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Introduction: Risk prediction models are commonly performed with logistic regression analysis but are limited by skewed datasets. 
We utilised neural networks (NNs) model to identify independent predictors of poor outcomes in cerebral venous thrombosis (CVT) 
due to the limitations of logistic regression (LR) analysis with complex datasets.
Methods: We evaluated 1309 adult CVT patients from the prospective BEAST (Biorepository to Establish the Aetiology of 
Sinovenous Thrombosis) study. The area under the receiver operating characteristic (AUROC) curve confirmed the goodness-of-fit 
of prediction models. The normalised importance (NI) of the NNs determines the significance of independent predictors.
Results: The stepwise logistic regression model found thrombolysis (OR 32.1; 95% CI 3.6–287.0; P=0.002), craniotomy (OR 6.9; 
95% CI 1.3–36.8; P=0.02), and cerebral haemorrhage (OR 4.5; 95% CI 1.3–15.4; P=0.01) as predictors of poor clinical outcome with 
the AUROC of 0.71. Conversely, the NNs model identified major independent predictors of long-term poor clinical outcomes as 
cerebral haemorrhage (NI 100%) and thrombolysis (NI 98%), as well as trivial predictors of age (NI 2.8%) and altered mental status 
(NI 3.5%). The accuracy of the NNs model was 95.1% and 94.1% for self-learned randomly selected training and testing samples with 
an AUROC of 0.82. Positive and negative predictive values for poor outcomes were 13.2% and 97.1% for the LR model, compared 
with the NNs model of 18.8% and 98.7%, respectively.
Conclusion: Cerebral haemorrhage and thrombolysis was a strong independent predictor, whereas age merely impacts the long-term 
poor clinical outcome in adult CVT. Integrating unorthodox neural networks risk prediction model can improve decision-making as it 
outperforms conventional logistic regression with complex datasets.
Keywords: cerebral venous thrombosis, neural network, stroke, predictors, outcome

Introduction
Cerebral venous thrombosis (CVT) is a relatively rare (0.5–1%) form of stroke,1–3 which can cause a severe and 
permanent disability in 6–10% of cases with ~15% of patients requiring bed rest or hospital admission due to the 
recurrence of severe headaches.4–10 Clinicians especially radiologists should be able to recognise CVT promptly, which 
would facilitate the administration of anticoagulation therapy to prevent the progression of the disease and notably 
decrease the likelihood of acute complications and long-term sequelae.8 Although several small studies have documented 
the potential predictors of poor clinical outcomes,11–15 in a real-world scenario, the rarity of CVT disease poses several 
challenges, such as dealing with a heterogeneous group of patients with phenotypic diversity, lack of (or missing) patient 
data often causing skewed distributions and nonlinear relationships with incomplete datasets.16 Thus, analysis of such 
rare disease datasets can be limited by poor quality and heterogenicity, whereas advanced statistical approaches like 
multilayer mathematical algorithm-based neural networks potentially offer greater efficiency over regression models 
where the dependent variable requires a linear relationship with the regression parameters.17
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The neural networks perceptron is an advanced mathematical algorithm that mimics how biological neurons com-
municate within a network.18,19 Unlike the logistic regression model, a multilayer neural networks (NNs) model has self- 
learning capabilities, nonlinear mapping and a high degree of fault tolerance, which can determine the association 
between a series of independent variables and the output (dependent) variables by training and testing the neural 
network.18–20 The NNs model outcome is decisive in the presence of skewed and incomplete datasets, nonlinear 
relationships, and lack of significant β coefficient value in the logistic regression analysis, as exemplified in a study 
used to identify predictors of poor prognosis following acute ischemic stroke.21 Furthermore, this multilayer NNs 
perceptron has been shown to achieve a better predictive performance compared to logistic regression to predict the 
risk of congenital heart disease, cancers, and the mortality risk of liver failure.22–27

To identify predictors of long-term poor clinical outcomes following CVT, we used the neural networks model on (the 
necessarily skewed) data from the BEAST (Biorepository to Establish the Aetiology of Sinovenous Thrombosis) study, 
an international multicentre prospective observational study on cerebral venous thrombosis.28 We go on to compare and 
validate the results from the NNs model with a stepwise multivariate logistic regression analysis to predict long-term 
poor clinical outcomes following CVT.

