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Abstract: Amyotrophic lateral sclerosis (ALS) is the most common form of motor  neuron 

disease. It is typically characterized by adult-onset degeneration of the upper and lower motor 

neurons, and is usually fatal within a few years of onset. A subset of ALS patients has an 

inherited form of the disease, and a few of the known mutant genes identified in familial cases 

have also been found in sporadic forms of ALS. Precisely how the diverse ALS-linked gene 

products dictate the course of the disease, resulting in compromised voluntary muscular abil-

ity, is not entirely known. This review addresses the major advances that are being made in our 

understanding of the molecular mechanisms giving rise to the disease, which may  eventually 

translate into new treatment options.

Keywords: amyotrophic lateral sclerosis, neurodegeneration, motor neuron disease, 

genetics, aging

Introduction
Amyotrophic lateral sclerosis (ALS), also known as Charcot’s disease or Lou Gehrig’s 

disease is the most widespread type of motor neuron disease. Striking later in life, the 

disease causes degeneration of motor neurons and consequently progressive atrophy of 

associated muscle tissues and supporting cells. Unlike similar motor neuron diseases 

that primarily affect only a single subgroup of neurons (eg, Primary Muscular Atrophy 

or Primary Lateral Sclerosis), ALS patients typically have both lower motor neuron 

(LMN) and upper motor neuron (UMN) involvement. The symptoms of ALS com-

monly are muscle weakness and wasting, especially in the limbs, cramps, twitching, 

and difficulties in speaking. The lifetime risk of acquiring ALS by age 70 is between 

1 in 400 and 1 in 1000,1 and in general, ALS individuals succumb to the disease within 

2–3 years due to respiratory failure.

A growing number of ALS-causing genes have been identified recently and are 

now under investigation, providing promise for increased understanding of the etiology 

of the disease. SOD1, encoding the highly conserved, cytosolic antioxidant enzyme 

Cu,Zn-superoxide dismutase (Cu,ZnSOD), was the first such gene to be identified 

with ALS.2,3 SOD1 mutations are common in both familial ALS (FALS) and sporadic 

ALS (SALS), and have been studied in the most depth. Other genes such as OPTN 4 or 

TARDBP, FUS, and ANG (involved in RNA metabolism)5 were later identified as caus-

ative factors in both FALS and SALS. Suggestive of proteolytic disfunction, UBQLN2 

was recently implicated in ALS,6,7 and very recently, nucleotide repeat expansions in 

C9ORF72,8–10 were found to comprise the largest fraction of ALS-causing mutations 
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known to date. The present era is an exciting time for ALS 

research with the major challenge of understanding how 

these distinct, underlying triggers lead to a common aberrant 

cellular dyshomeostasis phenotype, resulting in toxic protein 

aggregates, neuronal death, and subsequently muscle atrophy 

that ultimately paralyzes the ALS patient.

Only one drug, riluzole, has been approved to treat ALS, 

which typically provides a meager gain of a few months of 

survival.11 With advances in diagnostics and personalized 

medicine, however, future ALS patients will hopefully find 

improved treatment regimes to follow for their specific ALS 

manifestations. In this review, we will focus on the recent 

breakthroughs that will likely provide new avenues to reach 

this outcome. These include increased understanding of the 

basic biology of ALS and progress toward upcoming thera-

peutics in development.

Diagnosis of ALS
Epidemiology
Worldwide, the incidence rate of ALS varies from 

 approximately 0.3–2.5 cases per year per 100,000 persons.12 

Five percent or greater of all cases run in families (FALS),13 

with a range from 2%–15% in different populations,14 

although regional and/or ethnic variations in incidence15,16 

and penetrance17 complicate the estimation,18 as do the orga-

nization of the studies themselves, being either  population- 

or  clinic-based.19 Aside from family history, the clinical 

presentation of FALS and SALS can be very similar.20 

The onset for FALS is typically several years before that 

of SALS, although an exact age is difficult to estimate. In 

one study, for example, the mean FALS age was 48, as 

compared to 66 for a population-based group,21 whereas in 

another larger study the discrepancy, although still present, 

was not as large (52 versus 56, respectively).22 Typically, in 

SALS cases, but not always in FALS,21,22 males appear to 

predominate,23 but this may vary among ethnic backgrounds 

and may be trending toward equality with time.24 The higher 

incidence of ALS among war veterans and smokers,25–27 

potentially accounts for the increased male risk, in addition 

to factors such as male hormones.28 Interestingly, a recent 

study suggested that a lower-than-average ratio of the index 

to ring finger is represented in ALS patients.29 This measure-

ment (termed the 2D:4D ratio) is thought to reflect androgen 

exposure in the womb30,31 and therefore postulates a role 

for prenatal developmental factors in the disease. Sports 

( soccer and football) and sport-specific effects (soccer, but 

not basketball or cycling)32 have also been implicated in ALS 

disease development.25,33 Finally, higher body mass index 

(up to 30–35) was found to correlate to disease survival,34 

possibly due to the common weight loss phenotype from 

muscle wasting associated with disease progression. An 

improved awareness of risk factors and trends for ALS 

might eventually establish better preventative measures or 

treatments, especially for those with a family history of the 

disease.

