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Background: The global aging population presents a significant challenge, with older adults experiencing declining physical and 
cognitive abilities and increased vulnerability to chronic diseases and adverse health outcomes. This study aims to develop an 
interpretable deep learning (DL) model to predict adverse events in geriatric patients within 72 hours of hospitalization.
Methods: The study used retrospective data (2017–2020) from a major medical center in Taiwan. It included non-trauma geriatric 
patients who visited the emergency department and were admitted to the general ward. Data preprocessing involved collecting 
prognostic factors like vital signs, lab results, medical history, and clinical management. A deep feedforward neural network was 
developed, and performance was evaluated using accuracy, sensitivity, specificity, positive predictive value (PPV), and area under the 
receiver operating characteristic curve (AUC). Model interpretation utilized the Shapley Additive Explanation (SHAP) technique.
Results: The analysis included 127,268 patients, with 2.6% experiencing imminent intensive care unit transfer, respiratory failure, or 
death during hospitalization. The DL model achieved AUCs of 0.86 and 0.84 in the validation and test sets, respectively, out-
performing the Sequential Organ Failure Assessment (SOFA) score. Sensitivity and specificity values ranged from 0.79 to 0.81. The 
SHAP technique provided insights into feature importance and interactions.
Conclusion: The developed DL model demonstrated high accuracy in predicting serious adverse events in geriatric patients within 72 
hours of hospitalization. It outperformed the SOFA score and provided valuable insights into the model’s decision-making process.
Keywords: explainable machine learning, deep learning algorithm, adverse events, mortality

Introduction
The aging of the population presents a significant global challenge recognized by many countries. According to the United 
Nations, the proportion of people aged 65 and older is projected to increase from 9% in 2021 to 16% by 2050. This demographic 
shift will mark the first time in history that the number of older adults exceeds that of children under the age of 5.1 As individuals 
age, their physical and cognitive abilities decline, rendering them more susceptible to chronic diseases and adverse health 
outcomes. Chronic diseases are particularly prevalent in older adults, leading to a gradual decline in physical function, quality of 
life, and an increased risk of complications and mortality.2 Managing chronic conditions necessitates ongoing medical care and 
support, resulting in substantial care burdens and expenses. For example, in the United States, Medicare spending on individuals 
aged 65 and older reached $702 billion in 2019, constituting 21% of total national health expenditures.3

The Charlson Comorbidity Index (CCI), Acute Physiology and Chronic Health Evaluation (APACHE) II, and Sequential 
Organ Failure Assessment (SOFA) score are commonly used to predict mortality risk in hospitalized patients. CCI is a widely 
used comorbidity index that assigns weights to medical conditions based on their association with mortality, while APACHE II 
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evaluates patients’ acute and chronic health status using physiological variables and comorbidities.4,5 SOFA score assesses the 
extent of organ dysfunction in critically ill patients.6,7 However, none of these scores are specifically designed for older adults 
and do not account for the unique physiological changes and comorbidities associated with aging. Although these scores have 
been shown to be reliable predictors of mortality risk in various patient populations, they do not consider age-related 
physiological changes, which may affect the accuracy of mortality predictions in older adults. Due to the wide range of age- 
related physiological changes and the presence of comorbidities in individuals, the sensitivity of single-point vital sign 
measurements in detecting disease processes is reduced.8,9 Therefore, while these scores are useful in predicting mortality risk 
in hospitalized patients, they may not be as accurate in predicting mortality risk in older adults.

Artificial intelligence (AI) has become a powerful tool in various areas of healthcare, including clinical diagnosis, 
treatment recommendations, and predicting health outcomes and mortality. For instance, AI models have been used to 
predict outcomes in trauma patients,10 neurological outcomes of out-of-hospital cardiac arrest patients,11 mortality after 
ST-segment elevation myocardial infarction.12 Research has shown the efficacy of deep learning (DL) algorithms in 
detecting infectious diseases and predicting prognosis in critical medical conditions, such as the detection of monkeypox 
from skin lesion images,13,14 and the prediction of prognosis for COVID-19 using clinical markers.15 In terms of early in- 
hospital mortality prediction, Awad et al demonstrated the prediction of early hospital mortality of intensive care unit 
patients using an ensemble learning approach.16 Furthermore, Cheng et al discovered that by analyzing dynamic vital 
sign data, machine learning (ML) models such as convolutional neural networks (CNNs), long short-term memory, and 
random forest can predict mortality in septic patients within 6–48 hours of admission.17

