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Abstract: Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human 
health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, 
immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in 
nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. 
LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to 
cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and 
limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the 
applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are 
summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of 
LNPs in the treatment of CRC. 
Keywords: lipid nanoparticles, colorectal cancer, tumor targeting, drug delivery, nanotechnology

Introduction
Globally, colorectal cancer (CRC) is the third most frequently diagnosed malignancy and the second leading cause of 
cancer death.1–3 Most CRC cases arise sporadically, while approximately 35% of cases are attributed to heritable factors.4 

It is believed that the vast majority of CRCs follow the adenoma-carcinoma sequence and serrated polyp-carcinoma 
sequence, largely due to genetic aberrations at the cellular level.5–7 Currently, the principal therapeutic approaches for 
CRC include surgical intervention, radiotherapy, chemotherapy, targeted therapy, and immunotherapy.8–10 However, the 
chemotherapeutic and targeted agents currently in use are associated with substantial treatment-related toxicities.11 These 
adverse effects significantly impair patients’ quality of life, constrain dosage limits, and may even cause the termination 
of treatment.12–14 Consequently, there is an urgent need to devise treatment strategies that minimize the non-specific 
distribution of drugs and mitigate toxic side effects, thereby improving both the quality of life and prognosis of CRC 
patients.

In response to these challenges, colon-specific drug delivery systems (CDDS), particularly those employing nanotech-
nology for colon targeting, have been tailored to meet the biological characteristics and clinical demands of CRC.15–17 

Among the various existing drug carriers, nanoparticles (NPs) can enhance drug stability and solubility, facilitate 
transmembrane transport, and extend circulation time, thereby improving both safety and efficacy.18 Drugs absorbed in 
the colon are taken up by the intestinal mucosa and subsequently enter systemic circulation via the venous or lymphatic 
systems.19 Based on the pathophysiological characteristics of the microenvironment surrounding the disease site, scientists 
have developed several advanced CDDSs to optimize drug delivery to the colon. These systems employ various mechan-
isms to control and target the release of drugs, including pH-sensitive systems (eg, pH-responsive polycarboxybetaine- 
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coated LNPs), enzyme-triggered systems (eg, the enzyme-responsive drug delivery system “EUG/CAS–MSNs–COOH”), 
and magnetically driven systems (eg, magnetically driven spmNP and EMHV DDSs).20–22 Selective surface receptor- 
mediated drug delivery systems (eg, folate receptor and chemokine-targeted systems) are also employed to specifically 
deliver drugs to cancerous cells, bypass toxic side effects, and enhance the therapeutic index.23

With the advent of nanotechnology, therapeutic lipid nanoparticles (LNPs) have been widely applied in drug 
delivery systems (DDSs) due to their efficiency and versatility.18 LNPs are lipid-based nanocarriers prepared through 
various methods such as lipid vesicle extrusion, rehydration, nanoprecipitation, and microfluidic mixing.24,25 One of 
their key components is ionizable lipids, whose structure and pKa are closely related to cytoplasmic release.26 

However, the structure and delivery characteristics of LNPs depend on the combination of different lipids. The roles 
of other lipid components are also indispensable, as they influence the morphology, stability, and distribution of LNPs. 
For example, PEG lipids on the surface of the particles can prevent aggregation and extend circulation time in vivo.27 

LNPs exhibit lower immunogenicity and cytotoxicity compared to polymeric and inorganic nanoparticles and can be 
engineered for targeted modifications.28,29 Owing to these properties, they can effectively cross physiological barriers 
and deliver drugs precisely to lesion sites. In fact, in intestinal disease, LNP-based DDSs have been extensively 
studied for their ability to target lesion sites.30,31 They minimize drug exposure to normal tissues while maintaining 
therapeutic concentrations at the lesion site, effectively inhibiting tumor growth.32 Additionally, the composition, size, 
and surface charge of these NPs are crucial factors that influence their accumulation in and clearance from the 
intestinal mucosa.33

Since several well-summarized reviews on nanoparticle-based therapy for cancer already exist, we specifically focus 
on the advancements of LNP-based anticancer therapy in CRC treatment. Firstly, we provide a brief overview of the 
formulation of LNPs to demonstrate how each component contributes to their overall functionality. Subsequently, we 
concentrate on the tumor-targeting strategies and colorectal-specific designs of LNPs, aimed at optimizing their effec-
tiveness in treating colorectal diseases. Lastly, we summarize recent advancements in employing LNPs for colorectal 
cancer therapy, particularly in nucleic acid drug treatments. We also address the current challenges in this field, offering 
insights into future design strategies and applications.

Lipid Nanoparticle Delivery Systems: An Overview and Composition 
Analysis
Liposomes discovered in the 1960s are considered the earliest version of LNPs.34 Since then, numerous liposome-based 
drugs have been extensively applied in medical practice.35 With the development of nanotechnology, the term “lipid 
nanoparticles” emerged in the early 1990s. To overcome the limitations of liposomes, solid lipid nanoparticles (SLNs) 
and nanostructured lipid carriers (NLCs) were developed.36,37 Both SLNs and NLCs, comprising lipids and stabilizers, 
offer enhanced physical stability.38 Extracellular vesicles are naturally occurring LNPs with a size range of 30–150 nm, 
which are produced by both tumor and non-tumor host cells. These vesicles, characterized by a phospholipid bilayer 
structure, play a pivotal role in intercellular communication.39 They can alter the biological state of recipient cells by 
transmitting proteins, nucleic acids, and other biomolecules, thereby affecting cancer recurrence, metastasis, and immune 
response.40,41 LNPs can be categorized into six types based on variations in structure and drug-loading mechanisms: 
liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), polymeric lipid hybrid nanoparticles 
(PLNs), lipid drug conjugates (LDCs), and exosomes (Figure 1). Each category represents a unique facet of this versatile 
drug delivery system, highlighting the evolution and diversification of LNP technology in biomedical research.42–45

LNPs are multi-component drug delivery systems generally comprising cationic lipids (CLs) or ionizable lipids (ILs), 
helper lipids, cholesterol, and polyethylene glycol (PEG) lipids (Figure 2).46

Cationic/Ionizable Lipids: Key Components Shaping LNP Structure and Function
Cationic/ionizable lipids are fundamental components of LNPs, facilitating their self-assembly through electrostatic 
interactions.47 Historically, cationic lipids were developed for LNP assembly to interact with negatively charged nucleic 
acids.48 However, their application has been limited due to significant toxicity and diminished in vivo efficacy.49 To 
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address these issues, ionizable lipids have been developed. These lipids remain neutral under physiological conditions, 
but acquire a net positive charge in acidic intracellular environments due to their tertiary amine components.50 These 
characteristics largely resolve toxicity and efficacy issues associated with cationic lipids.