Symptom presentation and examination
No single test for diagnosing ALS exists; most cases are 

established based on symptom presentation, progression, and 

tests to eliminate overlapping conditions.35 ALS is typically 

characterized by combined symptoms of the UMNs and 

LMNs. The UMNs of the central nervous systems originate 

in the motor cortex or brainstem and relay motor information 

to the LMNs. The LMNs are located in the brainstem and 

spinal cord and relay impulses from the UMNs to the muscles 

at neuromuscular synapses to innervate skeletal muscles 

controlling the arms and legs. UMN symptoms include 

weakness, speech problems, overactive reflexes, spasticity, 

and inappropriate emotionality; LMN symptoms also include 

weakness, as well as decreased reflexes, cramps, twitching 

and muscle wasting.36,37 Disease onset usually begins in 

the limbs (termed spinal onset), although about a quarter 

of ALS patients have “bulbar” onset,38 the term describing 

the facial, mouth/jaw, and tongue muscles controlled by the 

“bulb,” an early name for the lower brainstem. Associated 

with poorer  prognosis, bulbar onset is more common in 

elderly patients and women.39,40 A hallmark of ALS is rapid 

progression, and over time most patients will display both 

spinal and bulbar features (including emotionality, yawn-

ing, jaw jerking, tongue  twitching, wasting, drooling, and 

difficulties  swallowing). The El Escorial Criteria are a set 

of guidelines for ALS  diagnosis, frequently used to gauge 

clinical trial participation and clinical practice. In some 

cases, though, these criteria may be overly stringent when 

used in diagnosis.41

Diagnosis may be seen as a process of elimination, 

although family history can also be useful. The battery of 

tests performed, ie, blood tests, electromyography,  magnetic 

resonance imaging, and nerve conduction studies, can 

aid in ruling out other conditions.42 For example, in some 

patients, creatine kinase activity may be slightly elevated.43 

 Cerebrospinal fluid (CSF) examination, on the other hand, 

is typically normal but can aid in diagnosing conditions 

such as multiple sclerosis. Furthermore, muscle biopsy can 

rule out inclusion body myositis.44 Indeed, a central chal-

lenge in ALS diagnosis is distinguishing the many mimics. 
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These include injuries (eg, herniated disk, spinal compres-

sion, or heavy metal poisoning), cervical spondylosis, meta-

bolic problems such as enzyme/vitamin deficiency (B-12 etc), 

copper deficiency or thyroid problems, stroke, myopathies 

or neuropathies, inclusion body myositis, infections such as 

Lyme or HIV, or diseases such as myasthenia gravis, syrin-

gomyelia, cancer, Kennedy’s disease, Tay-Sachs diseases, 

or multiple sclerosis, among others.12,20,36,37,44–46 Misdiagnoses 

are in fact very common,20,47 about 10% of patients with other 

disorders are diagnosed erroneously with ALS.48,49 These 

findings may result in incorrect (potentially harmful) treat-

ments, and delays in obtaining the necessary therapies and 

support and in seizing clinical trial opportunities.

Attempts to identify ALS-specific biomarkers may prove 

useful. For example, a study examining blood plasma found 

statistically significant distinctions in a panel of several 

 hundred metabolites among ALS patients, allowing the authors 

to cleanly separate control patients from diseased patients (on 

taking or not taking riluzole), and even to sub-classify LMN- 

affected patients.50 Such efforts may eventually aid the clini-

cian in more specifically diagnosing motor neuron disease.

Pathophysiology
Protein inclusions and cellular  
dyshomeostasis
Typical hallmarks of ALS revealed from post-mortem exami-

nations of patient brain and spinal cord sections are neuronal 

atrophy and the presence of cellular inclusions. Inclusions 

typical of affected cells include the small, cystatin-C and 

transferrin-immunoreactive Bunina bodies.51 Also very 

common are ubiquitinated cellular inclusions, most often 

skein-like or of the round Lewy-body hyaline variety.52 The 

presence of ubiquitin-reactive inclusions is consistent with 

a very recent study demonstrating that defects in the ubiq-

uitin proteasome system may be a more generalized feature 

of ALS.6 Degenerative cellular abnormalities can afflict the 

motor cortex, the brainstem, the anterior horn of the spinal 

cord, the lateral and/or anterior corticospinal tracts. Distinct 

cellular inclusions, suggested by differential protein com-

position, are observed in ALS arising from different genetic 

backgrounds (discussed below).

Another common facet of ALS pathophysiology is 

irregular glutamate metabolism, targeted by riluzole, the 

only drug approved to treat ALS.53 Elevated synaptic gluta-

mate can lead to excessive stimulation of glutamate recep-

tors (eg, AMPA and NMDA) on the postsynaptic neuron, 

resulting in nerve damage and death through excitotoxicity. 

