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Introduction: Immune cell interactions and metabolic changes are crucial in determining the tumor microenvironment and affecting 
various clinical outcomes. However, the clinical significance of metabolism evolution of immune cell evolution in colorectal cancer 
(CRC) remains unexplored.
Methods: Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing data were acquired from TCGA and GEO datasets. 
For the analysis of macrophage differentiation trajectories, we employed the R packages Seurat and Monocle. Consensus clustering 
was further applied to identify the molecular classification. Immunohistochemical results from AOM and AOM/DSS models were 
used to validate macrophage expression. Subsequently, GSEA, ESTIMATE scores, prognosis, clinical characteristics, mutational 
burden, immune cell infiltration, and the variance in gene expression among different clusters were compared. We constructed 
a prognostic model and nomograms based on metabolic gene signatures identified through the MEGENA framework.
Results: We found two heterogeneous groups of M2 macrophages with various clinical outcomes through the evolutionary process. 
The prognosis of Cluster 2 was poorer. Further investigation showed that Cluster 2 constituted a metabolically active group while 
Cluster 1 was comparatively metabolically inert. Metabolic variations in M2 macrophages during tumor development are related to 
tumor prognosis. Additionally, Cluster 2 showed the most pronounced genomic instability and had highly elevated metabolic 
pathways, notably those associated with the ECM. We identified eight metabolic genes (PRELP, NOTCH3, CNOT6, ASRGL1, 
SRSF1, PSMD4, RPL31, and CNOT7) to build a predictive model validated in CRC datasets. Then, a nomogram based on the M2 risk 
score improved predictive performance. Furthermore, our study demonstrated that immune checkpoint inhibitor therapy may benefit 
patients with low-risk.
Discussion: Our research reveals underlying relationships between metabolic phenotypes and immunological profiles and suggests 
a unique M2 classification technique for CRC. The identified gene signatures may be key factors linking immunity and tumor 
metabolism, warranting further investigations.
Keywords: CRC, macrophages, metabolic classification, tumor immunity, prognosis model

Introduction
In recent decades, colorectal cancer (CRC) has become a primary consideration of cancer-related incidence and mortality 
around the world.1 The tumor microenvironment (TME) and immune cell interactions play crucial roles in CRC 
progression and serve as prognostic biomarkers.2 The role of various immune cells in tumor progression has been 
extensively studied. Immunotherapy has shown a practical therapeutic approach in comprehensive cancer management, 
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showing promising results in multiple types of malignancies.3–6 Specifically, immune checkpoint inhibitors (ICI) have 
shown efficacy in the treatment of various types of tumors.2 It is worth emphasizing that ICI therapy is affected by the 
heterogeneity of the TME, which significantly affects tumor occurrence, progression, metastasis, and treatment 
response,7,8 making it a key determinant.9 High immune cell presence and fully activated anti-tumor immune responses 
belonging to the “hot tumor” are associated with good therapeutic sensitivity to ICI therapy. Contrarily, a low immune 
infiltration corresponding to a “cold tumor” frequently denotes impaired treatment response.9

A diverse array of immune cells play multifaceted roles in the progression of tumors. Among these, CD4+ T cells, 
CD8+ T cells, and macrophages have been the subject of extensive research. Specifically, tumor-associated macrophages 
(TAMs) have been demonstrated to possess considerable diagnostic and prognostic significance across various types of 
cancer, such as breast cancer,10 pancreatic cancer,11 hepatocellular cancer,12 and CRC.13 Nevertheless, there is ongoing 
exploration needed to understand the distribution patterns of TAMs and their phenotypes both within CRC tumors and at 
the tumor-infiltrating front. It has been suggested that TAMs in tumor tissues can be categorized as either M1 type or M2 
type. In the majority of tumors, M2 macrophages are the predominant phenotype among TAMs. Multiple studies 
demonstrated that the density of macrophages correlated with unfavorable patient prognosis.14 Generally, M1 macro-
phages are distinguished by their anti-tumor and pro-inflammatory functions, while M2 macrophages display anti- 
inflammatory and immunosuppressive characteristics.15 Given the widely reported interaction between TAMs and 
tumors, many recent studies consider TAMs as promising targets for cancer therapy.16 However, there is a contentious 
debate surrounding the connection between macrophage density and survival in CRC patients, and the role of TAMs in 
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the progression of CRC remains elusive.17 Therefore, we aimed to develop a more effective methodology for appraising 
the prognostic significance of the M2 subtype in CRC.