Currently, widely used ionizable lipids are mainly divided into five categories: unsaturated, multi-tail, polymeric, 
biodegradable, and branched-tail lipids.51 These amphiphilic small molecules consist of three primary functional 
domains: hydrophilic head groups, linker groups, and hydrophobic tails.52 The size and charge density of the head 
group significantly influence processes such as nucleic acid encapsulation, LNP stability, biodegradation, cellular 
membrane interaction, and facilitation of endosomal escape.53 Linker groups, which bridge the head and tail groups, 
play a crucial role in modulating cytotoxicity, stability, biodegradability, and the transfection efficiency of LNPs.54 

Meanwhile, the hydrophobic tails primarily contribute to particle formation and potency, impacting aspects like ioniza-
tion (critical pKa) and lipophilicity (critical LogP).55 Collectively, these diverse functional elements of cationic and 
ionizable lipids are instrumental in defining the biological characteristics of LNPs.

Helper Lipids, Cholesterol, and Polyethylene Glycol Lipids
In addition to cationic/ionizable lipids, LNP formulations include helper lipids, cholesterol, and PEG lipids, each playing 
a vital role in preserving LNP properties and functionalities. Helper lipids are mostly phospholipids, accounting for 

Figure 1 Classification and Administration Routes of LNPs. Created with BioRender.com.
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approximately 10–20% of the total lipids in the formulations.25 Despite having received less research attention compared 
to other components, phospholipids significantly enhance LNP stability and facilitate encapsulation and delivery.56 

Commonly used phospholipids in clinical practice include 1,2-distearoyl-sn-glycerol-3-phosphate choline (DSPC), 
1,2-dioleoyl-sn-glycerol-3-phosphate ethanolamine (DOPE), and 1,2-dioleoyl-sn-glycerol-3-phosphate choline 
(DOPC).57 DSPC consists of a phosphatidylcholine head and two saturated 18-carbon tails. It undergoes a phase 
transition from an ordered gel phase to a disordered fluid crystalline phase when the temperature exceeds its phase- 
transition temperature.58,59 This shift aids in the formation of a tightly packed lipid bilayer structure. The choice of helper 
lipids can be adapted to meet different nucleic acid loading requirements. For example, DOPE, with its unsaturated tail 
and net neutral charge, forms a more fluid lipid layer, promoting the fusion of lipid membranes and endosomes, and 
ultimately improving RNA transfection efficiency.25,52,60 Consequently, DOPE is often used for mRNA delivery due to 
its higher RNA transfection efficiency compared to DSPC.61 DOPE also exhibits strong interaction with liver- 
synthesized apolipoprotein E (ApoE). Zhang et al reported that after intravenous administration, C12-200 LNPs contain-
ing DOPE primarily accumulated in the liver, whereas C12-200 LNPs containing DSPC accumulated in the spleen, 
highlighting the effect of auxiliary lipids on LNP organ distribution.57 Selecting phospholipids based on cell line type can 
enhance transfection efficiency, as demonstrated by Gretskaya et al, who found that liposomal complexes with DOPC had 
significantly higher transfection efficiency than those with DOPE in SW620 cells.62 These studies indicate the crucial 
role of phospholipids in the delivery efficiency of LNPs, emphasizing the importance of selecting the appropriate type of 
LNPs.

Cholesterol, an amphiphilic natural cell membrane constituent, serves as a helper lipid in LNPs.56 It is involved in the 
degradation of LNPs within the systemic circulation and assists in their subcellular transport.63,64 Recently, researchers 
have begun to focus on optimizing the formulation of LNPs. For example, Patel et al have investigated substituting 
cholesterol with hydroxycholesterol to enhance mRNA delivery to T cells, thereby promoting the endosomal escape of 
LNPs and advancing their applications in immunotherapy.65 The molecular structure of cholesterol derivatives augments 
cellular uptake and extends LNP half-life in circulation.63,66

Polyethylene glycol (PEG) lipids provide a polymeric shell for LNPs, with lipid domains deeply embedded within the 
particles and PEG domains extending to the surface of the particles.27,67 PEG lipids create a hydrophilic steric barrier via 

Figure 2 The structure and composition of LNPs. Created with BioRender.com.
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PEG chains on LNP surfaces, inhibiting aggregation under manufacturing conditions such as low pH and the presence of 
ethanol, and facilitating self-assembly.68,69 However, this characteristic leads to the “PEG dilemma”, necessitating 
careful consideration of the type and proportion of PEG lipids to balance LNP stability and drug release 
efficiency.70,71 Despite their minor proportion, PEG lipids significantly influence LNPs by (1) affecting particle size, 
which is crucial for transfection efficiency, biological distribution, and pharmacokinetics;56 (2) ensuring particle stability 
by preventing aggregation through steric hindrance effects;72 and (3) modulating LNP-cell interactions to avoid rapid 
LNP clearance and improve the circulation lifetimes.73–76 These effects are regulated by the molar ratio of PEG lipids, as 
well as the structure and length of the PEG chains and their lipid tails (alkyl/dialkyl chains).

Design of Colorectal-Targeted Lipid Nanoparticles
Carrier Design for Colorectal Targeting
The treatment of colorectal cancer (CRC) has advanced significantly with the use of chemotherapy, radiotherapy, and 
biological agents, enhancing cancer therapeutic effectiveness. However, these treatments are associated with significant 
drawbacks, such as the development of drug resistance and toxicity to non-cancerous cells, which can hinder therapeutic 
success.77,78 The use of delivery vectors has emerged as a crucial strategy to address these challenges. An optimal 
delivery system should effectively encapsulate drugs, protect them from degradation, and specifically target lesion sites.79 