Patients and Methods
The BEAST Study
The BEAST is an international prospective observational study whose protocol has been published in detail elsewhere.28 

Briefly, the study recruited adult CVT patients aged ≥18 years with detailed phenotypic data from eleven tertiary care 
centres located in Belgium, Finland, France, Greece, Italy, Mexico, Netherlands, Portugal, Sweden, United Kingdom, and 
the USA (white non-Hispanic) between 2000 and 2018. Diagnosis of CVT was confirmed by angiography, either 
conventional, computed tomography venography (CTV), magnetic resonance (MR) imaging or dedicated venography, 
as previously described.28 Ethical clearance was granted from all participating institutions from local institutional review 
boards, and the study complies with the Declaration of Helsinki. Informed written consent was obtained for all patients, 
and data was encrypted. For the purpose of this study, 6-month follow-up was defined as long-term, and this was the 
endpoint evaluated for statistical analysis.

Study Variables
We analysed 21 potential independent variables based on the age of CVT onset, gender, the occurrence of clinical 
symptoms, brain imaging characteristics including CVT location, and acute-phase treatment modalities (heparin, 
endovascular thrombolysis and decompressive craniotomy).1–5,11–13,29–31 Further, we purposefully inputted severe 
cases that required intervention, e.g. thrombolysis and craniotomy, into the feedforward multilayer neural networks 
perceptron, predicting it would successfully identify these high-risk groups. The modified Rankin scale (mRS) was 
assessed at a 6-month follow-up, and patients were classified as independent survivors (mRS score 0–2) or dependent/ 
dead (mRS score 3–6) patients.9 The primary study outcome was to identify the independent predictors of dependent/ 
dead (mRS score 3–6) CVT patients by comparing the results using neural networks and the LR model.

Statistical Analysis
We utilised SPSS v25.0 statistical software for windows to conduct conventional logistic regression (LR) and an 
unorthodox multilayer neural networks (NNs) model to identify predictors of poor clinical outcomes in CVT. Initially, 
we used a univariate analysis based on gender distribution, utilising appropriate statistical tests and observing a 95% 
confidence interval (CI) and odds ratio (OR) to define the risk patterns in the dataset. We evaluated the predictive model’s 
performance using multivariate stepwise logistic regression (LR) analysis cross-validated by multilayer neural networks 
(NNs) model in the presence of skewed, incomplete, and non-linear relationships of 21 independent variable datasets. 
The goodness-of-fit of the NNs and LR models was evaluated with the area under the receiver operating characteristic 
(AUROC) curve. Data quality assessment was performed with Little’s Missing Completely At Random (MCAR) test. 
Multicollinearity, the strength of the correlation among independent variables, was also tested and expressed by the 
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collinearity tolerance and the variance inflation factor (VIF) value, where VIF >10 or tolerance <0.1 indicated the 
presence of significant multicollinearity that required to be optimised; otherwise, potentially causing concerns for the 
regression model outcome.17 The statistically significant threshold was set at a P-value <0.05.

Logistic Regression Model
Logistic regression is a parametric algorithm for binary and linear classification problems that accomplish outcomes by 
predicting the probability of a set of independent variables.17 Logistic regression utilised the sigmoid logistic function for 
mapping the predictions and probabilities to a range between 0 and 1.17,18 Although study variables can be selected 
through different techniques and methods, yielding various regression models, they generally work similarly. The 
stepwise logistic regression model is a combination of forward or backwards methods and is used to determine which 
variables to add to or drop from the model sequentially based on statistical criteria. The logistic regression model has 
a linear decision surface, and the regression coefficient, usually the odds ratio, describes the impacts of independent 
predictors on the outcome.17–19