Many existing models are tailored to patients who require urgent critical care, and they may not be suitable for those 
admitted to general wards. It is crucial to acknowledge that patients who experience adverse events during their hospital 
stay, despite not being initially admitted to the intensive care unit, can cause significant distress and burden for families 
and medical professionals. Hence, it is vital to identify individuals who may be at risk of deteriorating during their 
hospitalization to mitigate potential negative outcomes. Additionally, while some studies have included older patients in 
their analysis, few studies have specifically focused on this population. As older adults are more likely to experience 
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adverse health outcomes and have different physiological characteristics than younger patients, there is a growing need 
for ML models tailored to this population.

Given that existing mortality prediction scores, such as CCI, APACHE II, and SOFA, lack specificity for older adults, 
overlooking age-related physiological changes and comorbidities, which reduces the accuracy of mortality predictions in 
this population, and that current AI models are predominantly designed for urgent critical care patients, neglecting the 
unique needs of older adults admitted to general wards, there is a significant research gap in developing tailored 
predictive models for this demographic. Therefore, this study aims to develop an interpretable DL model that can 
predict serious adverse events including imminent intensive care unit (ICU) transfer, respiratory failure, or death during 
hospitalization within 72 hours for geriatric patients.

Method
Study Setting and Population
This study was a retrospective analysis carried out at a major medical center in Taiwan, during the period spanning 
1 January 2017 to 31 December 2020. The medical center is considered one of the largest in the region, with an annual 
volume of over 12,000 emergency department (ED) visits and 3500 ward beds. The study obtained approval from the 
institutional review board of Chang Gung Memorial Hospital (IRB: 202100691B0 and 202201500B0) and adhered to the 
Code of Ethics of the World Medical Association (Declaration of Helsinki).

The study recruited non-trauma patients who were 65 years or older and visited the emergency department during the 
study period, and subsequently admitted to the general ward. Patients who were discharged against medical advice or 
transferred to other hospitals were excluded from the analysis. To ensure that the model’s usefulness in real-world 
situations, all patients were divided into development and test sets based on the index dates of their emergency 
department visits. Data with index dates up to December 31, 2019, were used for model development, while data with 
index dates after that date were set aside for testing. The flowchart was deciphered in Figure 1.

Data Preprocessing
Various factors associated with prognosis in previous research were gathered.16,18 These included age, sex, vital signs, 
laboratory test results, medical history, and management during ED visits. Vital signs such as heart rate (HR), systolic 
blood pressure (SBP), diastolic blood pressure (DBP), body temperature (BT), and Glasgow coma scale score (GCS) 
were recorded at both ED triage and hospital admission. Additionally, the shock index (SI) was calculated.19 Laboratory 
data, including complete blood count, differential white blood cell count, and C-reactive protein level, were also 
collected. Other biochemical tests like renal and liver function and electrolyte levels were included. Patients past medical 
history, such as hypertension, diabetes mellitus, malignancy, coronary artery disease, liver cirrhosis, and chronic kidney 
disease, were also collected. The data on the clinical management during ED, including the administration of fluid 
challenge, oxygen therapy, and inotropic agents, were also documented as they could provide insights into the patient’s 
condition severity. If the measurement was taken during ED triage, “_a” will be added at the end; if the measurement was 
taken when the patient left the emergency department to ward admission, “_e” will be added at the end. For example, for 
systolic blood pressure, SBP_a refers to the measurement taken during ED triage, while SBP_e refers to the measurement 
taken when the patient left the emergency department to ward admission. The outcome was the occurrence of serious 
adverse events while hospitalized within 72 hours, including cardiac arrests, mechanical ventilation, and intensive care 
unit ICU transfers.

To handle missing values, we utilized the MissForest algorithm, which is a nonparametric approach specifically 
designed for imputing missing values in mixed-type data.20 This Method can impute both continuous and categorical 
data, while also accounting for complex interactions and nonlinear relationships. A notable advantage of the MissForest 
algorithm is its ability to provide an out-of-bag imputation error estimate, which allows for the evaluation of imputation 
performance. By using this approach, we were able to obtain accurate imputation results that improved data quality and 
reduced the impact of missing values on subsequent analyses.
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When training a model, differences in the scales of input variables can create challenges in developing the network, 
especially in the case of neural networks. This is because large input values (eg, SBP) may lead to the learning of large 
weight values in comparison to small input values (eg, percentage of band neutrophils) or categorical values (eg, 
hypertension), potentially affecting model performance. We applied a feature scaling process to all selected features 
prior to their input into the deep learning (DL) model. To standardize this process, we employed a method that subtracts 
the mean and divides by the standard deviation of each data point’s feature value.

