot of obstacles to be solved. The field of base-editing 
technologies is very young, and in order to facilitate therapeutic applications, more in vivo characterization of BEs 
and PEs is necessary. To further understand and refine base-editing and prime-editing over a wide spectrum of cell types 
and organisms, a great deal more study is required.
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Methods to Identify Genome-Wide CRISPR/Cas9 off-Target Sites
It is now well known that gRNA determines the target DNA specificity of the CRISPR/Cas9 system and several 
noncanonical base-pairing interactions are observed between Cas9 and guide off-target heteroduplexes. This results in 
binding and cleavage of partially complementary off-target sequences.185,186 This off-target cleavage issue raises safety 
concerns for comprehensive clinical application. Thus, there is a critical need to identify off-target events properly. There 
are three general categories of off-target CRISPR/Cas9 nuclease sites. These categories include, (a) in vitro recognition of 
cleavage sites using genomic template DNA, (b) capture of off-target editing events by in cellulo capture method, and (c) 
sequence homology and in silico bioinformatics tool prediction187 (Figure 8). The accurate prediction of off-target editing 
events is not possible using a single tool, especially those at low frequencies. Furthermore, targeted deep sequencing is 
necessary to validate the presumed off-target sites. It is the gold standard for confirming the existence of mutations and 
indels caused by nucleases.188 However, other validation approaches, such as TIDE/TIDER and CUT-PCR,189 have notable 
limitations owing to their detection sensitivity and limitation scales regarding Sanger sequencing.190

Cas-OFFinder is a widely used in silico software used to predict Cas9-induced off-target effects.191 Several other 
web-based algorithms have been established to predict the potential off-target sites for specific gRNA, these include 
E-CRISP, CasOT, CROPIT, COSMID, Bowtie2, CCTOP, Elevation CNN std, CRISPR, FlashFry, Synergizing CRISPR, 
Crisflash, MOFF, and CRISPRitz (Figure 8). Although useful and powerful, computational algorithms may require 
a richer biophysical framework and excellent training data for complete prediction of off-target potentials. In addition, for 
effective identification of true off-target locations, currently available in silico predictions require further supplementa-
tion with experimental methods.

Challenges, Ethical Considerations and Future Prospects
Because of its simplicity and versatility, the CRISPR/Cas9 system presents incredible opportunities for the management 
of various genetic and infectious diseases. However, the precision of the genome editing process is severely affected by 
the lack of spatiotemporal control over this tool in complex biological tissues. Researchers working on this system are 
constantly looking for better spatiotemporal controls using genetic regulatory elements, in addition to physical and 
chemical strategies to minimize undesired genome targeting and improve its precision at target sites. Spatiotemporal 
control over CRISPR/Cas9 in dimensions of space and time has been verified by its conditional expression by chemical 
induction, heat, light, magnetism, ultrasound, and bioresponsive delivery strategies. Although these methods have yielded 

Methods to identify genome-wide CRISPR-Cas off-target sites

In silico

Bioinformatic prediction based on 
sequence similarity
Cas-OFFinder, E-CRISP, 
CasOT, COSMID, 
CROP-IT, 
Bowtie2, CCTOP, 
Elevation, 
CNN std, predictCRISPR, 
FlashFry, 
Synergizing CRISPR, 
Crisflash, 
MOFF, CRISPRitz

In vitro

Whole-genome sequencing of Cas 
nuclease-digested DNA/chromatin
DIG-seq, Digenome-seq

DSB end enrichment by DNA 
circles digestion
CHANGE-seq, CIRCLE-seq 

DSB end enrichment by tagging the 
cleaved-DNA with Biotin
SITE-seq

In cellulo

Indirect labeling of off-target breaks 
by repaired products
GUIDE-seq, iGUIDE, GUIDE-tag, 
LAM-HTGTS, HTGTS, PEM-seq, 
UDiTaS, CAST-seq, IDLV capture, 
PolyA-seq, ITR-Seq, TAPE-seq, 
PEAC-seq 

Indirect labeling of off-target breaks 
by DNA repair protein MRE11
DISCOVER-seq

Direct labeling of unrepaired break 
ends in situ
BLISS, BLESS 

Figure 8 Examples of some currently used methods to identify genome-wide CRISPR/Cas off-target sites.
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encouraging preclinical results, more obstacles must be overcome before this system can be fully controlled for clinical 
applications.