The development of non-biodegradable NPs such as polymeric NPs, LNPs, micelles, gold NPs (AuNPs), and magnetic 
NPs marked a significant advancement in the targeted formulation and delivery of therapeutic agents to the affected sites 
in the colon and rectum.31,80–84 Researchers have used NPs as drug delivery vehicles in clinical trials for CRC treatment 
(Table 1). In particular, LNPs stand out as a highly promising nanomedicine delivery system owing to their excellent 
biodegradability, biocompatibility, straightforward structural design, and the ability to tailor their functionality to specific 
needs.85 Various surface modifications greatly enhance cellular uptake and targeting ability of LNPs (Figure 3). 
Nevertheless, the accumulation and retention of LNPs in the liver following systemic or local administration impede 
their application in extrahepatic organs. The heightened liver affinity of LNPs is mainly attributed to three pivotal factors. 
First, the distinctive anatomical and physiological features of the liver, such as discrete blood vessels and sluggish blood 
flow, facilitate LNP extravasation and reinforce its interaction with hepatic tissues.86 Yang et al leveraged these features 
to design hepatocyte nuclear factor 4 alpha (HNF4A)-mRNA LNPs for targeting hepatocytes through intravenous 
administration, holding promise for attenuating liver fibrosis.87 Second, endogenously synthesized ApoE from the liver 
adheres to the surface of LNPs, forming a protein crown known as the “Corona”. ApoE then combines with low-density 
lipoprotein receptor (LDLR) to facilitate endocytosis in liver cells.88,89 Lastly, the LNP-Corona complex is enriched in 
high-density lipoprotein (HDL), steering the preferential delivery of LNPs to the liver. Therefore, to advance the 
application of LNPs in CRC treatment, urgent strategies must be devised to redirect LNP delivery to extrahepatic 
organs, including the large intestine.88 With advancements in relevant technologies, organ, tissue, or cell-specific drug 
delivery using LNPs can be achieved through local administration or systemic intravenous delivery. Currently, imple-
mented targeted local administration routes of LNPs include oral, intranasal, inhalation, rectal, and local injection routes 
(such as intramuscular and intratumoral injections) (Figure 1).90–92 An appropriate administration route can improve the 
targeting efficiency of LNPs. For example, LNPs can be readily directed to the liver due to their efficient circulation in 
the bloodstream, making intravenous injection an appropriate administration route for liver-targeted LNPs.

The oral colon-specific drug delivery system (OCDDS) aims to convey drugs orally directly to the colon, preventing 
premature drug release in the stomach, duodenum, jejunum, and ileum. Such targeted delivery mechanisms enable precise 
treatment of diseases like CRC and inflammatory bowel disease (IBD). The development of OCDDS must account for the 
unique anatomical and physiological properties of the gastrointestinal tract’s various segments, such as pH levels, enzyme 
activity, and microbiota composition (Figure 4).100–102 The large intestine, forming the lower segment of the human digestive 
tract, consists of the cecum, appendix, colon (ascending, transverse, descending, and sigmoid colons), rectum, and anal canal. 
It plays a crucial role in absorbing water and electrolytes from food residues, forming and temporarily storing feces, and 
facilitating controlled excretion.103 Drugs absorbed in the colorectum are taken up by the intestinal mucosa and then enter the 
systemic circulation via the venous/lymphatic system. In OCDDS, nanoparticles are formulated to withstand the harsh 
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Table 1 Representative NPs in Clinical Trials for Treatment of CRC

Name Indication Intervention/Treatment Stage NCT Number

Cetuximab nanoparticles (p.o). Colon Cancer 
Colo-rectal Cancer

Drug: Cetuximab nanoparticles 
Drug: Oral approved anticancer drug

Phase 1 (Unknown) NCT03774680

Nanoparticle Paclitaxel (i.p). Peritoneal Neoplasms Drug: nanoparticulate paclitaxel Phase 1 (Completed) NCT00666991
Aguix Gadolinium-Based Nanoparticles 

(radiotherapy)

Brain Metastases Radiation: Stereotactic Radiation 

Drug: AGuIX gadolinium-based 

nanoparticles 
Other: Placebo

Phase 2 (Recruiting) NCT04899908

AZD4635 (p.o). Advanced Solid Malignancies Drug: AZD4635 

Drug: Durvalumab 
Drug: Abiraterone Acetate

Phase 1 (Completed) NCT02740985

CALAA-01 (i.v).93–96 Cancer 

Solid Tumor

Drug: CALAA-01 Phase 1 (Terminated) NCT00689065

TKM 080301 (hepatic intra-arterial  

administration)97–99

Primary or Secondary Liver 

Cancer

Drug: TKM-080301 Phase 1 (Completed) NCT01437007

9-ING-41 (i.v). Advanced Cancers Drug: 9-ING-41 
Drug: Gemcitabine - 21 day cycle 

Drug: Doxorubicin. 

Drug: Lomustine 
Drug: Carboplatin. 

Drug: Nab paclitaxel. 

Drug: Paclitaxel. 
Drug: Gemcitabine - 28 day cycle 

Drug: Irinotecan

Phase 2 (Recruiting) NCT03678883

Nal-IRI(i.v). Metastatic Pancreatic, Colorectal,  
Gastroesophageal, or Biliary 

Cancer

Drug: Fluorouracil 
Drug: Irinotecan Sucrosofate 

Other: Laboratory Biomarker Analysis 

Drug: Leucovorin Calcium 
Drug: Rucaparib

Phase ½ (Active, not 
recruiting)

NCT03337087

Nanoparticle Paclitaxel (i.p). Peritoneal Neoplasms Drug: nanoparticulate paclitaxel Phase 1 (Completed) NCT00666991

Notes: Updated on 01/24/2024. All clinical trials listed in this table are based on ClinicalTrials.gov. 
Abbreviations: P.O., oral; i.p., intraperitoneal; i.v., intravenous; nal-IRI, liposomal irinotecan.
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gastrointestinal environment, thereby protecting encapsulated drugs from extreme pH and enzymatic degradation.104 For 
example, Bajracharya et al used poly (methacrylic acid-co-methyl methacrylate) (1:2) as a surface coating to prepare E/AC- 
Au/MTX nanocomplexes.31 These nanocomplexes exhibited a remarkable entrapment efficiency of over 80% while 
demonstrating notable pH-response characteristics. Musa et al loaded NPs in the form of soft agglomerates, which reduced 
premature drug release.105 The in vitro release experiment showed that the 5-FU-loaded NPs sustained drug release via their 
response to the intracapsular sodium alginate coat, indicating their potential to achieve colon-specific targeting by oral intake. 
The epithelium of the large intestine is covered by a bilayered mucus structure comprising water, electrolytes, lipids, and 
glycoproteins. Numerous studies indicate that NPs, varying in size, shape, composition, and surface modifications, can 
penetrate this mucous layer and access the intestinal epithelium through different mechanisms (Figure 5).106,107 Oral 

Figure 3 Representative Surface Modification Strategies for LNPs. Created with BioRender.com.

Figure 4 Key physiological factors within the gastrointestinal (GI) tract that markedly influence drug absorption. The influence of luminal pH, gastrointestinal transit time, 
microbiome composition, and enzymatic activity is essential in the modulation of drug absorption processes. Created with BioRender.com.
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administration of OCDDS offers several benefits, including enhanced patient compliance, ease and convenience of use, and 
a reduced likelihood of acute drug reactions.108,109 However, the patient-to-patient variability and the dynamic changes in the 
gastrointestinal environment under physiological and pathological conditions pose challenges to the clinical translation of 
OCDDS. Further research is needed to uncover the impact of these factors on NPs.