 Interestingly, the above-described features may also occur 

in the supporting glia, including astrocytes in which inclu-

sions and downregulation of GLT-1 (also known as EAAT2) 

glutamate transporter were observed.54 Other relevant cellular 

abnormalities in ALS include an increase of p53-mediated 

apoptosis, impaired axonal transport, and cytoskeletal and 

mitochondrial dysfunction.55–58 Additionally, as disease 

symptoms appear at mid-to-late life, cumulative damage 

occurring through increased levels of oxidative stress may 

be a significant contributor to the disease.59 A recent study 

analyzing the CSF of ALS patients suggested distinct meta-

bolic signatures discernible between SALS patients and those 

with SOD1 and non-SOD1 FALS. The metabolomes of SOD1 

FALS patients were observed to be more homogeneous 

than those of non-SOD1 FALS patients, which were more 

homogeneous than those of SALS patients.60 These observa-

tions suggest that genetic contributions to the disease may 

influence ALS physiology.

FALS and SALS genes
Despite the identification of some ALS-causing genetic 

defects in individual families, ALS is not a single-pathway, 

single-gene condition. Therefore in recent years, high 

throughput, genome wide association studies have become 

a favored tactic for filling in the significant remaining space 

of unknown FALS-causing genes.61 Nonetheless, consistency 

in reproducing candidate genes had been a problem62 until 

the recent, notable exception of the C9ORF72 gene in the 

9p21 locus,8,9,63 a major ALS breakthrough. The disease sub-

types associated with FALS mutations have been assigned 

designations of ALS1-ALS15 (Table 1). However, several 

known FALS mutations have now been documented in SALS 

cases, suggesting a broader role for these gene products in 

ALS pathogenesis. Although a variety of genes have been 

implicated in ALS (Table 1), we will focus on this subset of 

genes, in which genetic lesions can cause and contribute to 

both FALS and SALS.

SOD1
The SOD1 gene encodes the cytosolic enzyme Cu,ZnSOD, 

which is conserved from bacteria to humans. Cu,ZnSOD cata-

lyzes the dismutation of the superoxide (O
2

⋅-) radical anion, 

a toxic byproduct of cellular respiration, to produce molecular 

oxygen and hydrogen peroxide,64 with the toxicity of the 

latter being removed by conversion through a peroxidase 

or catalase. Over 150 SOD1 mutations (Figure 1) account 

for a significant fraction of FALS, and are typically present 

in about 20% of such cases (ranging from 2.5%–23.5%), as 
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Table 1 Common genes involved in ALS

Gene Locus Protein Found in cellular  
inclusions

ALS subtype Other

Autosomal dominant FALS genes also implicated in SALS
SOD1 21q22.1 Cu,Zn superoxide dismutase (SOD) + ALS1 Can be recessive in FALS
FUS 16p11.2 Fused in sarcoma (FUS) + ALS6 Can be recessive in FALS
ANG 14q11.1 Angiogenin (ANG) ALS9 Autosomal Dominant  

or Haploinsufficient
TARDBP 1p36.22 TAR DNA Binding Protein-43  

(TDP-43)
+ ALS10

OPTN 10p13 Optineurin + ALS12 Can be recessive in FALS
C9ORF72 9p21 C9ORF72 ? ‘ALS-FTD’ Newly characterized

Autosomal dominant FALS genes
ALS3 18q21 ALS3 ALS3
SETX 9q34.13 Senataxin ALS4 Can cause juvenile onset
ALS7 20p13 ALS7 ALS7
VAPB 20q13.33 vAMP-associated protein B + ALS8 Can cause juvenile onset
FIG4 6q21 Phosphoinositide 5-phosphatase ALS11
VCP 9p13.3 valosin-containing protein ALS14

Autosomal recessive FALS genes
ALS2 2q33.1 Alsin ALS2 Can cause juvenile onset
SPG11 15q15.1 Spatacsin ALS5 Can cause juvenile onset

X-linked dominant FALS gene
UBQLN2 Xp11.2 Ubiquilin-2 + ALS15 Can cause juvenile onset

Other genes
ATXN2 12q24.1 Ataxin-2 ALS13 Increases ALS susceptibility

Note: Gene products discussed in the main text, as well as additional FALS and susceptibility genes and relevant characteristics are noted.
Abbreviations: FALS, familial amyotrophic lateral sclerosis; SALS, sporadic amyotrophic lateral sclerosis.

well as in 0.44% to 7% of SALS cases.19,65 The majority of 

inherited SOD1 mutations are dominant, and individuals with 

two copies of a mutation may have much earlier onset.66,67 

The common D90A SOD1 mutation is an exception that can 

be inherited in either a dominant or recessive fashion, as well 

as appearing sporadically.68,69

SOD1 mutations do not appear to cause disease by a loss 

of function. For example, transgenic expression of SOD1 

mutants in mice is pathogenic without altering enzyme 

activity.70 This is also evidenced by the fact that Cu,ZnSOD 

deficient mice do not develop motor neuron disease71 and that 

mutations are not restricted to the active site of the enzyme.2 

Instead, mutant Cu,ZnSODs form toxic, misfolded species 

within neuronal and glial Lewy-body like inclusions72,73 that 

usually appear before symptom presentation.73,74 Within these 

aggregates, mutant Cu,ZnSOD can be associated with heat 

shock protein Hsc7075–77 or 14-3-3 proteins, suggesting in 

the latter case that sequestration of anti-apoptotic proteins 

could contribute to cell death.78 In a recent report, strong 

mutant Cu,ZnSOD immuno-reactivity was observed in small, 

granular non-ubiquitin reactive inclusions that localize to the 

cytosol and/or lysosomes of FALS (SOD1 and non-SOD1) 

and non-SOD1 SALS patients.79 Also, Cu,ZnSOD-positive 

nuclear inclusions have been observed in spinal-cord derived 

glia from FALS and SALS patients.80 Therefore, Cu,ZnSOD 

aggregates, found in tissues from distinct ALS patients, may 

be a component of diverse cellular inclusions in affected 

motor neurons and their supporting cells.