Multilayer Neural Networks Model
Feedforward neural networks, a non-parametric method and multilayer perceptron,18 use mathematical algorithms to 
simulate neuronal architectural networks structurally and functionally.20,21 A perceptron might be a single or multilayer 
computational algorithm model composed of multiple biological neurons capable of training neurons and supervised 
learning of binary classifiers to draw a decision or output. We utilised a three-layer (input, hidden, and output) 
feedforward NNs perceptron for the measurements of independent predictors, as NNs generate an outcome by self- 
learning from a potential correlation between dependent and independent variables through the training and testing 
process.18–21 The first (input) layer comprises 21 neurons into which all independent variables were entered into the NNs 
model following a normalisation process through a standard rescaling of the covariates. The second (hidden) layer 
comprises 8 neurons where the sigmoid activation function is utilised for the computational and differential weighing of 
the independent variables. Finally, the third (output) layer is two neurons where the outcome is generated via the softmax 
function based on the random selection of a valid sample for all variables by the self-learned neural networks perceptron 
using SPSS statistical software functions.18,20 Although we tested both sigmoid and hyperbolic tangent activation 
functions, the sigmoid activation function was utilised for the hidden layer to predict the probability which exists 
between the range of “0 and 1”, which is similar to the LR model. Further, utilisation of the softmax function for the 
output layer improves the multiclass classification. The NNs perceptron training was the batch type, and the optimisation 
algorithm was scaled conjugate gradient. The neural networks topology for independent variables with multi-layered 
perceptron is shown in Figure 1.

The neural networks model can justify the study outcome by linking predicted with factual values, minimising the 
error in predicting default, and does not restrict the input (specific distribution) variables.18–24 This model was validated 
by the ROC (receiver operating characteristic) curve, which observed the goodness of fit for predicting the model for all 
possible cut-offs by a diagram of sensitivity versus specificity. The AUC (area under the curve) is based on the non- 
parametric Mann–Whitney U-test, used as the dimensional index, which measures the accuracy of the predictor models 
in predicting death or dependency. The normalised importance (NI) value20,21,24–27 of independent variables is expressed 
as a percentage in the NNs model outcome graph; a higher NI value represents better predictive power and vice versa to 
determine the significance of independent predictors for death or dependency.

Results
Characteristics of the Study Population
The BEAST study included 1309 subjects (75.5% female). The overall median (IQR-Interquartile Range) age of CVT 
onset was 37 (28–47) and 46 (35–58) years for women and men, respectively (P<0.001). Table 1 describes the baseline 
characteristics study population, including presenting symptoms on admission, radiological findings, treatment options 
and mRS scale 3–6 at 6 months post-CVT onset. The VIF value of the multicollinearity test demonstrated no significant 
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Figure 1 The neural networks topology with multi-layered perceptron. The figure illustrates twenty-one independent variables entering into the NNs model through the 
first layer neurons followed by computational weighing in the second (hidden) layer by sigmoid activation function. The output layer comprises two neurons that generate 
the model outcome using the softmax function. The grey and blue lines represent the synaptic weight, either >0 or <0, respectively. In addition to AUROC curve, this NNs 
model accuracy rate was 95.1% and 94.1% in training and testing phase. 
Abbreviations: SSS, Superior sagittal sinus; CVS, Cortical venous sinus; TVS, Transverse venous sinus; SS, Straight sinus; DVS, Deep venous sinus; CS, Cavernous sinus; JVS, 
Jugular veins; H.Paresis, Hemiparesis; AMS, Altered mental status; C. Hge, Cerebral haemorrhage; C. Infarct, Cerebral Infarct; ≥2 VS, Venous sinus.
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correlation; the majority VIF was ≤2, except for multiple (≥2) sinus thrombosis and multiple (≥2) presenting symptoms 
where maximum VIF and collinearity tolerance were 3.2, 0.31, and 4.3, 0.23, respectively, among independent variables. 
Furthermore, the Little’s Missing Completely At Random (MCAR) test also observed a P-value of 0.75, Chi-squared 
=0.09, indicating our data are randomly missing.

Multivariate Logistic Regression Model
The performance of the predicting model was initially tested with the stepwise logistic regression (LR) model for women 
and men separately (Table S1) as well as in combination (Table 2), which found statistically ambiguous Results with 
significantly high OR and wide confidence interval. Furthermore, the multivariable forward stepwise logistic regression 
model (Table 2) found that the following factors were potential independent predictors of poor clinical outcome at 
6-month follow-up: endovascular thrombolysis (OR 32.1; 95% CI 3.6–287.0; P=0.002), craniotomy (OR 6.9; 95% CI 
1.3–36.8; P=0.02), and cerebral haemorrhage (OR 4.5; 95% CI 1.3–15.4; P=0.01). The goodness-of-fit for the logistic 
regression model showed an AUROC curve of 0.71; 95% CI 0.56–0.85 (shown in Figure 2a). The sensitivity and 

Table 1 Characteristics of Study Population

Variables Sample (n/N) (%) Women Men P-value OR (95% CI)