The onset and advancement of tumors require metabolic reprogramming in cancer cells. These cells independently 
adjust their utilization of various metabolic pathways to satisfy increased demands for energy and the production of 
essential biomolecules, while also reducing oxidative stress. This metabolic adaptation is critical for the proliferation and 
survival of cancer cells and is considered one of the hallmark features of cancer.18–20 This distinct form of aerobic 
oxidation, commonly referred to as the Warburg effect, amplifies the proliferation and metastatic potential of cancer 
cells.21 In recent years, there has been a growing focus on the metabolic alterations of immune cells within the tumor 
microenvironment.22 The identification of metabolic alterations influencing the intricate dynamics between tumor cells 
and TAMs constitutes a critical advancement in the quest for innovative therapeutic methods. These approaches aim to 
specifically address the metabolic reprogramming of immune cells, empowering them to heighten their ability to combat 
tumors and overcome treatment resistance.23,24

In this study, we conducted an analysis of the bulk RNA and single-cell levels. Subsequently, we developed two 
heterogeneous clusters from the TCGA-CRC cohort and validated them using two independent external cohorts. These 
two clusters displayed contrasting expression patterns in crucial metabolic pathways and additionally possessed unique 
prognostic outcomes, biological traits, genomic alterations, and immune-infiltrated microenvironments. Additionally, we 
also constructed a prognostic model related to 8 metabolic genes, revealing the correlation between M2 macrophages and 
metabolic changes in patients with CRC, which may provide new ideas for the treatment of CRC.

Material and Methods
Data Collection and Processing
To obtain a substantial amount of tumor RNA-seq data and clinical information from CRC patients, we gathered data 
from multiple sources, including the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). In total, 
we compiled a dataset comprising 976 CRC samples from three distinct cohorts (TCGA, GSE161158,25 and 
GSE38832).26 Age, gender, clinical information, and tumor characteristics of the CRC cohorts used in this study are 
summarized in Table S2. Single-cell RNA sequencing data, along with pertinent clinical details from 25 colon cancer 
samples encompassing 65,994 individual cells, were sourced from GSE166555.27

Single-Cell RNA-Seq Data Analysis
Cell clustering and cell type annotation are accomplished using the R package Seurat. The single-cell RNA-seq data is 
normalized using the NormalizeData function. Prior to performing cell clustering, the high-dimensional single-cell data 
are dimensionally reduced using RunPCA. Subsequently, FindNeighbors and FindClusters functions are employed to 
group cells into different clusters. Two-dimensional visualization of the single-cell data is achieved using t-SNE and 
UMAP through the RunTSNE and RunUMAP functions, respectively. Finally, cell type annotation is performed using 
the R package celldex with the Human Primary Cell Atlas reference dataset. Single-cell gene set enrichment analysis is 
conducted using the irGSEA package, and the enrichment score is calculated using the UCell method.28 Pseudo-time 
trajectory analysis, which identifies trajectory genes from subclusters, is performed using the Monocle 3 package.

22 Immune Cell Abundance Analysis
In order to assess the distribution of specific cellular components within the immune microenvironment, we employed 
CIBERSORT to ascertain the relative proportions of 22 different immune cell types. Prognostic analysis was subse-
quently conducted based on the expression levels of these cells.

Subcluster Identification
ConsensusClusterPlus R package is used to identify the underlying clustering of TCGA patients based on the trajectory 
genes obtained from single-cell RNA-seq analysis.
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Gene-set enrichment analysis and differential expression analysis
Gene-set Enrichment Analysis (GSEA) was performed using the R package clusterProfiler. For the GO gene set 
enrichment, the gseGO function was utilized with a P-value cutoff of 0.05, focusing on the biological process (BP) 
ontology. Additionally, KEGG pathway gene enrichment was carried out using the gseKEGG function, also with 
a P-value cutoff of 0.05. Differential expression analysis was performed using the R package DESeq2 with an adjusted 
P-value cutoff of 0.05.

Mutation Analysis
Genomic variations, including mutations and copy number variations (CNV), were used to depict the landscape of 
genetic changes. The maftools R package was employed to visualize somatic variants across different clusters. The 
primary driver genes in malignant tumors were identified by considering frequently mutated genes (FMGs) with the 
highest mutation frequencies among the top 20. CNV analysis was also conducted among clusters, leading to the 
identification of frequently amplified or deleted genes.