Detailed analyses of Cu,ZnSOD structures and enzy-

matic mechanisms81,82 including comparisons to bacterial 

Cu,ZnSOD83 and the human mitochondrial MnSOD84–86 

provided an informed foundation to evaluate the diverse 

mutations.2,87 To explain the complex effects of Cu,ZnSOD 

mutations in ALS pathogenesis, we and others have proposed 

a framework destabilization hypothesis.87–89 In this hypothesis 

each of the diverse set of mutations can cause local unfolding 

events that contribute to a globally defective, self-aggregating 

protein, which can deleteriously co-aggregate with other 

cellular proteins.88 Such framework-destabilizing mutations 

are associated with other neurodegenerative and cancer 

prone diseases as typified by mutants of the XPD helicase.90 

 Several studies have attempted to characterize the aggrega-

tion propensity of mutant forms of Cu,ZnSOD in vitro and in 

cultured cells, but a direct correlation between mutant protein 

stability and clinical phenotype has been elusive.91–94 This lack 

of correlation could be due to a multitude of contributing 
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 factors, ranging from important roles for metals in architec-

tural stability,95 to aberrant oxidative modifications of the free 

cysteines,96,97 to anomalous interactions of mutant Cu,ZnSOD 

with other cellular components. These components likely 

include proteins involved in stress responses (eg, Derlin-1, 

Rac-1)98,99 folding/maturation (eg, Hsc70 and the Cu,ZnSOD 

copper chaperone)77,100 and vesicular transport associated 

proteins (eg, chromogranin, dynein heavy chain).101–103

TARDBP
The TARDBP gene encodes TAR DNA binding protein 43 

(TDP-43), a modular DNA/RNA binding protein (Figure 1), 

localized to the cytosol and the nucleus, which is involved 

in splicing and transcriptional regulation.104 In vivo, TDP-43 

depletion in mice resulted in mRNA reduction and splicing 

errors in many mRNA transcripts and a few non-coding 

RNAs, particularly long intron-containing transcripts. This 

suggests a broad role for TDP-43 in alternative splicing 

and prevention of nonsense-mediated decay of transcripts 

expressed in neurons.105 The nearly 40 mutations identified in 

the TARDBP gene encoding TDP-43 (Figure 1) may contrib-

ute to up to 6.5% of dominantly-inherited FALS cases,106,107 

in addition to 0%–5% of sporadic cases.107–110 A reduced 

nuclear pool of TDP-43 is associated with some mutations, 

Dimer

TAR DNA  binding protein-43 (TDP-43; 43 kDa)
Cu,Zn-superoxide dismutase 1
(Cu,ZnSOD;15.5  kDa monomer)

RRM1 RRM2 Gly rich

NLS

NLS

NLS
Sec

NES

NES

Monomer/Dimer?

Single mutation,
insertion, deletion

Hotspot site (>1)

Hotspot site (>3)

Mutations legend

QGSY rich Gly rich RG rich ZnF RG rich

Fused in sarcoma (FUS; 75 kDa)

Optineurin (OPTN; 74 kDa)

Ubiquilin-2 (Ubqln2; 66 kDa)

Monomer?

Monomer
Coiled coil domains UBD ZNF

Large oligomer?

UBL STi1 PXX UBA
Monomer/Dimer?

Approximate length (amino acids)
0 100 200 300 600 700400 500

Angiogenin
(Ang; 14kDa)

Figure 1 Known mutations in FALS and SALS-associated proteins.
Notes: Known mutations are mapped onto their corresponding proteins. Single mutations can include point mutations, premature stop codons, deletions, or insertions. 
For simplicity, one of the SOD dimers contains the mapped mutations. Structural and Domain Organization is indicated. Solved structures of domains or entire proteins are 
shown as ribbon diagrams: Cu,ZnSOD (1PU0); TDP-43 RRM1 (1CQG); TDP-43 RRM2 (1wF0); FUS RRM (1LA6); Angiogenin (1B1I). Clothespins indicate that the tertiary 
structure and inter-domain associations are not entirely known, so protein is stretched out to better show mutations sites. Schematic depictions of conserved domains 
without solved structures are shown in grey. where applicable, known or putative oligomeric state and molecular weights are indicated.
Abbreviations: FALS, familial amyotrophic lateral sclerosis; SALS, sporadic amyotrophic lateral sclerosis; NLS, nuclear localization sequence; NES, nuclear export sequence; 
Sec, cleaved signal sequence; RRM, RNA regnition motif; X rich, X (amino acid residue) rich motifs; UBD, ubiquitin binding domain; ZnF, zinc finger; UBL, ubiquitin like 
domain; STI1, heat-shock-chaperonin-binding motifs; UBA, ubiquitin associated domain.
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and cytoplasmic, ubiquitin-reactive hyperphosphorylated 