Targeting Strategies of LNPs in Colorectal Cancer
Current nanocarrier-based targeted delivery strategies for CRC can be broadly categorized into passive targeting, active 
targeting, and stimulus-responsive targeting (Figure 6). These approaches ingeniously exploit the biological 

Figure 5 Structure of the intestinal mucosal barrier comprising microbial, chemical, mechanical, and immune barriers, along with the mechanism of NPs across the 
mechanical barrier.110 Current uptake mechanisms of NPs across intestinal epithelium include macropinocytosis, clathrin-mediated endocytosis (CME), caveolae-mediated 
endocytosis (CavME), and clathrin/caveolae-independent endocytosis (CIE). Created with BioRender.com.

Figure 6 A diagram of major targeting strategies of LNPs for targeting CRC. (A) LNPs passively accumulate in tumors through enhanced permeability and retention effect; 
(B) Ligand-decorated LNPs actively target cancer cells and tumor vasculature; (C) LNPs respond to both endogenous and exogenous stimuli and release drugs rapidly at the 
lesion site. Created with BioRender.com.
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characteristics of tumors and the tumor microenvironment (TME) to enable precise and effective drug delivery through 
distinct mechanisms. This section explores the principles and applications of these strategies in CRC treatment, high-
lighting their role in enhancing therapeutic efficacy.

Passive Targeting
The unique pathological and physiological features of tumors and TME make passive targeting strategies widely 
applicable in common nanocarrier systems. Tumor tissue is characterized by enlarged gaps between vascular endothelial 
cells, a dense extracellular matrix (ECM), and poor internal lymphatic drainage. This scenario leads to the enhanced 
permeability and retention (EPR) effect, facilitating the passive accumulation of nanomedicines at tumor sites 
(Figure 6A).111 This phenomenon alters the pharmacokinetics and pharmacodynamics of the encapsulated drugs and 
minimizes off-target toxicity, forming the cornerstone of passive targeting. In the mid-1990s, the first-generation lipid 
nanoparticles, liposomal doxorubicin (Doxil®) and liposomal daunorubicin (DaunoXome®), received FDA approval.35 

Liposomal doxorubicin is a liposomal carrier of the anthracycline chemotherapeutic agent doxorubicin (DOX). The 
addition of PEG-lipid conjugates extends DOX’s plasma half-life to 45 hours in humans.112 Similarly, liposomal 
daunorubicin, which carries daunorubicin (DNX), exhibits altered metabolism and distribution, leading to increased 
tumor accumulation and reduced systemic toxicity.113 The PEGylation of LNPs is a common surface modification. PEG 
lipids create a hydrophilic barrier that resists binding to plasma proteins, prolonging circulation and maximizing EPR 
effect-mediated tumor accumulation.114,115

Glucan and chitosan, two naturally occurring polysaccharides, have been incorporated into various drug delivery 
systems due to their unique structural attributes. Incorporating a chitosan shell is a prevalent strategy to enhance the 
colorectal targeting of nanomedicines. This shell serves a dual purpose: it protects nanomedicines from degradation in the 
stomach and small intestine, and upon arrival in the colon, specific glucose hydrolases degrade the shell’s surface 
glucan.79 This degradation reveals folate residues on the nanoparticles, which then target tumor cells that overexpress 
folate receptors.116 Moreover, chitosan can improve adhesion and facilitate targeted, sustained drug release in the colon 
through hydrophilic and electrostatic interactions with mucin.117,118

The rapid clearance by the reticuloendothelial system (RES) and high interstitial fluid pressure (IFP) are key 
challenges to the efficiency of passive targeting in nanomedicines. The former reduces the half-life of LNPs, hindering 
accumulation at the target site, while the latter limits drug penetration into deep tumor tissues. Thus, optimizing the 
formulation, size, and surface charge of LNPs is crucial to enhancing targeting efficacy. Current research focuses on 
developing “second-generation” nanoparticles to further refine the pharmacokinetic and pharmacodynamic characteristics 
of drugs, aiming to bolster the treatment of solid tumors.119,120 Selective organ targeting (SORT) represents a significant 
innovation in this field. Cheng et al introduced a fifth type of lipid, the SORT molecule, into LNPs, altering their internal 
charge to achieve targeted delivery to extrahepatic organs.121

A recent study by Wang et al revealed a critical but previously underestimated barrier in NP delivery – the tumor 
vascular basement membrane (BM).122 BM is a dense, cross-linked, extracellular matrix layer beneath the endothelium, 
enveloping the endothelial and parietal cells of tumor blood vessels. It forms a formidable mechanical barrier with 
endothelial cells, which traps NPs in the subendothelial space and effectively blocks their entry into the tumor. The study 
revealed that local hyperthermia induces platelet aggregation and inflammation, attracting neutrophils to the NP pool. 
These neutrophils then move through the BM barrier and release NPs, facilitating increased NP penetration into deeper 
tumors. This finding underlines the need for further research and engineering strategies to overcome the BM barrier in 
NP-mediated drug delivery.

Active Targeting
Active targeting in nanomedicine primarily involves specific ligand modifications on nanoparticle surfaces. The ligands 
on the surfaces of NPs bind selectively to receptors on target cells, facilitating the delivery of drugs to specific cell types 
(Figure 6B).123,124 Notably, these receptors are minimally or even not expressed on normal cells but are highly or 
specifically present on the surfaces of cancer cells.125 Ligand-receptor interactions can trigger receptor-mediated 
endocytosis, promoting the uptake of LNPs by cancer cells.126 Various ligands, categorized into small molecules (folate, 
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sugars) and macromolecules (antibodies, peptides, proteins, ligands, oligonucleotides), have been employed for LNP 
surface modifications.127 Several colorectal-specific biomarkers have been utilized in targeted ligand design.128 For 
instance, folate receptor-α (FR-α), overexpressed in many cancer types, binds naturally with folate (FA), which is stable, 
low in immunogenicity, and exhibits high affinity to FR-α.129 This renders FA a popular choice for nanomedicine 
targeting. Folate-bound Poly (lactic-co-glycolic acid) (PLGA) NPs loaded with kaempferitrin demonstrated enhanced 
cytotoxicity against colorectal cancer cells.130 A recent study analyzing four biomarkers in colorectal cancer tissues from 
280 patients via immunohistochemistry revealed increased expression of FR-α (37.1%) compared to normal tissues, 
along with elevated levels of carcinoembryonic antigen (CEA) (98.8%), tumor-associated glycoprotein-72 (79%), and 
epidermal growth factor receptor (EGFR) (32.8%) in CRC, highlighting CEA’s potential as a future LNP drug target for 
CRC.128 CD44 is a common marker of cancer stem cells (CSCs) in colon cancer and is also highly expressed. 
Chondroitin sulfate (CS) is a highly sulfated glycosaminoglycan. It exhibits a high affinity for CD44, making CS- 
modified NPs ideal for tumor targeting.131