Multiscale Embedded Gene Co-Expression Network Analysis (MEGENA)
MEGENA is a method used for the analysis of gene co-expression networks, aiming to uncover the relationships and 
patterns between genes. The MEGENA was constructed through correlation assessment, construction of a fast planar 
filtered network (PFN), and multi-scale clustering analysis (MCA).

Construction and Validation of Prognostic Model
The TCGA cohort was used as the training dataset to construct the prognostic model, while the GSE161158 cohort was 
considered the external verification set. The relationship between candidate cancer genes and patient survival was 
evaluated in the training set using lasso Cox regression, implemented with the R package glmnet.

Immunotherapy and Chemotherapy Analysis
The association between the prognostic risk score and tumor immune-related genes was assessed using Spearman correla-
tion. A total of 198 drugs for colorectal cancer from the Genomics of Drug Sensitivity in Cancer (GDSC) dataset were 
selected for the analysis of IC50 (half maximal inhibitory concentration) values within the high-risk and low-risk groups.

Animals Model
AOM Model
Male C57BL/6 mice (8 weeks old) were purchased from Vital River (Beijing, China). After 1 week of acclimation to the 
respective diets, mice received weekly intraperitoneal injections of 6 doses of azomethane (AOM; 10 mg/kg) to simulate 
sporadic CRC. Mice were harvested at week 22.29 This study used sodium pentobarbital for anesthesia. Mice were 
weighed weekly and sacrificed on day 154.

AOM/DSS Model
AOM/DSS has been used to induce colitis-associated cancer (CAC). Each animal was injected intraperitoneally with AOM 
(10 mg/kg) dissolved in PBS. 7 days later, the animals were provided with drinking water containing 1.5% (w/v) DSS for 7 
days, then provided with drinking water for an additional 14 days, and received two additional cycles of 1.5% (w/v) DSS 
treatment in three-week intervals for a total of 3 cycles.30 Mice were weighed weekly and sacrificed on day 70.

Statistics
All analyses and graphics were generated using GraphPad Prism 9 (GraphPad Software). All data are expressed as mean 
± SD. All data on statistical differences were evaluated using the two-tailed Student’s t-test and one-way ANOVA.
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Results
M2 Macrophages are Associated with Altered Tumor Immune Infiltration and Poor 
Prognosis
Single-cell sequencing and Bulk RNA sequencing were used to analyze the heterogeneity of M2 macrophages in CRC 
patients. To portray the landscape and dynamics of cell subtypes, we conducted single-cell transcriptome analysis 
coupled with subcluster analysis. We conducted distinct clustering analyses for 36,148 cells originating from tumors 
and 29,846 cells from non-tumor sources (Figure S1A). Overall, we classified a total of 65,994 cells originating from 
normal tissue and tumors into 25 clusters (Figure 1A). We successfully classified nine distinct cell types utilizing markers 
unique to each. Of these, five are associated with the immune system: B cells, natural killer (NK) cells, macrophages, 
monocytes, and T cells. The remaining four types are non-immune cells, comprising endothelial cells, epithelial cells, 
smooth muscle cells, and tissue stem cells (Figure 1B). Subsequently, comparisons were made between the changes in 
the ratios of nine types of cells in normal and tumor tissues, revealing that the proportions of macrophage-monocytes 
exhibited the most significant alterations among the five immune cell types (Figure 1C).