TDP-43 inclusions are observed in tissues from frontotem-

poral dementia (FTD) patients111,112 and in neuronal and glial 

tissues samples from SALS and Guam ALS patients.113 The 

inclusions commonly co-localize with ubiquitin and the 

protein p62.113 However, TDP-43 inclusions are not present 

in SOD1 FALS individuals114 (with the exception of one 

case113) or FUS mutant patients.115

FUS
FUS encodes fused in sarcoma (FUS, also known as 

 Translated in Liposarcoma, TLS), a modular nucleic acid-

associated protein with many similarities to TDP-43, includ-

ing conservation of protein domains (Figure 1), a role in RNA 

processing115 and localization in both the cytosol and nucleus 

in many cells. About 30 known FUS mutations account for 

approximately 3%–5% of FALS and ∼1% of SALS cases116,117 

and all but the one known recessive variant, H517Q118 cause 

a dominant phenotype. As with some TARDBP mutations, 

certain FUS mutations located near the nuclear localization 

sequence may shift the nuclear/cytoplasmic balance towards 

cytosolic. This imbalance occurs by impairing the transportin-

mediated import of FUS into the nucleus.119 FUS-reactive 

inclusions have been found in tissues from FUS mutant FALS 

patients but not in SOD1 mutant patients.115,117 Furthermore, 

although earlier studies failed to see FUS-immunoreactivity 

in SALS cases 115 a more recent study did report FUS stain-

ing in inclusions from SALS patients.117 FUS inclusions are 

commonly seen in FTD patients,115,118,120 in addition to ALS 

patients, and these FUS-proteinopathy phenotypes might be 

distinguished through co-localization of other FUS family 

member proteins in FTD, but not in ALS.121 Furthermore, 

FUS and TDP-43 inclusion phenotypes are thought to be 

mutually exclusive in FTD,122,123 but this may not be the case 

in ALS; although TDP-43 reactivity was not observed in FUS 

ALS mutant tissues,115 FUS-reactivity was later reported in 

TDP-43 ALS mutant tissues.117

OPTN
A recent Italian study indicated that approximately 3.5% of 

SALS patients, in addition to 1.2% of FALS patients, had 

mutations in the OPTN gene,4 which encodes Optineurin. 

About a dozen mutations in OPTN can lead to ALS, with gain 

of function mutations dominant and loss of function muta-

tions recessive.124,125 Optineurin is a multifunctional  cytosolic 

and Golgi-associated coiled-coil domain- containing, 

ubiquitin-binding phosphoprotein (Figure 1). It is involved 

in vesicular trafficking and Golgi maintenance, signaling 

in the tumor-necrosis factor α/NF-κB pathway,126 mGluR 

signaling127,128 and autophagy.129 Optineurin has been shown 

to form homo-complexes and heteromultimerize with 

Rab8, myosin VI, and transferrin receptor proteins. In both 

FALS- and SALS-affected cells, Optineurin can co-localize 

in inclusion bodies with FUS130 and TDP-43,124 although 

the frequency of such inclusions was shown to be low in 

another study.131 Furthermore, Optineurin localization has 

been observed in basophilic inclusions from SOD1 FALS 

patient tissues,124 although conflictingly this co-localization 

was not observed in another study in patient-derived or mouse 

model tissues.132

ANG
Angiogenin (Ang, encoded by the ANG gene), a small, 

hypoxia- and ischemia-inducible133 ribonuclease A (Figure 1) 

involved in angiogenesis, is mutated in a smaller number 

of FALS and SALS cases.134 Expressed in many tissues, 

including motor neurons,135 where it promotes cell survival,136 

Ang is required for the VEGF-mediated stimulation of 

angiogenesis.137 Ang is secreted and taken up by effector 

cells via endocytosis, then translocated to the nucleus, to 

stimulate transcription of rRNA, among other roles.135 Due to 

loss of ribonuclease and/or nuclear translocation activity,135 

ANG mutations appear to attenuate angiogenesis although 

the protein stability is not compromised.138 Eighteen ANG 

mutations, therefore, can cause a loss-of-function phenotype, 

with most ANG ALS patients presenting with bulbar onset 

(discussed above).134

UBQLN2
UBQLN2, a gene on the X-chromosome, was recently found 

to be causative for X-linked dominant FALS.6,139 In affected 

families, incomplete penetrance was noted in females, 

presumably due to X-inactivation. The encoded ubiquilin-2 

protein (Figure 1) normally performs effector functions in 

the ubiquitin proteasome pathway by tethering degradation-

targeted proteins (through its C-terminal ubiquitin-associated 

domain) to the proteasome (through association with its 

N-terminal ubiquitin-like domain). The intervening regions 

within the protein are less well characterized, and include 

a PXX (proline-rich) domain, where five distinct muta-

tions were found. In tissues derived from UBQLN2-mutant 

patients, ubiquitin-positive skein-like inclusions were also 

reactive for ubiquilin 2. This phenotype was particularly 

notable in the spinal cord and hippocampus, correlating with 

the appearance of dementia in 20% of the X-linked ALS 

patients. Furthermore, these inclusions were also positive 
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for TDP-43, FUS and OPTN, but not Cu,ZnSOD. Notably, 