Model Development and Test
The present study involved the development of a deep feedforward neural network to predict the occurrence of adverse 
events among the patients included in the analysis. In order to address the issue of data imbalance, class weights were set 
based on the population size of positive and negative patients during the training process. The data in the development set 
were divided in a 3:1 ratio into the training and validation sets. After preparing the input data, grid search was utilized to 
determine the optimal hyperparameter values. Various hyperparameters were fine-tuned to achieve optimal performance. 
Subsequently, a feed-forward neural network model was constructed, comprising four hidden layers. Initially, a dense layer 
with 32 neurons and rectified linear unit (ReLU) activation function was added, with the input dimension determined by the 
number of features in the training data. Three additional dense layers were then added, each consisting of 64 neurons and 
ReLU activation function. Following the last hidden layer, a dropout layer with a dropout rate of 0.5 was included, aiming to 
prevent overfitting by randomly dropping a fraction of input units during training. Lastly, a dense layer with 1 neuron and 
sigmoid activation function was appended for binary classification. The AdamW algorithm was selected as the optimizer, 

Figure 1 Patient inclusion flow chart and the development of the deep learning model.
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initializing with a learning rate of 0.0002. Training employed the binary cross-entropy loss function, spanning 500 epochs 
with a batch size of 256. The best weight configuration, minimizing loss in the validation set across all epochs, was retained.

The model’s performance was evaluated by assessing its accuracy, sensitivity, specificity, positive predictive value 
(PPV), and area under the receiver operating characteristic curve (AUC). Additionally, the model’s performance was 
compared to that of the conventional scoring system, the SOFA score, based on AUC. The SOFA score is a reliable tool 
for predicting the outcome of critically ill patients. It evaluates the patient’s organ function based on scores assigned for 
six different systems: respiratory, coagulation, hepatic, cardiovascular, renal, and neurologic. A higher SOFA score 
indicates a greater risk of mortality.7

Model Explanation
Shapley Additive Explanation (SHAP) is an interpretable ML technique that explains the Contributions of each feature in 
a model’s prediction. It is based on Shapley values, which is a concept from cooperative game theory. SHAP provides 
a unified measure of feature importance that is based on a model’s learned behavior and its structure. It allows for the 
evaluation of each feature’s contribution to the model’s prediction, resulting in a better understanding of the model’s 
decision-making process. SHAP also enables the identification of interactions between features, and how these interac-
tions affect the model’s output.

SHAP has significant benefits for ML, including increasing the transparency of black-box models and improving the 
interpretability of results. This can lead to more accurate and informed decision-making, increased trust in the model, and 
better communication with stakeholders. SHAP can also help in feature engineering and selection, reducing the number 
of features required for model performance, and improving computational efficiency.21,22

Statistical Analysis
When presenting continuous data that followed a normal distribution, the mean and standard deviation (SD) were used, 
while for non-normally distributed continuous data, the median with the 25th and 75th percentiles were reported. To 
compare the distribution of continuous variables, statistical tests such as the independent t-test or Mann–Whitney test 
were utilized. The chi-square test for independence was used to compare categorical variables. Statistical significance 
was defined as having a two-sided p-value of less than 0.001. Model development and all statistical analyses were 
performed using Python 3.9 and TensorFlow 2.1 on the Google Colab platform.

Result
Analysis of the Enrolled Patients
This study involved 127,268 patients, with 103,411 and 23,857 patients allocated to the development and test sets, 
respectively. In the development set, the patients had a mean age of 78.5 ± 7.87 years, while in the test set, the patients 
had a similar mean age of 78.5 ± 7.97 years. Among all patients, 3337 (2.6%) experienced adverse events while 
hospitalized, including 302 (0.2%) cardiac arrests, 2945 (2.3%) cases of mechanical ventilation, and 3100 (2.4%) ICU 
transfers. Demographic and outcome data for both development and test sets can be found in Table 1.