Peptides are another common targeting ligand for LNPs, favored for their strong binding to various cell targets, cost- 
effectiveness, high fidelity, and ability to attach to LNPs without hindering their binding ability. Tumor homing peptides 
(THPs) are a class of peptides that have homing effects on tumor tissue or blood vessels. They can recognize and bind to 
specific receptors or markers on the surface of tumor tissue or blood vessels. Peptides PIVO-8 (sequence: 
SNPFSKPYGLTV) and PIVO-24 (sequence: YPHYSLPGSSTL) functionalized liposomes inhibit tumor angiogenesis 
and increase apoptosis in colon HCT116 tumors in mice.132 Fluorescence images revealed that these PIVO-targeting 
liposomes significantly increase drug uptake by tumor vasculature endothelial cells via receptor-mediated endocytosis. 
These results suggest that LNPs have the potential to improve the therapeutic effect of colon cancer by recognizing the 
tumor vascular system through THPs. Additionally, the liposomes modified with BiP targeting peptides (WIFPWIQL) 
and dual-targeting liposomes modified with the NRG (GNGRG) and APRPG peptides inhibited colon tumor growth 
through the same mechanism.133,134 Cellular penetrating peptides (CPPs) are a class of peptides capable of transporting 
large molecules and small particles across the cell membrane and into the cytoplasm. The transactivator of transcription 
(TAT) peptide is the first peptide discovered to possess such ability.135 Kuai et al developed a specialized TAT peptide 
liposome.136 It possessed a thiol-cleavable (like L-Cysteine) long PEG brush layer and a short, non-cleavable PEG layer 
with TAT peptide attached to it. The extended PEG brush layer functions as a powerful spatial barrier that reduces the 
opsonization and non-specific cellular interactions of TAT liposomes during passive accumulation. When TAT peptide 
liposomes passively accumulate inside the tumor, L-Cysteine is injected to cleave the long PEG layer and expose the 
cell-penetrating TAT peptide, promoting the absorption of liposomes by tumor cells. This design enables specific drug 
release in the TME and has been proven effective in a mouse subcutaneous C26 colon cancer model.136 Integrins are vital 
members of the cell adhesion molecule family. Functioning as transmembrane glycoproteins, they play a crucial role in 
the adhesion and signal transduction between cells and between cells and the ECM. They also regulate cellular functions 
including adhesion, migration, proliferation, and apoptosis.137 Integrin expression is notably upregulated in a range of 
solid tumors and their associated blood vessels, highlighting its crucial role in cancer progression and invasion.138 The 
tripeptide sequence RGD, which is widely present in ECM proteins, can specifically bind to various integrins, making 
RGD peptides widely used as ligands targeting tumor cells. Liu et al constructed a cRGD peptide (Arg-Gly-Asp-d-Phe- 
Cys [RGDfC])-modified liposome that encapsulates matrine.139 In HT-29 colon cancer cell lines, this approach demon-
strated an enhanced anti-proliferative effect, approximately two-fold greater, compared to free drugs. The PR_b-peptide 
(KSSPHSRNSGSGSGSGSGRGDSP) designed by the Kokkoli team binds the RGD motif with a synergistic PHSRN 
sequence, forming a fibronectin mimetic peptide specifically targets α5β1 integrins.140 PR_ B-peptide liposomes can 
effectively target colon cancer cells and serve as carriers for various drugs, including DOX, 5-FU, and tumor necrosis 
factor-α.141–144

While active targeting markedly enhances the specificity and therapeutic efficacy of nanomedicines, challenges such 
as ligand selection and rapid immune clearance in vivo need further investigation.
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Stimulus-Responsive Targeting
Stimulus-responsive targeting is a sophisticated delivery strategy that utilizes NPs’ sensitivity to specific physical, 
chemical, and biological factors for precise drug release at the target site (Figure 6C). This approach involves 
constructing a Stimuli Response System (SRS) that rapidly and accurately responds to these stimuli by altering the 
composition and structure of nanocarriers. It addresses the current challenges such as slow drug release, low bioavail-
ability, and suboptimal targeting.145,146 The triggers employed are broadly classified into endogenous and exogenous 
categories. Endogenous factors mainly refer to the characteristics of the TME, like low pH, tissue hypoxia, enzymatic 
activity, and redox status. Exogenous factors mainly include physical stimuli such as temperature, ultrasound, magnetic 
fields, and light, with pH-sensitive liposomes (PSL) and thermosensitive liposomes (TSL) being prime examples.

The tumor microenvironment (TME) in colorectal cancer is characterized by tissue hypoxia and low pH due to lactic 
acid production from tumor cell glycolysis. These characteristics contribute to cancer progression and chemoresistance 
through signaling pathways like hypoxia-inducible factor (HIF), presenting significant challenges for developing 
effective chemotherapy for colorectal cancer.147–151 The physical and chemical properties of pH-sensitive polymers, 
such as solubility, chain conformation, and surface activity, vary markedly with environmental pH.152 Drug delivery 
systems utilizing these polymers maintain stability in physiological environments but release their payload in acidic 
tumor settings, thus achieving tumor targeting. For instance, Juang et al developed pH-sensitive and peptide-modified 
LNPs to encapsulate the chemotherapy drug irinotecan and miR-200 which inhibits cancer cell metastasis.153 These NPs 
demonstrated pH-responsive release and enhanced cellular uptake driven by clathrin- and adsorptive-mediated endocy-
tosis. They showed effective internalization and intracellular distribution in the acidic environment of the human colon 
cancer cell line HCT116, with their therapeutic effectiveness further confirmed in mouse models.

Thermosensitive liposomes are frequently employed as carriers for chemotherapy drugs, used in conjunction with 
local hyperthermia to trigger drug release and produce tumoricidal effects. Stimulus-responsive targeting strategies can 
be combined with active targeting modifications on the surface to further enhance drug targeting efficiency and increase 
cellular toxicity.

Applications of Lipid Nanoparticles (LNPs) in the Treatment of Colorectal 
Cancer
Colorectal cancer is a highly heterogeneous malignant tumor, making its effective treatment a significant challenge. LNPs 
have emerged as a versatile tool in this domain. They can encapsulate a diverse array of anti-tumor agents, including 
small molecules, peptides, proteins, and nucleic acids, offering selective targeting of cancer cells while sparing normal 
cells. Currently, researchers are actively exploring LNPs for targeted drug delivery, thermal therapy, and gene therapy 
specifically for colorectal cancer, showing promising potential in the field.

Lipid Nanoparticles (LNPs) for Traditional and Novel Drug Delivery in Colorectal 
Cancer Therapy
As research progresses, the efficacy of LNPs as carriers for various anti-tumor agents, including first-line drugs, 
biologics, and naturally derived anticancer compounds, has been increasingly validated in CRC therapy. Delivering 
drugs to the tumor sites using LNPs offers two major advantages: 1) LNPs can achieve comparable or superior 
therapeutic effects at lower drug doses compared to traditional formulations such as tablets, capsules, and 
liquids;154 2) LNPs can enhance drug pharmacokinetics by minimizing systemic distribution, reducing toxicity, and 
decreasing the frequency of administration.