Major challenges regarding this genome-editing tool include minimizing off-target effects and maximizing targeting 
approaches to specific cells. To attain the maximum delivery of this system to a specific location, some challenges are 
related to the construction of novel nanoformulations with suitable surface properties, size, shape, design, and stability 
during circulation. Additional challenges include in vivo toxicity of CRISPR/Cas9-loaded NPs, immunogenicity, and 
proper delivery and clearance at specific sites after job completion.

Off-target effects (a form of genotoxicity) frequently impede the application of this genome-editing tool for better 
clinical translation.101 Off-target alterations can lead to unusually large deletions and unexpected rearrangements.15 

Complex genomic rearrangements and deletions, including insertions and inversions, have been reported in mouse and 
human cell lines in close proximity to target cut sites.192

The ethical considerations for human genetic modifications have been always in consideration, but CRISPR/ 
Cas9-mediated genome editing has given it a fresh viewpoint. A careful analysis of the ethical and societal 
consequences of this technology is necessary, given its unpredictable nature and wide-ranging consequences in 
appealing applications. The fundamental principles about genetic modifications are held by the general population 
and scholars who practice religion. Another controversial idea is to permanently alter the human genome to remove 
mutations that cause disease or, in some cases, to introduce or enhance desirable traits in progeny by introducing 
beneficial genes.193 Genome alterations in non-reproductive cells are not heritable, while those in germ cells can be 
inherited by the following generation. Because of this, there are moral, ethical, and safety issues with the appealing 
applications of this strategy.194 Human safety and dignity are at risk, and the possibility of genocide has been 
brought up by human germline modification via CRISPR/Cas9-based gene editing. A move was made to put a stop 
to research on the human genome until a decision was made at the national or international level regarding how 
society would embrace this new technology.195 The range of applications of CRISPR/Cas9 is growing at an 
astonishing rate to almost all biological fields such as production of resistant crops, enhancement in antibiotic 
resistance and desired genetic changes in some tamed animal. Thus, more and more reforms of ethical considera-
tions need to be implemented in near future.196

Some other future prospects are related to new variants of Cas9 with a better gRNA design recognized by 
broad-range PAM sequences and improved targeting efficiency within specific cells.197 In addition, new inhibitors 
have been identified for better genome editing regulation and some new related compounds are expected to be 
discovered in the near future.141 Furthermore, more advanced tools, in addition to GUIDE-seq, BLESS, and 
HTGTS, for the identification of off-target sites and gene-editing outcomes, are expected to be discovered soon.198 

The field of base-editing technologies by CRISPR/Cas9 system is very young, and in order to facilitate therapeutic 
applications, more in vivo characterization of BEs and PEs is necessary. To further understand and refine base- 
editing and prime-editing over a wide spectrum of cell types and organisms, a great deal more study is required. 
In addition, future perspectives on the CRISPR/Cas9 system are related to better cancer management through 
a comprehensive understanding of oncogenes and approaches targeting this molecular tool. Furthermore, some 
noncoding region manipulations using this system may increase our knowledge of the relationship between these 
genes and different cancers.

Clinical Trials
The innovative applications of CRISPR/Cas9 technology in human clinical trials for the management of different diseases 
include diverse cancers such as hematological malignancies (β-thalassemia, multiple myeloma, CD19+ leukemia, non-Hodgkin 
lymphoma, T-cell lymphoma etc.) and other solid tumors. In a clinical trial, autologous CD19-directing CAR-T treatment 
demonstrated a significant persistent tumor remission (86–89%) over a median follow-up of 28.6 months in patients who had an 
initial response in a clinical study for CD19+ relapsed or refractory lymphoma.199 While CAR-T cell therapy has shown 
impressive outcomes in treating B-cell lymphoblastic leukemia, its efficacy in treating other solid and hematological cancers has 
been lower.200 The CAR-T product was used to treat patients with relapsed or refractory B-cell non-Hodgkin lymphoma in 
a Phase 1 clinical trial (NCT04213469). It was very effective even at low infusion doses with a low percentage of CAR+ cells. 
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Eight patients (87.5%) experienced complete remission (87.5%) and partial remission (12.5%) during the 12-month follow-up 
trial without experiencing any major side effects.201

Another clinical trial (NCT03398967) was based on chimeric antigen receptor (CAR) T-cell therapy for refractory 
hematological malignancies caused by CD19 cancer cells. The interrogation of two CARs (CD19 and CD20/CD22) was 
performed at the TRAC locus of T cells to recognize CD19 cells.202 Furthermore, a clinical trial (NCT03166878) was 
performed using gene-disrupted CD19-specific CAR T cells by lentiviral delivery of CARs in patients with refractory 
CD19+ lymphoma or leukemia. CRISPR RNA electroporation was performed to disrupt the B2M and TCR genes to 
reduce host-versus-graft disease (GVHD).