Age (Median; IQR) 1309 (100%) 37 (28–47) 46 (35–58) <0.001 -

Aphasia 116/619 (18.7%) 90 (14.5%) 26 (4.2%) 0.70 0.91 (0.56–1.47)

Hemiparesis 241/682 (35.3%) 188 (27.6%) 53 (7.8%) 0.59 0.90 (0.62–1.31)

Seizure 282/687 (41.0%) 228 (33.2%) 54 (7.8%) 0.07 0.71 (0.49–1.03)

Altered mental status 197/606 (32.5%) 149 (24.6%) 48 (7.9%) 0.80 1.10 (0.70–1.56)

≥2 presenting symptoms 127/535 (23.7%) 101 (18.9%) 26 (4.8%) 0.29 0.7 (0.5–1.3)

Coma (GCS ≤8) 53/596 (8.9%) 34 (5.7%) 19 (3.2%) 0.04 1.84 (1.01–3.35)

Cerebral infarction 208/591 (35.2%) 165 (27.9%) 43 (7.3%) 0.28 0.8 (0.5–1.2)

Cerebral haemorrhage 285/863 (33.0%) 225 (26.1%) 60 (6.9%) 0.23 0.8 (0.6–1.1)

Superior sagittal sinus 519/969 (53.6%) 391 (40.4%) 128 (13.2%) 0.57 1.1 (0.8–1.5)

Cortical veins 110/577 (19.1%) 82 (14.2%) 28 (4.9%) 0.63 1.1 (0.7–1.8)

Transverse sinus 399/870 (45.9%) 297 (34.1%) 102 (11.7%) 0.44 1.1 (0.8–1.5)

Straight Sinus 139/880 (15.8%) 109 (12.4%) 30 (3.4%) 0.45 0.8 (0.5–1.3)

Cavernous sinus 22/541 (4.1%) 18 (3.3%) 4 (0.7%) 0.61 0.7 (0.2–2.1)

Deep veins 64/558 (11.5%) 55 (9.9%) 9 (1.6%) 0.055 0.5 (0.2–1.0)

Jugular veins 228/635 (35.9%) 170 (26.8%) 58 (9.1%) 0.46 1.2 (0.8–1.7)

≥2 venous sinus 291/529 (55%) 217 (41.0%) 74 (14.0%) 0.46 1.2 (0.8–1.7)

Heparin 868/929 (93.4%) 677 (72.9%) 191 (20.6%) 0.09 0.6 (0.35–1.1)

Thrombolysis 36/561 (6.4%) 29 (5.2%) 7 (1.2%) 0.43 0.7 (0.3–1.7)

Surgical craniotomy 23/540 (4.3%) 17 (3.2%) 6 (1.1%) 0.8 1.1 (0.4–2.9)

Death or Dependency at 6 months 22/421 (5.2%) 15 (3.6%) 7 (1.7%) 0.12 2.1 (0.8–5.2)

Notes: n=positive case, N=Total available sample; P value reached from Chi Square test, Mann–Whitney U-test utilized for Median (IQR) 
value, and Fisher exact test when sample size <5.
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specificity of the LR model were 58.82% and 78.15%, respectively, with a positive predictive value of 13.2% (95% CI 
8.8–19.2%) and a negative predictive value of 97.1% (95% CI 95.0–98.4%) (Table 3).

Neural Networks Model
As the dataset was skewed and had a non-linear relationship, a non-parametric analysis using the multilayer NNs model 
was utilised to cross-validate the robustness of the results of the LR model. The neural networks model again evaluated 

Figure 2 ROC curve measuring accuracy of the predicting model for death or dependency at 6-month; AUC for (a) logistics regression model 0.71 (AUC for women 0.76; 
95% CI 0.58–0.93, and men 0.71; 95% CI 0.48–0.93), (b) NNs model 0.82 (red line).