ubiquilin-2 inclusion staining was present in all samples 

from a wide panel of genetically-distinct ALS patient tissues 

(sporadic, SOD1-mutant, TARDBP mutant, and non-FUS/

non-TARDBP/non-SOD1 FALS, and ALS with dementia) but 

not in non-ALS controls.6 Expression of mutant ubiquilin-2 

protein significantly slowed down proteosomal degrada-

tion of a reporter substrate in Neuro-2a cells,6 suggesting 

a mechanistic contribution for these mutants. Unlike the 

other mutations described, those in the UBQLN2 gene have 

not yet been implicated in SALS. However, these findings 

suggest ubiquilin-2 could be generally relevant to ALS 

pathogenesis.

C9ORF72
Very recently, two independent research groups flagged 

C9ORF72 as the gene at locus 9p21 that was linked to domi-

nant cases of ALS/FTD8,9 in previous genome-wide associa-

tion studies. Strikingly, a substantial hexanucleotide repeat 

(GGGGCC) within an intron of this gene was identified in 

24%–46% of FALS cases and 4%–21% of SALS cases, mak-

ing this the most commonly mutated ALS gene. The expansion 

appeared to result in nuclear foci and directed preferential 

splicing of an alternatively spliced transcript.8 However, pre-

cisely how the aberrant RNA metabolism of C9ORF72 causes 

ALS is not yet known, and the protein, aside from nuclear 

localization,9 has no ascribed function. Interestingly, post-

mortem examination of several patients with the C9ORF72 

hexanucleotide repeat, who exhibited ALS and FTD-like 

symptoms, also revealed neuronal TDP-43 inclusions.8

Commonalities and crosstalk
One puzzle for understanding ALS is that the known ALS-

causing gene products have diverse physiological functions. 

However, some common themes in pathogenesis are begin-

ning to emerge. For example, RNA processing defects are 

visible in mutants of TARDBP, FUS, and ANG (as well as 

a FALS gene called SETX).5 Nucleotide repeat expansions 

have also now been identified in C9ORF72 (and an ALS-

susceptibility protein called Ataxin-2).140 Proteinacious 

cellular inclusions are also a common denominator in ALS 

patient-derived tissues; these can involve ubiquilin-2, as well 

as SOD, FUS, TDP-43, and/or optineurin. Interestingly 

however, different disease subtypes appear to reveal aggre-

gates with distinct protein composition. Due to their roles in 

both ALS and FTD, TDP-43, FUS, OPTN, and ubiquilin-2 

have been proposed to function in the context of a unified 

 pathway.141 Thus, interactions among these components should 

be a focus for future research. Along these lines, a recent 

study in zebrafish found that the expression of human FUS 

could rescue the motor neuron phenotype associated with 

knockdown of TARDBP expression, whereas, conversely, 

TARDBP could not rescue FUS knockdown, suggesting that 

TARDBP is genetically upstream of FUS.142 These results are 

consistent with a study showing that TDP-43 regulates the 

mRNA processing of FUS transcripts as well as its own.105

Genetic overlap between ALS and other 
diseases
Gene products whose mutations cause ALS have been 

implicated in other diseases. For example, FUS, TDP-43, 

ubiquilin-2, and/or optineurin-positive inclusions are found in 

many FTD patients,131,143 and C9ORF72 is implicated also in 

ALS/FTD.8,9 TDP-43-immunoreactivity is sometimes seen 

in hippocampal sclerosis, Pick’s disease, and Alzheimer’s 

disease (AD), and ubiquitin staining can occur in the latter 

disease.109 Likewise, optineurin has recently been implicated 

in AD due to its inclusion body staining in neurofibrillary 

tangles.144 Furthermore, optineurin interacts with the protein 

huntingtin, suggesting some role in Huntington’s disease,145 

and mutations in optineurin are associated with glaucoma146 

and Paget’s disease of the bone.147 The ubiquilin-1 paralog, 

with a domain structure similar to ubiquilin-2, is associ-

ated with AD.6 The 14-3-3 protein isoforms co-localized in 

Cu,ZnSOD inclusions have also been found in a Parkinson’s 

disease model, suggesting some commonalities in inclusion 

formation.148 Angiogenin has been implicated in a gamut 

of diseases, from cancers to diabetes, asthma, and heart 

disease.149 Finally, nucleotide repeats (as in C9ORF72) are 

known to cause a variety of neurodegerative diseases such 

as Huntington’s disease, Fragile X-syndrome, Kennedy’s 

disease and others.150 These observations underscore the 

need for meaningful synergistic collaborations among 

researchers studying these different complex diseases that 

often involve protein aggregation, allowing new insights to 

be compounded.

Treatment of ALS
The primary goal of ALS treatment is the inhibition of disease 

progression, although an important secondary consideration 

is the treatment of damage already done. Palliative care 

(eg, home care and hospice) remains a significant focus of 

the treatment program for the ALS patient. Non-invasive 

ventilation, for example, can improve the quality of life and 

extend survival in non-bulbar patients.151 A support team, 

and hospice care toward the end of life can help the ALS 
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patient to prepare nutritive food that is easy to swallow, 

provide medications for muscle spasticity, weariness, sleep 

and depression, and adjust ventilators, enabling the patient 

to adjust to lifestyle limitations.