Clinical trials have been conducted to treat solid tumors using CRISPR-engineered CAR-T, TCR-T, and TIL 
therapies in an effort to evaluate the safety and effectiveness of these treatments. The first ex vivo clinical trial 
performed by using CRISPR/Cas9 genome editing (NCT02793856) was on a patient with non-small cell lung 
cancer.203 This trial was performed by electroporation of the Cas9 plasmid and sgRNA targeting PD-1 on T cells 
present in the peripheral blood and infusing it back into patients. Although feasible and safe, this method has 
made a significant contribution to advanced gene editing clinical trials. In another clinical trial, CAR-T cell 
therapy was performed in conjunction with disruption of CD70, TRAC, and B2M produced stable disease in nine 
patients (69.2%) and a lasting full remission in one patient (7.7%) in one clinical trial (NCT04438083) treating 
renal cell carcinoma.204

Recently, another clinical trial (NCT03399448) was performed on three subjects suffering from advanced-stage 
refractory cancer.205 In this trial, the CRISPR/Cas9-based approach was used to remove the TRAC and TRBC genes that 
encode TCR and PDCD1, respectively, from T lymphocytes to enhance anticancer immunity. In addition, a transgene 
(NYESO-1) has been introduced into T cells to recognize cancers in a superior manner.

Besides, this genome editing technology is applied to manage the sickle cell anemia. Beam Therapeutics Inc. led the first 
clinical trial using a base editor in the United States, NCT05456880, a phase 1/2 clinical research that sought to replicate HPFH in 
patients with severe sickle cell disease by generating an A to G base swap in the HBG1/2 promoters through base editing.206

Additionally, some other diseases such as respiratory diseases, endocrine, metabolic system disorders such as 
diabetes mellitus, heterozygous familial hypercholesterolemia, hereditary transthyretin amyloidosis have been 
checked by CRISPR/Cas9 clinical trials. Within the respiratory system, the coronavirus disease-2019 (COVID-19) 
is the subject of five out of eight CRISPR-based clinical studies. This disease is caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in a global pandemic during the last three 
years.207 The exact gene editing targets are unknown, and no results have been reported from the two clinical trials 
(NCT05210530 and NCT05565248) currently being conducted in type I diabetic subjects to assess the safety and 
tolerance of gene-edited cell replacement therapy. Through in vivo TTR gene editing, CRISPR/Cas9 gene editing 
technology offers an alternate method for treating hATTR. A clinical evaluation of the in vivo gene editing 
therapeutic drug NTLA-2001, which used LNPs to encapsulate Cas9 mRNA and a sgRNA targeting the TTR 
gene, was one of the clinical trials that we reviewed (NCT04601051).208

Furthermore, the elimination of some immune system diseases such as acquired immunodeficiency syndrome (AIDS) 
is seriously in consideration by different clinical trials involving CRISPR/Cas9 genome editing technology. A model of 
HIV infection in non-human primates produced similar outcomes.209 The success of these studies provided the impetus 
for human clinical trials aimed at assessing the long-term safety of EBT-101 for 15 years (NCT051443307) and 
evaluating the safety and efficacy of a similar approach, EBT-101, in which the CRISPR/Cas9 system was delivered 
by AAV9 for intravenous administration to target HIV-1 pro-viral DNA in HIV-1-infected adults on stable antiretroviral 
therapy (NCT05144386). The first patient to receive a single-dose intravenous infusion of EBT-101 is being monitored, 
and in due course, their eligibility to cease ART and experience a viral rebound will be assessed. A brief description of 
some more registered clinical trials based on the CRISPR/Cas9-mediated gene editing approach for the management of 
different diseases are mentioned in Table 2.
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Table 2 Registered CRISPR/Cas Based in vivo and ex vivo Genome Editing Clinical Trials (ClinicalTrials.gov)

Disease Target Gene and Effect Intervention Phase NCT Number

Gastrointestinal cancer CISH protein inhibition TILS inhibited immune checkpoint CISH I/II NCT04426669

Multiple myeloma CTX120 (BCMA)-directed T cell immunotherapy Biological safety and efficacy of CTX120 in multiple myeloma I NCT04244656