5-Fluorouracil (5-Fu), a uracil derivative classified as an antimetabolic antitumor drug, is among the most frequently utilized 
chemotherapeutics for CRC. However, its clinical application is constrained by poor selectivity, substantial toxic side effects, and 
an exceedingly brief plasma half-life. In response to these challenges, Patel et al encapsulated 5-FU in solid lipid nanoparticles, 
observing a concentration-dependent reduction in cell viability within Caco-2 human colorectal adenocarcinoma cell lines.155 

Doxorubicin (DOX), another common chemotherapy drug with strong anti-cancer activity, faces limitations due to its cardio-
toxicity and lack of tumor specificity. To address this, Zhang et al developed ginger-derived nanovectors (GDNVs), a nanocarrier 
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constructed from ginger lipids, capable of efficiently loading and targeting DOX delivery.156 Fluorescence imaging showed that 
GDNVs are internalized by tumor cells via the phagocytosis pathway with high efficiency. Udofot et al encapsulated 5-FU 
(pHLNps-5-FU) within PSL nanoparticles, which were further modified with anti-EGFR antibodies.157 Their evaluation in 
a subcutaneous tumor mouse model using the colon cancer cell line HCT-116 indicated a significant increase in tumor 
accumulation of pHLNps-5-FU, along with an extended plasma half-life. Irinotecan (IRI, CPT-11) is a second-line chemother-
apeutic agent for advanced CRC that inhibits topoisomerase-1 to elicit anti-tumor activity. Bhaskaran et al prepared orally 
delivered IRI-loaded SLNs using cetyl palmitate via emulsification solvent evaporation and further modified them with 
chitosan.79 The surface-modified SLNs protect IRI from gastric acid, releasing only 3.33% in an acidic environment within 2 
hours. Furthermore, these drugs encapsulated in LNPs demonstrated enhanced anti-cancer activity compared to their free-form 
counterparts.

Beyond standard anti-tumor drugs, LNPs have demonstrated significant potential as an effective vehicle for the targeted 
delivery of diverse innovative therapeutics in CRC, offering unique advantages. Al-Asmari et al reported that liposomes 
containing scorpion toxin were more effective in combating cancer than the free form of the toxin in the human colorectal cancer 
cell line HCT-8.158 The in vitro release at pH 7.5 showed an initial rapid release of venom within the first 2 hours, followed by 
a plateau. Increased efficacy was evidenced by a lower survival rate in treated cells, a rise in reactive oxygen species (ROS) 
production, and a greater number of apoptotic cells. Furthermore, cell cycle analysis suggested a halt in the G0/G1 phase among 
these cells.

The evolving fields of metagenomics and metabolomics have illuminated the critical role of gut microbiota in the onset 
and progression of CRC, thereby attracting substantial research interest.159 Numerous studies have focused on developing 
LNP-based drugs targeting gut microbiota for CRC treatment. Omega-3 polyunsaturated fatty acids (PUFAs) show 
a significant association with gut microbiota and bile acid levels, with Increased intake believed to reduce inflammation 
and strengthen anti-tumor immunity.160 The encapsulation of resveratrol in SLNs significantly enhanced the incorporation 
efficiency of ω-3 PUFAs in human HT-29 CRC cells and reduced tumor cell proliferation.161 Wu et al developed liposomes 
loaded with matairesinol, a compound exhibiting differential expression between healthy individuals and CRC patients, and 
found that they markedly improved CRC chemosensitivity by altering lipid metabolism.162 In both chemosensitive and 
drug-resistant CDX and PDX mouse models, matairesinol-liposomes notably increased the anti-cancer activity of 5-FU/ 
calcium folinate combined with oxaliplatin (FOLFOX). Emerging strategies targeting gut microbiota and metabolic 
reprogramming through LNP technology offer promising directions and possibilities for the treatment of CRC.

Enhanced Thermal Therapy Efficacy Using Lipid Nanoparticles in Colorectal Cancer
LNPs exhibit robust capabilities in energy conversion and utilization, enabling them to produce thermal effects in 
response to various stimuli, including pH changes, ultrasound, magnetic fields, and light. This characteristic significantly 
enhances the efficacy of physical therapies. Superparamagnetic iron oxide nanoparticles (SPIONs), distinguished by their 
superparamagnetism, are extensively employed in medical applications, notably in magnetic resonance imaging (MRI) 
and magnetic hyperthermia.163 Shen et al developed folate-modified solid lipid nanoparticles (DFSLNs) encapsulating 
DOX and superparamagnetic iron oxide particles in pectin for colon-targeted delivery.116 This design combines 
chemotherapy and magnetic thermal ablation therapy. In addition to reducing cellular penetration through brush border 
membranes facilitated by proton-coupled FA transporters in the small intestine, DFSLNs also prolong retention time in 
the colon. Targeted LNPs boost the effectiveness of thermal therapy in cancer, especially when thermal therapy is aligned 
with other treatments.

Nucleic Acid-Based Gene Therapy in Colorectal Cancer Utilizing Lipid Nanoparticles
Gene therapy represents a promising avenue in cancer treatment, targeting pathogenic genes in a sequence-specific 
manner.164 This approach facilitates more precise and personalized anti-tumor therapy, underscoring its potential in 
oncological interventions. Gene therapy can be principally categorized into four types based on its potential mechanisms 
of action: (1) Gene addition or replacement, exemplified by mRNA encoding genes encapsulated in LNPs; (2) Regulation 
of gene expression, involving agents like miRNA, short-stranded small interfering RNA (siRNA), and long non-coding 
RNA (lncRNA);165 (3) Gene editing, utilizing tools such as Cas9 mRNA and single-guided RNA (sgRNA); and (4) DNA 
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or RNA-based vaccines.166 For gene therapy to be efficacious in vivo, it necessitates a delivery platform that is safe, 
effective, and stable. This platform must shield nucleic acids from degradation while facilitating cellular uptake and 
subsequent release of these acids. LNPs optimally satisfy the aforementioned requirements.

LNPs loaded with siRNA, mRNA, or DNA can modulate the expression of cancer-related genes, either by 
upregulating or downregulating them, thereby achieving therapeutic effects in the treatment of CRC (Table 2).