Moreover, the principal five markers for each immune cell cluster were pinpointed (Figure S1B). To delve deeper into 
the association between the changes in these immune cells within tumor tissues and tumor progression, nine cell types 
were found to be predominantly involved in the immune response pathway. It was established that macrophages and 
monocytes are the cell types most significantly engaged in the immune response (Figure 1D), aligning with the observed 
shifts in cellular proportions. Following this, we conducted a quantitative evaluation of the cellular makeup of the 
immune infiltration present in the TME. Two publicly accessible CRC cohorts (GSE161158 and GSE38832) were used to 
assess the prognostic significance of the infiltration of 22 immune cell types, and both cohorts provided overall survival 
data. A forest plot was used to show the Results of univariate Cox regression analysis. The survival results revealed that 
the presence of M2 macrophages (HR = 2.2; 95% CI, 1.3–3.7; P = 0.0049) and eosinophils (HR = 1.9; 95% CI, 1.1–3.2; 
P = 0.016) were correlated with an unfavorable prognosis (GSE161158 dataset). Conversely, the presence of resting CD4 
memory T cells (HR = 0.59; 95% CI, 0.35–0.99; P = 0.047) was associated with an improved prognosis (Figure 1E). 
Similarly, within the GSE38832 dataset, the presence of M2 macrophages (HR = 1.7; 95% CI, 0.2–2.4; P = 0.006), 
activated NK cells (HR = 1.6; 95% CI, 1.1–2.3; P = 0.012), naïve CD4 T cells (HR = 1.6; 95% CI, 1.1–2.3; P = 0.012) 
and gamma delta T cells (HR = 1.7; 95% CI, 1.2–2.4; P = 0.006) were linked to an unfavorable prognosis, while the 
presence of naïve B cells (HR = 0.61; 95% CI, 0.42–0.88; P = 0.008), resting CD4 memory T cells (HR = 0.67; 95% CI, 
0.46–0.95; P = 0.026) were associated with a more favorable prognosis (Figure S1C). Kaplan-Meier survival curve 
analysis revealed that colorectal cancer (CRC) patients exhibiting low M2 macrophage infiltration had significantly 
improved overall survival (OS) compared to those with high M2 infiltration (Figure 1F; Figure S1D). Conversely, the 
infiltration levels of M0 and M1 macrophages did not significantly impact the survival outcomes of CRC patients.

An immunohistochemistry assay was employed to explore the role of macrophages in colorectal cancer (CRC) 
tissues. We specifically assessed the presence of CD86 (a marker of M1 macrophages) and CD206 (a marker of M2 
macrophages) in two distinct mouse CRC models: the AOM model and the AOM/DSS model, representative images are 
depicted in Figure 1G. Our findings reveal that M2 macrophages are more prevalently expressed than M1 macrophages 
within CRC tumor tissues, with a notable increase in M2 cell content observed in the AOM/DSS model. These 
observations underscore the variability of M2 macrophages in CRC tumor environments and their association with 
enhanced inflammatory responses and adverse prognostic outcomes. Consequently, these results suggest that focusing 
research on M2 macrophages could unveil novel perspectives and therapeutic opportunities in CRC treatment.

Distinctly Different Metabolic Pathways of Two M2 Subclusters
Considering the critical function of macrophages in tumor progression and their complex relationships with tumors, we 
embarked on a comprehensive analysis and characterization of macrophages at the single-cell level. To explore the 
evolution of macrophages, we employed tumor-derived macrophages and implemented a series of analytical techniques, 
such as dimensional reduction, unsupervised clustering, and trajectory analysis. This process led to the identification of 
three unique macrophage subpopulations (M2-1, M2-2, M2-3), which were subsequently visualized using the UMAP 
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Figure 1 M2 macrophages are associated with altered tumor immune infiltration and poor prognosis.(A) Single-cell sequencing showed that CRC cells were categorized 
into 25 major cell subpopulations.(B) The 25 cell subpopulations are mainly categorized into nine cell types and contain five immune cells.(C) Examine the variances in the 
proportions of nine cell types from tumors and normal tissues in CRC. (D) Results of single-cell genome enrichment analysis showing the involvement of different cell types 
in the inflammatory response. (E) Infiltration abundance and prognosis of 22 immune cell types were demonstrated by univariate Cox regression analysis of the CRC cohort 
(GSE161158).(F) Kaplan-Meier survival curves of M0, M1, and M2 macrophage infiltration in CRC patients (GSE161158).(G) Representative images showing CD86 (M1 
marker) and CD206 (M2 marker) in tumor tissues of mice induced by AOM (N=6) and AOM/DSS (N=6). *P<0.05; **P<0.0, ***P<0.001.
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method (Figure 2A). The Monocle algorithm has been employed to track alterations in cell status within the TME as the 
tumor progresses. Our analysis revealed an increase in the prevalence of M2 cells during the later stages of tumor growth, 
potentially indicating a poor prognosis (Figure 2B). The transition from M1 macrophages, which enhance immune 
response, to M2 macrophages, known for suppressing immune function, is a hallmark characteristic of malignant tumors. 
Genes analyzed through trajectory analysis are utilized to develop prognostic models related to M2 macrophages. The 
CDF plot showed the distribution of the consensus matrix for various k values, ranging from 2 to 6 (Figure 2C). After 
careful examination, we concluded that k = 2 was the optimal parameter for separating the training cohort into different 
subgroups, taking into account criteria such as an adjusted P value < 0.05 and a |log2(FC)| > 1.5 (Figure 2C). We carried 
out additional investigations into the prognostic importance of these clusters, discovering that Cluster 2 (C2) was 
associated with a lower OS rate, whereas Cluster 1 (C1) demonstrated a more favorable prognosis (P < 0.05) 
(Figure 2D).