Further investigation was conducted to explore the clinical features that were linked to unfavorable Results. The data 
revealed that advanced age was linked to unfavorable results, with patients who suffered adverse events having an 
average age of 79.5 ± 7.95 years compared to 78.4 ± 7.88 years for those who did not (p<0.001). Among the vital signs, 
all except DBP_a were associated with unfavorable results. Patients who experienced adverse effects showed tachycar-
dia, higher shock index (SI), and lower GCS scores at both triage and hospital admission (see Table 2).

In addition, higher levels of white blood cell (WBC) count (10.4 ± 8.5 vs 12.1 ± 10.0, p<0.001), higher band 
neutrophil (0.42 ± 1.86 vs 0.87 ± 2.88, p<0.001), lower hemoglobin (Hb) levels (11.3 ± 2.3 vs 11.1 ± 2.4, p<0.001), 
higher blood sugar (164.8 ± 84.5 vs 176.4 ± 92.7.9, p<0.001), higher aspartate aminotransferase (AST) levels (32.0 ± 
125.9 vs 39.7 ± 201.6, p=0.029), higher creatinine levels (1.81 ± 1.88 vs 1.96 ± 1.94, p<0.001), higher C-reactive protein 
(CRP) levels (61.6 ± 64.8 vs 79.0 ± 79.6, p<0.001), and lower albumin levels (4.2 ± 0.42 vs 4.1 ± 0.48, p<0.001) were 
associated with unfavorable results.
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Table 1 Characteristics of Patients in Development and Test Data Set

Data Set

Development Set  
N= 103,411

Test Set  
N= 23,857

p-value

Age, year-old, Mean±SD 78.5 ± 7.87 78.5 ± 7.97 0.417

Male, N (%) 55,141 (53.3) 12,523 (52.5) 0.021

Vital Sign at Triage, Mean±SD

Temperature 36.9 ± 1.08 37.1 ± 1.11 <0.001

Heart Rate 93.3 ± 21.5 92.9 ± 21.4 <0.001

Systolic Blood Pressure 140.5 ± 32.8 141.8 ± 32.3 <0.001

Diastolic Blood Pressure 78.0 ± 17.2 77.4 ± 16.9 <0.001

Respiratory Rate 20.2 ± 3.4 19.6 ± 3.4 <0.001

Shock index 0.71 ± 0.26 0.69 ± 0.25 <0.001

Glasgow Coma Scale 13.8 ± 2.6 13.8 ± 2.6 0.952

Vital Sign at Admission, Mean±SD

Temperature 36.4 ± 0.65 36.5 ± 0.68 <0.001

Heart Rate 83.3 ± 17.0 82.6 ± 16.9 <0.001

Systolic Blood Pressure 133.8 ± 24.0 134.2 ± 24.0 0.015

Diastolic Blood Pressure 75.6 ± 14.1 73.9 ± 14.2 <0.001

Respiratory Rate 18.5 ± 2.7 18.0 ± 2.7 <0.001

Shock Index 0.65 ± 0.19 0.64 ± 0.19 <0.001

Glasgow Coma Scale 13.9 ± 2.3 13.8 ± 2.3 0.001

Underlying Medical History, N (%)

Hypertension 56,633 (54.8) 13,307 (55.8) 0.005

Diabetes Mellitus 38,929 (37.6) 9694 (40.6) <0.001

Liver Cirrhosis 9463 (9.2) 2111 (8.8) 0.144

Old Stroke 22,080 (21.4) 5366 (22.5) <0.001

Heart Failure 16,949 (16.4) 3992 (16.7) 0.198

End stage renal disease 29,175 (28.2) 7234 (30.3) <0.001

Malignancy 28,402 (27.5) 6911 (29.0) <0.001

Outcome, N (%)

Adverse Event 2765 (2.7) 572 (2.4) 0.016

Cardiac Arrest 258 (0.2) 44 (0.2) 0.063

Mechanical Ventilation 2441 (2.4) 504 (2.1) 0.022

ICU transfer 2560 (2.5) 540 (2.3) 0.008
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Table 2 Clinical Features Associated with Adverse Event During Admission