Although domestic alterations can provide significant 

relief to current patients, biochemical and pharmacological 

advances will drive forward better therapeutics. A panel of 

ALS biomarkers from non-invasive analyses would be a 

major gain not only in diagnosis and monitoring progression, 

but also in identifying affected biological pathways in ALS to 

target therapeutically.152 Multiple studies have sought to iden-

tify protein biomarkers for ALS, including increased blood 

or CSF levels of TDP-43, or the cysteine protease inhibitor 

cystatin C, or a skewed CSF ratio of phospho-neurofilament 

heavy chain to complement C3.153–156 Furthermore, the 

combined efforts of GC/MS (gas chromatography coupled 

to mass spectrometry), LC/MS (liquid chromatography 

coupled to mass spectrometry), and NMR (nuclear magnetic 

resonance) could potentially span the whole metabolome in 

identifying biomarker signatures.50,60 Better disease markers 

could reduce the long duration, averaging 14 months, between 

initial symptom presentation and diagnosis,47 helping to 

improve the disease trajectory.157 Such endeavors would 

also provide a platform for personalized medicine for ALS 

patients. At present, at least one clinical trial (NCT00677768) 

is being organized to analyze the blood and CSF of ALS 

patients for biological markers.

Pharmacological interventions
The only approved medicine to treat the general symptoms 

of ALS is the anti-excitotoxicity drug riluzole.158 The drug 

is thought to preserve motor neuron function by decreasing 

toxic glutamate levels at glutamatergic nerve terminals by 

(a) inactivating sodium channels, (b) inhibiting glutamate 

release, and (c) blocking postsynaptic actions of NMDA 

receptors.159 The safety and efficacy profiles for riluzole 

are better than those for other excitotoxicity drugs, but 

riluzole only increases the chance of an additional year of 

survival by about 9%, typically prolonging survival for about 

2–3 months.11 The drug serves to slightly preserve limb 

and bulbar function but actual muscle strength is typically 

not improved.11 Recently approved for treating purely the 

pseudobulbar affect symptoms less commonly observed in 

ALS patients is dual-acting dextromethorphan/quinine (sold 

as Neudexta®; Avanir Pharmaceuticals, Aliso Viejo, CA).160 

Like riluzole, dextromethorphan also inhibits glutamatergic 

signaling, and quinine helps to increase its bioavailability, 

providing modest benefit to a subset of patients.160

Promising new therapeutic developments, several of which 

are in late-phase clinical trials, may provide strides forward 

in treating ALS. One such drug in phase III clinical trials 

(NCT00349622) is the antibiotic ceftriaxone, used to treat 

pneumonia and bacterial meningitis. In ALS patients, ceftri-

axone appears to upregulate the GLT-1 (EAAT2) glutamate 

transporter, potentially correcting cellular glutamate levels.161 

Another potential treatment option is high-dose methylco-

balamin (vitamine B-12), currently in phase II/III studies 

(NCT00444613 and NCT00445172) to determine safety and 

efficacy for long-term use in ALS.162 This compound was 

recently shown to reduce homocysteine (another excitatory 

amino acid)-mediated toxicity in NSC-34 cells.163 Finally, an 

antioxidant targeting the mitochondria is currently in phase III 

trials (NCT01281189), sponsored by Biogen Idec (Westin, MA) 

and Knopp Biosciences LLC (Pittsburgh, PA). This drug, dex-

pramipexole,164 is the R(+)-isomer of the amino-benzothiazole 

drug pramipexole (currently approved to treat Parkinson’s 

disease and restless legs syndrome). Dexpramipexole was well 

tolerated in phase II clinical trials, revealing positive trends in 

slowing function decline and improving survivability.

SOD1-targeting therapies
The establishment of mutant SOD1 transgenic mice in the 

late 1990s was a major breakthrough in the field, provid-

ing the first disease models for ALS.70 Now, about a dozen 

such SOD1 ALS mouse models exist.165 Other distinctive 

ALS models have been developed,166,167 including the newer 

TARDBP mouse models that similarly display ALS-like 

symptoms such as gait abnormalities, weight loss, and spas-

ticity.104 However, the use of SOD1 mouse models has pre-

dominated much of the therapeutic progress, in part because 

SOD1 represents a major disease target. For example, because 

the SOD1 gene is predominately dispensible,71 reducing its 

expression and perturbing aggregation are favored strategies 

for treatment of ALS. These transgenic animals are appropri-

ate models in many cases, and guidelines have been suggested 

for standardizing studies in SOD1 mice.168

Both small molecules and siRNAs are being explored to 

downregulate and diminish SOD levels. The hydroxylamine 

drug arimoclomol (Orphazyme) is currently in stage II/III clini-

cal trials (NCT00706147). This compound induces a heat shock 

response that resulted in a decrease in ubiquitin-positive aggre-

gates in G93A SOD1 mouse models,169 and is now being tested 

in SOD1 FALS patients. A free radical scavenger, edaravone 

(Mitsubishi Tanabe Pharma Corporation, Osaka, Japan) was 

recently found to ameliorate ALS symptoms and diminish SOD 

aggregate deposition in interior horn cells. Phase III clinical 
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trials were recently completed (NCT00330681; NCT00424463; 