In CRC therapy, most LNP-based nucleic acid drugs focus on regulatory factors associated with cell proliferation, cell 
cycle, metastasis, and apoptosis, consequently inhibiting tumor growth. A noteworthy example involves the LNP- 
encapsulated siRNA targeting APRIL (A Proliferation-Inducing Ligand), a crucial regulator of cell proliferation. This 
ligand is characteristically overexpressed in colorectal cancer tissues, where it stimulates the growth of tumor cells. 
Silencing APRIL has been demonstrated to effectively control tumor progression.180 Analogously, the siRNA-mediated 
knockdown of DNA-bind-2 inhibitors (Id2) or cDNA overexpression of FAS has been observed to curb tumor cell 
proliferation and reduce tumor burden in mice.170,178 Additionally, cell cycle-related targets include the E2F1 transcrip-
tion factor and PCTAIRE1 (also known as PCTK1 or Cyclin Dependent Kinase 16 [Cdk16]).173,174

To enhance anti-tumor efficacy, recent studies have extensively employed LNP siRNA to target and reshape the tumor 
microenvironment. Indoleamine 2,3-dioxygenase 1 (IDO1) is a tryptophan-degrading metabolic enzyme that is over-
expressed in tumor-draining lymph nodes (TDLNs) and tumor tissues.181 This enzyme catalyzes the degradation of the 
essential amino acid tryptophan (TRP) into kynurenine (KYN), a process that directly activates regulatory T cells (Tregs) 
while simultaneously inducing the inactivation of cytotoxic T lymphocytes (CTL).182–184 This activity is crucial in 
establishing an immunosuppressive tumor microenvironment (ITM). Targeting IDO1 with siRNA has shown promise in 
improving immunotherapy outcomes. In a nude mouse subcutaneous tumor model using human colorectal cancer cells, 
the combined administration of oxaliplatin (OXA) and CLANsiIDO1 enhanced dendritic cell maturation, increased 
tumor-infiltrating T lymphocytes, and decreased regulatory T cells, thereby reversing IDO1-mediated 
immunosuppression.167 Moreover, there is a close interaction between the NF-κB signaling pathway and the tumor 
microenvironment.185 Zou et al found that using CD DTX.siRelA.PEG-FA nanoparticles to downregulate the NF-κB 
subunit RelA enhanced docetaxel’s apoptotic effects and inhibited tumor growth in mice.175 Specifically, the co- 
formulation exhibited pH-triggered release, with higher release in acidic environments. Upon entering the endosome 
(pH ≈ 5.5 to 6.0), it enabled the simultaneous release of DTX and siRNA into the cytoplasm, leading to a synergistic 
apoptotic effect. Additionally, factors like COX-2 and abnormal fatty acid metabolism, pivotal in the tumor microenvir-
onment, have been targeted.186,187 Xu et al introduced EpCAM aptamers into 3WJ pRNA nanoparticles, enabling 
targeted delivery of Delta-5 desaturase (D5D) siRNA to human colon cancer HCA-7 cells.188 In mice bearing HCA-7 
tumors, the administered nanoparticles facilitated a synergistic effect with γ-linolenic acid (DGLA). This combination 
promoted COX-2-catalyzed peroxidation of DGLA and the formation of 8-HOA, leading to the inhibition of histone 
deacetylases (HDAC) activity. This process effectively regulated the acetylation state of histones, induced apoptosis in 
tumor cells, and exhibited significant anti-tumor effects.

Finally, LNP siRNA delivery has also been employed to overcome the challenge of cancer drug resistance and restore 
tumor sensitivity to anticancer agents. A key player in chemotherapy sensitivity is the multidrug resistance gene 1 
(MDR1), which regulates drug efflux through its encoded P-glycoprotein. This protein actively transports drugs out of 
cells, reducing intracellular drug concentrations and consequently leading to resistance. Research has shown that 
silencing MDR1 can significantly enhance the efficacy of paclitaxel, outperforming monotherapy approaches.172 

Likewise, Zhiani et al demonstrated that the concurrent application of integrin-β1 siRNA/HNP and Regorafenib/HNP 
effectively downregulated integrin-β1 gene expression.176 This downregulation triggered apoptosis in drug-resistant cell 
lines and reinstated tumor cell sensitivity to the receptor tyrosine kinase inhibitor (RTKI) Regorafenib.189

mRNA therapy directly exerts anti-tumor effects through the delivery of mRNA-encoded functional proteins. Wu et al 
encapsulated ALKBH5 mRNA within folate-modified exosome liposome hybrid nanoparticles for application in patient- 
derived xenograft (PDX) model mice.177 Consequently, the ALKBH5 mRNA nanotherapeutic markedly suppressed 
colorectal tumor development in treated mice, which was attributed to the modulation of the ALKBH5/JMJD8/PKM2 
axis and the inhibition of glycolysis. Golubovskaya et al employed LNP to deliver EpCAM-CD3 bispecific antibodies, 
encapsulating EpCAM-CD3-hFc mRNA-LNP.190 EpCAM (Epithelial Cell Adhesion Molecule) is a prevalent antigen on 
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Table 2 Lipid Nanoparticles for Delivery of Nucleic Acid-Based Therapeutics in CRC

Payload Gene Target/Product LNP Category Administration 
Route

Model Reference

Gene silencing

siRNA Indoleamine 2,3-dioxygenase- 
1 (IDO1)

Cationic lipid-assisted nanoparticles (CLANs) Intravenous 
injection

Subcutaneous colorectal tumor model [167]

siRNA Hypoxia inducible factor 1α 
(HIF-1α)

RGD-targeted multifunctional lipid ECO/siHIF-1α nanoparticles Intravenous 

injection

Mouse HT29 colon cancer model [168]

siRNA A proliferation-inducing ligand 

(APRIL)

Negative lipidoid nanoparticles (NLNs) Enema delivery CRC animal models [169]

siRNA Inhibitor of DNA-bind-2 (Id2) Neutral liposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine Intraperitoneal 
administration

CRC animal models (CT-26) [170]

siRNA Survivin Nanoliposomes Transfection LoVo cells [171]

siRNA Multidrug resistance gene 
(MDR1)

A carrier composed of a cationic oligomer (PEI(1200)), a hydrophilic polymer 
(polyethylene glycol) and a biodegradable lipid-based crosslinking moiety

Transfection Human colon CSCs (CD133+ enriched 
cell population)

[172]

siRNA E2F1 Nanoliposomes Transfection Cultured colon carcinoma cells and 

cultured human biopsy of colonic 
mucosa

[173]

siRNA PCTAIRE1 Lipid nanoparticles Intratumor 

injection

Mouse HCT116 subcutaneous tumor 

models

[174]

siRNA RelA An amphiphilic cationic cyclodextrin (CD) nanoparticle modified with 

PEGylated folate

Intravenous 

injection

Mouse CT26 subcutaneous tumor 

models

[175]

siRNA Integrin-β1 Dimethyldioctadecylammonium bromide (DDAB)-methoxy poly (ethylene 
glycol) (mPEG)-poly-ε-caprolactone (PCL) hybrid nanoparticles (HNPs)