Table 2 Stepwise Multivariate Logistics Regression Analysis Observed Independent Predictors of Poor Clinical Outcome 
“Death or Dependency” in CVT

Variables in the Equation

B S.E. Wald df Sig. Exp(B) 95% C.I. for EXP(B)

Lower Upper

Step 1a Craniotomy 2.59 0.78 10.85 1 0.001 13.40 2.86 62.74

Constant −3.10 0.29 110.81 1 0.000 0.04 – –

Step 2b Thrombolysis 3.28 1.05 9.75 1 0.002 26.60 3.39 208.52

Craniotomy 2.77 0.79 12.04 1 0.001 15.96 3.33 76.28

Constant −3.28 0.32 103.74 1 0.000 0.03 – –

Step 3c Thrombolysis 3.47 1.11 9.66 1 0.002 32.17 3.60 287.07

Craniotomy 1.93 0.85 5.16 1 0.023 6.93 1.30 36.88

Cerebral haemorrhage 1.52 0.62 6.04 1 0.014 4.59 1.36 15.47

Constant −3.82 0.45 69.83 1 0.000 0.02 – –

Notes: Variable(s) entered on step 1. aCraniotomy; on step 2. bThrombolysis; on step 3.cCerebral haemorrhage.
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all 21 independent study variables and the final output layer, where the model outcome is generated via the softmax 
function based on the random selection of a valid sample of 288 populations by the self-learned NNs model. Of these 
subjects, 70.5% and 29.5% of cases were utilised as training and testing samples to predict death or dependency, with an 
excellent accuracy level of 95.1% and 94.1%, respectively. Moreover, the ROC curve for the NNs model (shown in 
Figure 2b) showed the sensitivity and specificity for good and poor clinical outcomes constructed on the training and 
testing illustrations. The AUROC was 0.82 for predicting death or dependency, indicating the models’ improved 
accuracy through a learning process.

The NI of independent variables by the NNs model to predict death or dependency at a 6-month follow-up shown in 
Figure 3. The NNs analysis determined that the most powerful predictors of death or dependence were cerebral 
haemorrhage (NI 100%), endovascular thrombolysis (NI 98%) and craniotomy (NI 73.8%). Conversely, age (NI 2.8%) 
altered mental status (NI 3.5%), heparin (NI 3.6%), and seizure (NI 5.0%) barely influenced the model. Furthermore, the 
sensitivity and specificity of the NNs model were 80.0% and 80.95%, respectively, with a positive predictive value of 
18.8% (95% CI 13.9–24.7%) and a negative predictive value of 98.7% (95% CI 96.3–99.5%) (Table 3).

Discussion
Using data from a large prospective adult CVT cohort, we show that the feedforward multilayer NNs model effectively 
identifies either strong or trivial independent predictors of death or dependency, whereas stepwise LR analysis only 
demonstrated potential predictors. Our NNs model has an accuracy of 95.1% and 94.1% in the training and testing phase, 
respectively, to predict death or dependence with a better AUROC curve of 0.82, compared to the LR model AUROC 
curve of 0.71. Additionally, positive and negative predictive values for the NNs and LR model were 18.8% vs 13.2%, and 
98.7% vs 97.1% predicting poor long-term clinical outcomes in CVT. In the presence of a wide confidence interval in the 
stepwise logistic regression model, independent predictors with high ORs and P<0.05 become ambiguous; hence we 
utilised feedforward neural networks, a non-parametric analysis to cross-validate the robustness of LR model findings.

Implementation and Interpretation
The ultimate goal of NN is to integrate multilayer neural networks perceptron into clinical practice to complement decision- 
making, particularly in complex datasets with missing data and non-linear relationships such as the BEAST data.16,17 

Table 3 Comparison of the Goodness-of-Fit and Accuracy of the Neural Networks and Logistic Regression Risk Prediction Model

Performance Indices Neural Networks Perceptron Logistic Regression Model

Algorithms Non-parametric method Parametric method

Datasets Skewed, non-linear and complex datasets. Simple and linear datasets.

Activation function Sigmoid logistic function Sigmoid logistic function

Output (Independent predictors)

Strong Cerebral haemorrhage, thrombolysis, and craniotomy Thrombolysis, craniotomy, cerebral haemorrhage

Trivial Age, altered mental status -

Self-learned model accuracy 95.1% in training and 94.1% in testing sample -

Hosmer-Lemeshow statistics - 0.71

Area under the ROC curve 0.82 0.71

Sensitivity 80.0% 58.8%

Specificity 81.0% 78.2%

Positive predictive value (PPV) 18.8%; 95% CI 13.9– 24.7% 13.2%; 95% CI 8.8–19.2%