Without 
Adverse Event  
N= 123,931

With Adverse 
Event  
N= 3337

p-value

Age, year-old, Mean±SD 78.4 ± 7.88 79.5 ± 7.95 <0.001

Male 65,831 (53.1) 1833 (54.9) 0.039

Vital Sign at Triage, Mean±SD

Temperature 36.9 ± 1.09 37.0 ± 1.12 0.012

Heart Rate 93.0 ± 21.4 100.2 ± 23.3 <0.001

Systolic Blood Pressure 140.8 ± 32.7 138.0 ± 33.1 <0.001

Diastolic Blood Pressure 77.9 ± 17.1 78.1 ± 18.4 0.627

Respiratory Rate 20.0 ± 3.4 22.5 ± 4.8 <0.001

Shock index 0.70 ± 0.25 0.76 ± 0.27 <0.001

Glasgow Coma Scale 13.8 ± 2.6 13.7 ± 2.7 0.042

Vital Sign at Admission, Mean±SD

Temperature 36.4 ± 0.66 36.5 ± 0.74 <0.001

Heart Rate 82.9 ± 16.8 93.0 ± 20.5 <0.001

Systolic Blood Pressure 134.0 ± 24.0 130.2 ± 24.2 <0.001

Diastolic Blood Pressure 74.5 ± 14.1 72.1 ± 15.6 <0.001

Respiratory Rate 18.4 ± 2.6 20.8 ± 4.8 <0.001

Shock Index 0.64 ± 0.19 0.74 ± 0.23 <0.001

Glasgow Coma Scale 13.9 ± 2.3 13.8 ± 2.4 0.364

Laboratory test

WBC 10.4 ± 8.5 12.1 ± 12.0 <0.001

Segment, % 75.4 ± 12.9 75.8 ± 12.8 <0.001

Band, % 0.42 ± 1.86 0.87 ±2.88 <0.001

Hemoglobin 11.3 ± 2.3 11.1 ± 2.4 <0.001

Platelet 212.2 ± 99.7 210.3 ± 98.6 0.289

Sugar 164.8 ± 84.5 176.4 ± 92.7 <0.001

Creatinine 1.81 ± 1.88 1.96 ± 1.94 <0.001

AST 32.0 ± 125.9 39.7 ± 201.6 0.029

ALT 33.7 ± 97.8 35.6 ± 72.3 0.259

Total bilirubin 1.1 ± 1.65 1.0 ± 1.42 0.037

Sodium 135.2 ± 5.7 135.2 ± 7.0 0.127

Potassium 4.0 ± 0.62 4.1 ± 0.71 <0.001

CRP 61.6 ± 64.8 79.0 ± 79.6 <0.001

(Continued)
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Furthermore, the particular treatments that were administered during ED management, such as oxygen support 
(52,107 (42.0%) vs 2262 (67.8%), p<0.001), fluid challenge (16,014 (12.9%) vs 718 (21.5%), p<0.001), and inotropic 
agent use (1905 (1.5) vs 176 (5.3), p<0.001), were all related to unfavorable results since they reflect the clinical severity. 
Additional findings collected during the study are shown in Table 2.

Model Performance
Initially, the predictive capability of the model was evaluated by assessing its AUC in the validation and test sets, and 
comparing it to that of the commonly used statistical model, the SOFA score (as depicted in Figure 2). The AUCs for 
predicting serious adverse outcomes in the validation and test sets were 0.86 and 0.84, respectively, although the 
performance marginally declined in the test set. In contrast, the SOFA score exhibited inferior predictive performance, 
with an AUC of 0.66 in the test set when compared to the DL model.

During the validation phase, the DL model exhibited sensitivity and specificity values of 0.81 each, with its PPV 
recorded at 0.25. Moving on to the test phase, the model maintained a sensitivity of 0.79 and specificity of 0.80, while 
experiencing a slight decrease in PPV to 0.22.

Model Interpretation by SHAP Value
To interpret the model, the SHAP value was employed to extract weights from the last layer of the neural network and 
determine the significance of the features in making predictions. The list of the 10 most important features, ranked in 
descending order, were: GCS_e, SI_e, sodium (Na), segment, age, DM, DBP_e, Hb, Albumin, RR_a, and potassium (K) 
(Figure 3). Apart from determining the ranking of feature importance, the correlation between each feature and its effect 

Table 2 (Continued). 