To investigate heterogeneous tumors that play a critical role in which function, respectively, we compared gene 
expression in C1 and C2 tumor samples and performed pathway enrichment analysis. The results of the differentially 
expressed genes of the two isoforms are shown in the volcano plot (Figure 2E). Subsequently, we conducted 
a comparative analysis of the differentially expressed gene sets between C1 and C2, utilizing Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to elucidate their distinct functional attributes. The 
KEGG analysis revealed that C1 demonstrated a significantly enhanced enrichment in pathways associated with drug 
metabolism, steroid hormone biosynthesis, and metabolism compared to C2. Conversely, C2 showed a more pronounced 
enrichment in pathways pivotal to tumorigenesis and development, including cell adhesion molecules, extracellular 
matrix (ECM)-receptor interactions, and the PI3K-Akt signaling pathway (Figure S1E, S1F). The analysis conducted by 
GSEA revealed that there was a notable increase in pathways like metabolic pathways and steroid hormone biosynthesis 
in C1. Meanwhile, C2 showed a significant upregulation in pathways such as cell adhesion molecules, ECM-receptor 
interaction, focal adhesion, and the PI3K-Akt signaling pathway. These findings indicate that C2 is associated with the 
activation of several cancer-related pathways (Figure 2F). The GO analysis revealed that C1 had a higher abundance of 
pathways related to producing molecular mediators of immune response, adaptive immune response, and hormone 
metabolic processes (Figure 2G). C2 exhibited enrichment in pathways related to extracellular structure organization, 
ECM organization, and cell-cell adhesion via plasma-membrane adhesion molecules (Figure 2G).

Since Cluster 1 is closely associated with a variety of metabolic pathways, whereas Cluster 2 is enriched for pathways 
of cell adhesion, is it possible that the difference in the performance of these two clusters is related to the presence of 
their different metabolic alterations. To delve into the underlying mechanisms of metabolic reprogramming within these 
clusters, our investigation centered on 5431 human metabolic genes, which are associated with 72 metabolic pathways as 
cataloged in the KEGG database (Table S1). We assessed the enrichment scores of these 72 metabolic pathways in each 
CRC sample within the TCGA cohort using gene-set enrichment analysis (GSEA). This allowed us to unveil the 
metabolic diversity within the two M2-related clusters (Figure 2H and Table S1). C1 (50.5% of all tumors, n=305), 
displayed a hypometabolic pattern across multiple metabolic pathways, including lipid metabolism, vitamin metabolism, 
and amino metabolism, in comparison to C2, which accounted for 49.5% of all tumors (n=299) (Figure 2H). C2 exhibited 
significant upregulation in metabolic pathways related to lipids, sphingolipids, steroids, vitamins, and carbohydrates. The 
heatmap analysis distinctly revealed variations in metabolic pathways between the two M2 subclusters. Subcluster C2 
exhibited heightened metabolic activity, whereas its counterpart was associated with a poorer prognostic outcome 
(Figure 2H). The two clusters demonstrated distinct clinical characteristics, with C2 having a significantly higher 
pathologic N2 and a more advanced clinical stage (Table S2). Overall, this suggests that targeting the active metabolism 
within the heterogeneous M2 subtypes in CRC may offer a strategic approach.