NCT00415519), with results pending publication, so the future 

success of the drug remains to be seen. Studies aimed at silenc-

ing SOD1 using siRNA-based strategies in mice have met with 

some success,170,171 although the inability of siRNA to pass the 

blood–brain barrier makes delivery a problem. Accordingly, 

Isis Pharmaceuticals Inc (Carlsbad, CA) has developed a CSF-

infused delivery method for Isis-SOD1RX antisense oligos that 

recently were successful in animal models,172 and are now being 

examined in phase I clinical trials (NCT01041222). Finally, 

an approach aimed at prevention, which is in its infancy, is 

immunization against mutant Cu,ZnSOD through vaccination 

with mutant Cu,ZnSOD or metal-free Cu,ZnSOD (exhibiting 

some similar pathogenic properties).173 As stable Cu,ZnSOD 

polymers expected to break tolerance exist,174 and as antibodies 

favor reactions with more flexible regions,175,176 such antibody 

experiments may be promising.

A recent study used patient-derived progenitor cells to derive 

cultured astrocyte cell lines, and these were found to be toxic to 

motor neurons, via a mechanism involving secretion of unchar-

acterized factors. Interestingly, both FALS (mutant SOD1) and 

SALS-derived cells, but not non-ALS derived astrocyte cells, 

had common pathway changes (namely NF-κB, MAPK, JNK, 

and AKT), and knockdown of SOD1 rescued the motor neuron 

killing phenotype in four of six cell lines examined.177 This 

study interestingly reaffirms the use of SOD1-targeted thera-

peutics in the context of SALS (although the effects on other 

FALS genetic backgrounds were not tested) and also suggests 

that such cell cultures could prove useful for therapeutic screen-

ing in the absence of an all-encompassing ALS disease model. 

Indeed, a few years ago, astrocyte replenishment by injection of 

glial precursor cells in SOD1 model rats was found to prolong 

life and improve motor performance.178 Similarly, a phase I 

clinical trial (NCT01348451) aimed at spinal implantation of 

spinal cord-derived stem cells is being sponsored by Neuralstem 

Inc (Rockville, MD). This treatment previously extended the 

life of SOD1 transgenic rats by 10 days,179 and provides the first 

regenerative medicine strategy for ALS.

Future directions
Where do we go from here? ALS was first described about 

150 years ago180 and recent biotechnological advances have 

allowed researchers to begin pinpointing the precise genet-

ics and pathological mechanisms behind the disease. Yet, 

many questions still remain: How do the distinct pathways 

involved in the disease overlap and converge to cause similar 

phenotypes? Can diagnostics improve to the point of early 

screening and detection? Arguably most importantly, how 

can we best treat individual patients? Fortunately, the com-

plex nature of the disease also allows for many potential 

targets and means for therapeutic intervention.

The discovery of the role of SOD1 in ALS was a triggering 

event that significantly advanced our current understanding of 

the disease aided by the basic science of SOD structure and 

biochemistry.87,181 Although we now know that the mutant 

proteins aggregate, we are only starting to appreciate the key 

architectural features of the proteins involved in triggering 

this aggregation and its consequences. More recently, we 

have realized the significant contributions of TDP-43 and 

FUS in ALS and other degenerative diseases.182 Indeed, RNA 

metabolism appears to be a common thread. The recent iden-

tification of ubiquilin-2 as a co-immunolocalized component 

of ALS inclusions in a wide variety of ALS cell types has 

also been a major breakthrough in the field.6 Thus, follow-up 

work is now needed in order to determine the mechanism 

of this ubiquilin-mediated pathology, as well as its poten-

tial contributions to other ALS-linked pathways. Finally, 

determining the pathogenic mechanism of action of newly 

identified C9ORF72 repeats may prove extremely useful in 

understanding a significant majority of ALS cases, both spo-

radic and inherited. Newer disease models will undoubtedly 

play a significant role in facilitating these studies.

A critical element of progress in the ALS field will be 

the dissemination of genetic, epidemiologic, and therapeutic 

information. Fortunately, several helpful online databases and 

resource are now available, including the ALS online genet-

ics database,183 the Genetic Association studies website,184 

the ALS forum,185 and the Northeast ALS Consortium 

(NEALS).186 Outreach and social networking is provided 

by sites such as the Twitter-based ALS Untangled,187 which 

hosts a forum for patient conversations. These assets will 

increase awareness and discourse among ALS patients and 

drive future research collaborations.

Conclusions
Currently, ALS is an unrelenting and incurable neuromus-

cular disease that paralyzes its victims, eventually leaving 

them incapable of breathing. Gradually, thanks in part due 

to strides in molecular genetics, the mechanisms leading to 

aberrant cellular physiology and toxic inclusions are being 

sewn together. At present, therapeutic strategies aim to slow 

down the pace of the disease. Ultimately, however, future 

efforts will work to block the initial events leading to neu-

ronal death. This will prevent damage to the patient’s motor 

ability before it happens, stemming from earlier diagnosis 

and leading to better prognosis.
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