Without 
Adverse Event  
N= 123,931

With Adverse 
Event  
N= 3337

p-value

Albumin 4.2 ± 0.42 4.1 ± 0.48 <0.001

Troponin 0.08 ± 1.27 0.26 ± 3.02 0.001

Blood pH 7.4 ± 0.03 7.4 ± 0.05 <0.001

Underlying Medical History

Hypertension 68,144 (55.0) 1796 (53.8) 0.182

Diabetes Mellitus 47,362 (38.2) 1261 (37.8) 0.616

Liver Cirrhosis 11,361 (9.2) 213 (6.4) <0.001

Old Stroke 26,772 (21.6) 674 (20.2) 0.052

Heart Failure 20,030 (16.2) 911 (27.3) <0.001

End stage renal disease 35,420 (28.6) 989 (29.6) 0.182

Malignancy 34,466 (27.8) 847 (25.4) 0.002

ED management

Low Flow Oxygen Support 52,107 (42.0) 2262 (67.8) <0.001

High Flow Oxygen Support 3574 (2.9) 592 (17.7) <0.001

Fluid Challenge 16,014 (12.9) 718 (21.5) <0.001

Inotropics 1905 (1.5) 176 (5.3) <0.001
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on the model output was also interpreted. Each dot in Figure 3 represents a data point from the test set, where the color of 
the dot corresponds to its value. The shades of red indicate higher values, while the shades of blue indicate lower values. 
The model predicted a higher likelihood of adverse events in cases with lower GCS_e scores, as well as higher SI_e, 
higher Na level, and so on.

Discussion
The current study introduces an interpretable neural network model specifically designed for predicting the occurrence of 
in-hospital adverse events within 72 hours of admission to the ward among geriatric patients. The DL model demon-
strates a high level of precision, achieving an AUC of 0.86 in the validation set and 0.82 in the test set. These impressive 
results highlight the model’s effectiveness in accurately forecasting adverse events during the crucial initial period of 
a geriatric patient’s hospitalization.

Many prior studies have utilized ML algorithms to predict adverse outcomes and in-hospital mortality. However, the 
majority of these studies have primarily concentrated on geriatric patients who were already admitted to the ICU. Using 
the extreme gradient boosting (XGBoost) model, Liu’s study demonstrated an AUC ranging from 0.83 to 0.85 for 
mortality prediction in older patients with multiple organ dysfunction syndrome who were admitted to ICU.23 Ke et al 
discovered that the XGBoost framework provides good in-hospital mortality prediction for septic older patients with an 
AUROC of 0.871. The XGBoost model outperformed the other models, including light gradient boosting machine 
(LGBM), decision tree (DT), K Nearest Neighbor, logistic regression (LR), and random forest (RF) algorithms.24 

However, Ke’s study included only septic patients with a length of stay in the ICU longer than 24 hours, and the 

Figure 2 The Receiver Operating Characteristic (ROC) curve of model prediction.
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primary endpoint was in-hospital mortality. It is worth noting that ICU patients typically receive the highest level of care, 
and the potential for providing immediate clinical assistance in such cases may be limited. Very few studies focus on 
predicting the adverse event risk for the geriatric population in general wards. Silva et al demonstrated that the LR 
classifier achieved the best performance in predicting in-hospital mortality risk, with an AUC metric of 0.81, specifically 
for older individuals with community-acquired pneumonia.25 Our research diverges from previous studies as we 
specifically target the prediction of adverse effects within a 3-day timeframe for older patients in general hospital 
wards. This broader approach enables us to provide timely alerts to healthcare professionals and extend the applicability 
of our predictions to a wider range of hospitalized older individuals. Our research allows clinical physicians to recognize 
deteriorating patients earlier, necessitating their transfer to the intensive care unit for proactive care. It also provides 
clinical healthcare providers with more time to explain subsequent changes in the patient’s condition to the family and 
discuss treatment directions.

We have identified several clinical indicators that are associated with an elevated risk of adverse events among 
geriatric patients within the first 72 hours of hospitalization. The top two key features that held the utmost importance 
were GCS_e and SI_e. Research conducted previously has indicated that the presence of metabolic encephalopathy in 
critically ill individuals holds significant prognostic implications. In the influential study conducted by Sprung et al, it 
was found that septic patients with impaired mental status exhibited a mortality rate of 49%, whereas those without 
neurological symptoms had a rate of 26%.26 Eidelman et al concluded that the severity of neurological symptoms 