Transfection Regorafenib-resistant human colon 
cancer cell line (SW-48)

[176]

Gene expression

mRNA ALKBH5 Exosome-liposome hybrid nanoparticles Intratumor 

injection

Mouse preclinical tumor models [177]

cDNA FAS Cationic lipid nanoparticle DOTAP-Cholesterol Intravenous 

injection

Mouse CT26 subcutaneous tumor 

models

[178]

Gene editing

sgRNA KRAS Nanoliposomal (NL) particle Intravenous 
injection

Mice with KRAS-mutated CRC [179]
mRNA Cas9
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the surface of epithelial malignant tumor cells. The mRNA-encoded dual antibody specifically targets the EpCAM 
antigen on one end, while concurrently bridging T cells via the CD3 antibody on the other, thereby activating T cells to 
eradicate EpCAM-positive Lovo cells. This approach not only selectively eliminates tumor cells but also escalates IFN-γ 
secretion from T cells in a dose-dependent manner. Recently, da Silva et al developed an LNP platform via microfluidic 
mixing to deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA to the tumor microenviron-
ment (TME). Combined with TME normalization, this platform effectively induced apoptosis in colon cancer cells. This 
work highlights the promising potential of LNP-mRNA therapeutics in solid tumor immunotherapy.191

RNA vaccines function by introducing tumor antigen RNA into the body, thereby eliciting an immune response aimed at 
combating cancer. A critical challenge for this strategy is the safe and efficient delivery of RNA to the target site while 
minimizing RNA degradation. In response to this challenge, numerous researchers have turned to LNPs as a solution. To 
effectively induce anti-tumor immunity, Dai et al refined the synthesis of tumor RNA liposome-polycationic DNA complex 
(LPD) nanoliposomes vaccines, enhancing the total RNA encapsulation capacity for use in a CT-26 colorectal cancer mouse 
model (Figure 7A and B).192 Their results demonstrated that these nanoparticles could activate dendritic cells (DCs) and 
T cells, significantly impede tumor growth, and exhibit minimal toxicity to normal organs (Figure 7C). Additionally, 
Pam2Cys, a synthetic neutral fatty acid, known for its ability to activate the Toll-like receptor (TLR) 2/6 pathway, has been 
recognized for its potential to trigger both humoral and cellular adaptive immune responses.193 Gu et al developed an 
innovative antigen mRNA-LNP vaccine incorporating Pam2Cys.194 This vaccine delayed tumor progression and markedly 
improved survival rates. In the CT26 colon cancer mouse model, it was observed that this novel vaccine eradicated existing 
tumors in 10% of the subjects. Therefore, LNPs hold significant potential in gene therapy for CRC, particularly in terms of 
targeting tumors and enhancing immune responses.

Figure 7 Schematic illustration of RNA-based LPD nanoliposome vaccines.192 (A) The stepwise preparation of the nanoparticles. (B) The components of LPD 
nanoliposomes. (C) The schematic diagram of LPD nanoliposomes’ effect on DC maturation and T cell activation. In combination with oxaliplatin, the vaccines induce 
activation of CD8+ T cells and exert anti-tumor effects. Created with BioRender.com.
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Conclusion and Perspectives
Lipid-based nanoparticles, particularly SLNs, NLCs, and PLNs, are emerging as a promising platform for CRC therapy. 
Their attributes include biodegradability, biocompatibility, reduced toxicity, and customizable functionality. LNPs 
designed for CRC treatment can be administered through various routes, including oral, rectal, intravenous, intratumoral 
injection, hepatic artery infusion, and intraperitoneal administration. Optimized carrier formulations, appropriate target-
ing strategies, and suitable administration routes improve the pharmacokinetic and pharmacodynamic properties of LNPs, 
thereby enhancing their targeted anti-tumor effects. Noteworthy progress has been made with some of these platforms, 
indicating a bright future for this technology. This article reviews recent published examples of LNPs as nanocarriers for 
the treatment of colorectal cancer. A wide range of drugs for CRC treatment, including traditional chemotherapy agents, 
novel anti-cancer drugs, magnetic hyperthermia particles, and nucleic acid medications, have been successfully incorpo-
rated into LNPs. These strategies have shown promising results in tumor targeting and anti-tumor efficacy in colorectal 
cancer models, both in vivo and in vitro. This smart nanoplatform also allows for the loading of various antitumor agents, 
particularly the combination of novel and traditional drugs, to trigger a potent antitumor response in patients resistant to 
conventional therapeutic regimens.

Despite rapid advancements in LNPs for cancer therapy, their clinical application still faces obstacles: (1) Industrial 
scale-up. The complexity of LNP formulation and preparation, characterized by multi-step reactions, leads to inconsistent 
repeatability, posing a significant challenge for industrial-scale manufacturing. (2) Tumor microenvironment complexity: 
Current in vitro and in vivo models inadequately mimic the human tumor microenvironment, resulting in less effective 
clinical outcomes than anticipated. Optimizing LNP formulations and gaining a deeper understanding of the factors 
influencing their biological distribution are crucial for enhancing treatment efficacy. For instance, adjuvant lipids in 
mRNA-LNP vaccines have been adopted to improve adaptive immune responses.195 A thorough mechanistic exploration 
of the structure-activity relationship between various ionizable lipids and LNP distribution in specific organs or cells is 
also needed. (3) Biocompatibility. Concerns regarding the immunogenicity and toxicity of LNPs still exist. The immune 
response can accelerate the clearance of LNPs and even lead to serious complications such as hemolysis and 
thrombosis.196 Lipid components affect the immunogenicity of LNPs, as evidenced by the upregulation differences of 
various cytokines in LNPs with different ionizable lipids (eg, SM-102 and ALC-0315).197 PEG lipids may trigger PEG 
antibodies that cause severe hypersensitivity reactions.198,199 Replacing PEG lipids with poly sarcosine lipids (pSar) may 
address these issues.197 Currently, the toxicity assessment of nanoparticles (NPs) is not fully developed. Unstable NPs 
may form micrometer-sized aggregates, block capillary beds, and lead to serious complications.200 Injection of LNPs 
may cause liver or spleen damage and interfere with fatty acid and lipid metabolism.201 Future research should focus on 
addressing these challenges to fully realize the potential of LNP-based therapies for CRC. This includes developing 
scalable production methods, understanding and manipulating the tumor microenvironment, improving biocompatibility, 
and conducting comprehensive long-term safety studies.

In summary, despite some limitations, further research is imperative to refine therapeutic LNPs for CRC treatment, 
considering the increasing global burden of CRC.202 Progress in this area is vital for the clinical translation of LNPs and 
for advancing colorectal cancer therapy.
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