Renal cell carcinoma CTX130 CD70-based T cell immunotherapy 
comprised of allogeneic T cells

Safety and efficacy of CTX130 in relapsed or refractory renal cell carcinoma I NCT04438083

Refractory B cell 
malignancies

Creation of a CD19-directed T cell CD19-directed T cell immunotherapy I/II NCT04035434

Severe sepsis Target adjustment of antibiotics Detection of alveolar lavage fluid changes the choice of early antibiotics in patients 
with pneumonia

– NCT04178382

Refractory B cell 
malignancies

Disruption of HPK1 CD19-CAR-modified T cells with CAR delivered by lentivirus and Cas9 knockout of 
HPK1

I NCT04037566

Hepatocellular carcinoma PD-1 knockout engineered T cells TACE combined treatment to block the blood supply of the tumor I NCT04417764

Leber congenital amaurosis 
10

Removal of alternative splice site in CEP290 ZFN-mediated removal of intronic alternative splice site in retinal cells I NCT03872479

B-thalassemia Correction of the hemoglobin subunit b-globulin 
gene

Ex vivo-modified hematopoietic stem cells I NCT03728322

Mesothelin-positive solid 
tumors

PD-1 and TCR knockout CAR T cells to mesothelin with added PD-1 and TCR knockout I NCT03545815

HPV-related malignancy E6 and E7 oncogenes of HPV16 and HPV18 deletion Plasmid in a gel containing a polymer to facilitate delivery I NCT03057912

Gastrointestinal infection Stem cell-derived human intestinal enteroids Duodenal biopsies, followed by differentiation into mini-guts – NCT03342547

B-thalassemia Disruption of the erythroid enhancer to the BCL11A 

gene

Ex vivo-modified hematopoietic stem cells I/II NCT03655678

Mesothelin-positive solid 

tumors

PD-1 knockout CAR T cells to mesothelin with PD-1 knockout I NCT03747965

B cell leukemia Cas9-mediated creation of CD19 and CD20 or 

CD19 and CD22 CAR T cells

CAR T cells to CD19 and CD20 or CD19 and CD22 I/II NCT03398967

Sickle cell anemia Disruption of the erythroid enhancer to the BCL11A 

gene

Ex vivo-modified hematopoietic stem cells I/II NCT03745287

HIV CCR5 knockout Modified CD34+ hematopoietic stem cells – NCT03164135

B cell leukemia Btcra, tcrb, B2M knockout CD19-CAR-modified T cells with CAR delivered by lentivirus and Cas9 knockout 
B2M and TCR to create universal T cells

I/II NCT03166878

EBV-positive, advanced 
stage malignancies

PD-1 knockout Modified T cells selected for those targeting EBV-positive cells I/II NCT03044743

Abbreviations: CISH, Cytokine-induced SH2; TILS, Tumor-infiltrating lymphocytes; BCMA, B cell maturation antigen; PD-1, Programmed cell death protein 1; B2M, b2-microglobulin; TACE, Trans-arterial chemoembolization.
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Conclusion
CRISPR/Cas9’s remarkable versatility and ease of use have revolutionized the genome-editing technology. This 
molecular toolbox offers unprecedented applications in almost every branch of biological science for the induction of 
genetic modifications, including the treatment of various genetic and infectious diseases. However, novel applications of 
CRISPR/Cas9 are severely affected by the lack of spatial and temporal precision when using this genome-editing tool in 
complex biological systems. Researchers working on this molecular toolbox are constantly making efforts to understand 
the different parameters that regulate spatiotemporal control. Different parameters such as genetic, physical and chemical 
strategies significantly affect this molecular toolbox in terms of time and space. The conditional expression of CRISPR/ 
Cas9 is significantly affected by heat, light, magnetism, ultrasound, bioresponsive delivery, and new challenges that need 
to be addressed in the near future for comprehensive clinical applications. Furthermore, some concerns need to be 
addressed in the near future about nanoparticle composition, loading capacity and cost-effective targeting approaches in 
specific cells only, dodging endocytosis by some immune system cells, prevention of immune responses, and minimiza-
tion of off-target effects. Furthermore, CRISPR/Cas9-mediated DNA base-editing and prime-editing hold great promise 
in near future for the management of different human diseases. In addition, a potential breakthrough is looked forward by 
engineering some more CRISPR/Cas9 variants, which show high fidelity in their applications. However, systematic 
research on these parameters has provided many novel opportunities for advanced research on application transforma-
tions using this toolbox.
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