Figure 3 Global Explanation of feature importance by SHapley Additive exPlanations (SHAP) value. Sum_gcs_e: The sum of the Glasgow Coma Scale scores when the 
patient left the emergency department to ward admission. Shock_index_e: Shock index (dividing the heart rate by the systolic blood pressure) when the patient left the 
emergency department to ward admission. 
Abbreviations: Na, sodium level; DM, diabetes mellitus; DBP_e, Diastolic blood pressure when the patient left the emergency department to ward admission; Hb, 
Hemoglobin; WBC, White blood cells; RR_a, Respiratory rate during emergency department triage; K, potassium level.
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resulting from encephalopathy in ICU patients, as measured by the GCS, was closely associated with prognosis. The 
study revealed a mortality rate of up to 63% among patients who presented with GCS scores ranging from 3 to 8.27 The 
SI, as indicated by previous research, exhibits associations with various physiological parameters such as cardiac index, 
stroke volume, left ventricular stroke index, mean arterial pressure, and acute circulatory failure. Its usefulness as 
a valuable tool in the ED lies in its ability to promptly identify critical illness and aid in determining appropriate patient 
management strategies.28,29 The SI provides clinicians with a rapid and reliable means to assess hemodynamic status and 
detect potential circulatory compromise. Its application extends beyond diagnosis, as it also shows promise in predicting 
patient outcomes, guiding treatment decisions, and enhance patient outcomes through timely intervention and resource 
allocation. Our study findings align with previous research, further substantiating the significant impact of both GCS and 
SI as crucial factors influencing the occurrence of adverse events.

Traditional early warning scores are recognized as playing a vital role in monitoring inpatient deterioration and enabling 
healthcare professionals to intervene promptly to reduce inpatient mortality rates and complications. However, a study 
conducted by Bedoya evaluated the impact of automated alerts using the National Early Warning Score (NEWS) in general 
wards among 85,322 patients (42,402 pre-NEWS implementation and 42,920 post-NEWS implementation). The results 
indicated that the primary outcome, which was the rate of ICU transfer or mortality, did not change significantly after the 
implementation of the NEWS automated alert system.30 On the other hand, Escobar et al’s study demonstrated a significant 
reduction in inpatient mortality through the implementation of a deterioration alert system derived from statistical analysis.31 

However, this system required additional nursing staff to remotely monitor and manually review the records of identified high- 
risk patients. Such reliance on extra personnel may pose challenges, especially for hospitals lacking the resources or capacity 
to allocate dedicated staff for patient dashboard monitoring. In contrast, Bassin’s research indicated that implementing ML 
models in one hospital in Australia was associated with improved patient outcomes, including reduced all-cause mortality, 
ICU admissions, or medical emergency team activations.32 Similarly, our proposed DL model offers a solution by providing 
real-time predictions and a user-friendly interface, thereby eliminating the need for advanced programming skills among 
healthcare professionals. This system has the potential to significantly enhance the management and care of elderly patients 
residing in general wards, while also serving as a valuable gatekeeping system. It enables clinicians to identify patients who 
may require additional care and attention.

It is important to acknowledge the limitations of this study and suggest areas for future research. Firstly, this study 
exclusively conducted internal validation and did not perform external validation. Nevertheless, it’s worth noting that the 
training set and test set in this study comprise different sets of patients. Second, missing values and imbalanced positive- 
negative sets posed significant challenges during the development and validation of the predictive model due to the 
nature of real-world medical data. Although these issues were properly addressed during data pre-processing, further 
improvements in data quality could be achieved by exploring more advanced techniques for data cleaning. Additionally, 
the study’s retrospective design and limited sample population from Taiwan may limit the generalizability of its findings 
beyond this specific context. As the study focused only on a specific population with local practices and healthcare 
systems, the results may not be directly applicable to other ethnic groups or regions with different healthcare practices. 
Future research should prioritize conducting external validation to assess the generalizability and robustness of the 
predictive model across diverse patient populations and healthcare settings. Studies involving larger and more diverse 
populations, encompassing various ethnic groups and healthcare systems, would contribute to a deeper understanding of 
the predictive capabilities of the model across different contexts. Additionally, conducting prospective studies would 
allow for the validation of the predictive model in real-time clinical settings, offering valuable insights into its practical 
utility and effectiveness in guiding clinical decision-making.

Conclusion
Our proposed deep learning model can effectively predict in-hospital serious adverse events among geriatric patients with 
satisfactory reliability. The model has the potential to serve as a valuable gatekeeping system, enabling clinicians to 
identify patients who may require additional care and attention before being admitted to a general ward. Additionally, the 
use of SHAP value explanations can aid clinicians in understanding the model’s predictions and increase their confidence 
in the system.
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