Negative predictive value (NPV) 98.7%; 95% CI 96.3–99.5% 97.1%; 95% CI 95.0%-98.4%
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A logistic regression model is comparatively easier to implement, interpret and require less computational work than neural 
networks. However, logistic regression models rely on assuming a linear relationship and the absence of extreme outliers in 
the dataset to log odds and express probabilities.17,18 Unlike neural networks, logistic regression models generally include 
only statistically significant variables with a P<0.05 predicting an outcome. Further, neural networks outperform logistic 
regression in complex relationships due to data rarely being linearly separable in real-world situations.18–20

Generalisability and Capability
Unlike the LR model, a multilayer neural networks perceptron has a high degree of fault tolerance and better potential to 
determine the arbitrary association between independent and dependent variables, a result that supports our study 
findings.18 Further, multilayer neural networks are a better fit over LR analysis (parametric test) for a skewed complex 
and non-linear dataset due to their non-parametric nature, which can identify all plausible interactions through the 
multiple training and testing algorithms between independent and dependent variables.21–27

Accuracy, Goodness-of-Fit, and Cross-Validation of the Models
Like current study results, an abnormally wide 95% CI and a more significant beta coefficient represent poor 
fitness of the regression model.17 Conversely, the NNs model uses the AUROC curve with its training and testing 
sample accuracy report to confirm the goodness-of-fit based on a self-recruited random sample.18–20 A better 
goodness-of-fit and higher accuracy of neural networks model were observed in several clinical studies with 
AUROC value; AUC 0.87,22 AUC 0.77,24 AUC 0.88,32 and AUC 0.98.33 Furthermore, previous studies also 
support our findings with better predictive performances of NNs than the LR model with a higher AUROC curve 
value of 0.88 vs 0.81,21 0.81 vs 0.74,25 and 0.84 vs 0.76,27 respectively. Nonetheless, a logistic regression model 

Figure 3 Normalised Importance (NI) of independent variables by the multilayer neural networks model. A greater NI percentage represents more powerful independent 
predictors and vice-versa for predicting death or dependency in CVT. Thus, cerebral haemorrhage (NI 100%) contributes decisively to the networks while age (NI 2.8%) barely.
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is less prone to overfitting than NNs because they involve simpler relationships between the outcome and predictor 
variables,19–23 which is why NNs outperformed the LR model on the complex BEAST datasets.

Neural Networks and the BEAST Findings
Our NNs model finds that cerebral haemorrhage, endovascular thrombolysis, decompressive craniotomy, aphasia, and coma are 
independent predictors of death or dependency, confirmed by previous small studies and case series.1,5,11,13,29–31 Furthermore, the 
recent randomised controlled TO-ACT trial34 and a meta-analysis35 observed that endovascular thrombectomy with or without 
thrombolysis is associated with poor functional outcomes and a higher mortality rate in CVT patients, which also supports the 
findings of our NNs model outcome.

Strength and Limitations
This is a large multinational prospective observational study on adult CVT patients, and the major strength is the robust 
collaboration and participation of multiple regional hospitals from different countries and reducing a potential source of 
recruitment bias. As data from the BEAST exclude those <18 years of age, our results do not apply to childhood CVT. 
The incompleteness of follow-up and the missing dataset is a possible source of bias; nonetheless, a quality control 
analysis observed no significant differences between missing and non-missing cases for each study variable. Although 
severe cases treated with thrombolysis and craniotomy might be a source of bias, the NNs used the mRS score assessed 
by stroke and neurology experts during a 6-month follow-up after CVT onset, which mitigates the risk of outcome bias. 
Despite the ability to determine statistical inferences of independent predictors with odds ratios, probability values, and 
confounding, constructing logistic regression models can be more challenging than NNs as it requires a strong under-
standing of statistical concepts. Although multilayer neural networks perceptron is a potential tool for analysing a non- 
linear complex relationship, the model is prone to overfit because of its speculative “Black Box” nature on the depth and 
complexity of the network and greater computational burden. Finally, the low positive and high negative predictive 
values might be a concern of outcome bias; however, considering the rare event of ‘dependent/death’ from an already 
rare disease of CVT with an excellent goodness-of-fit of the prediction models mitigates this potential bias.

Conclusion
Cerebral haemorrhage and thrombolysis are identified as potential independent predictors of long-term poor clinical 
outcomes in adult CVT. This unorthodox multilayer neural networks outperforms the conventional logistic regression 
model in risk prediction for complex datasets. Determining the best prediction model can be challenging as each model 
possesses unique advantages, and selection should consider these, along with datasets and study objectives.
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