High Metabolic Tumor Patterns Play a Role in Promoting the Immunosuppressive 
Phenotypes in Colorectal Cancer
To further explore whether the metabolic differences seen between the two groups of M2 subtypes are accompanied by 
other alterations, we analyzed genomic mutations in the M2 subclusters. We investigated and observed the distribution of 
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Figure 2 Distinctly different metabolic pathways of two M2 subclusters. (A and B) Images represent the differentiation trajectory of M2 macrophages in the CRC. (A) using 
different colors to represent different clusters and (B) using color changes to indicate pseudotime. (C) Depict a plot of the cumulative distribution function (CDF) showing 
the consensus matrix for each k-value (ranging from 2 to 6) Two clusters are the best choice. (D) Kaplan-Meier survival analysis of M2 subclusters in CRC patients (TCGA 
dataset). (E) Volcano plots show genes that are differentially expressed in Cluster 1 or Cluster 2. (F) GSEA showing pathways enriched for Cluster 1 (left) and Cluster 2 
(right). Cluster 1 was enriched with Metabolic pathways and Cluster 2 was enriched with cell adhesion molecules pathways. (G) GO enrichment analyses for genes up- 
regulated in cluster 1 and cluster 2. (H) Heatmap showing the results of metabolic pathway-based GSEA analysis in cluster 1 and cluster 2.
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20 somatic mutations between the two risk groups. The most frequently mutated genes in the CRC population were APC 
and TP53. Notably, C2 exhibited a higher mutation burden and altered fraction genome frequencies, while C1 displayed 
the opposite trend (Figure 3A, B; Figure S1G, S1H, S1I). The results unveiled a high frequency of TP53 mutation in C2. 
In light of these findings, we suggest that the upregulation of ECM-related pathways may be accompanied by the 
upregulation of metabolic pathways. Consequently, there is a potential linkage between the biological process of 
macrophage metabolism and tumor ECM composition (Figure 3A and B; Figure S1G).

To explore the relationship between distinct metabolic and immune signatures within M2 subclusters, we assess 
immune infiltration and the expression of immune checkpoint-related genes. Significantly, C1 showed notably higher 
proportions of infiltrating activated B cells, activated CD8 T cells, CD56 bright natural killer cells, CD56 dim natural 
killer cells, central memory CD4 T cells, central memory CD8 T cells, effector memory CD4 T cells, effector memory 
CD8 T cells, neutrophils, and Th17 helper cells compared to C2 (Figure 3C and D). Conversely, C2 displayed 
significantly higher proportions of infiltrating gamma delta T cells, macrophages, monocytes, natural killer T cells, 
plasmacytoid dendritic cells, regulatory T cells, and T follicular helper cells. Previous studies have reported a correlation 
between high infiltration of gamma delta T cells and poor prognosis in CRC patients,31 although the underlying 
mechanisms remain unclear. Additionally, the correlation between macrophages and gamma delta T cells has been 
documented.32 In contrast, C1 exhibited higher stemness scores, while C2 showed higher stromal and ESTIMATE scores 
(Figure 3D). We performed further analysis to confirm the results. Our study of immune-related genes revealed that the 
expression of MHC-I-related genes was significantly higher in C2, as shown in Figure 3E. Notably, the first signaling 
mediated by MHC peptide complexes and the co-stimulated second signaling were essential for anti-tumor immune 
activation. Therefore, we also investigated the expression levels of co-stimulatory/inhibitory molecules. The results 
indicate that within the context of CRC, inhibitory ligands are notably overexpressed in C2. In contrast, inhibitory 
receptors found on immune cells that have infiltrated the tumor are significantly more abundant in C2 compared to C1. 
Specifically, the following receptors, ADORA2A, CD40, CTLA4, HAVCR2, IL2RA, PDCD1 (PD-1), TIGIT (CD155), 
TLR4 (toll-like receptor 4), TNFRSF18 (GITR), TNFRSF4 (OX40), and TNFRSF9 (4–1BB), exhibit this pattern of 
elevated expression (Figure 3F and G). These findings collectively suggest that CRC creates an immunosuppressive 
microenvironment, characterized by a prevalence of inhibitory signaling. Consequently, this immunosuppressive envir-
onment hinders the infiltration of immune cells into the tumor, potentially contributing to the challenges of mounting an 
effective immune response against CRC.

Constructing a Prognostic Model Through the Convergence of Metabolic-DEGs and 
MEGENA Modules
In order to better understand the differences within the M2 subclusters of CRC and identify important metabolic genes 
with prognostic value, we conducted a differential expression analysis for both M2 subclusters. This analysis uncovered 
a group of 1218 genes that showed varying levels of expression (Figure S2A). Following this, we employed the 
hierarchical clustering technique MEGENA to detect 297 target modules with the metabolism-related gene network of 
CRC (Figure S2B). By analyzing two sets of results, we have identified 101 metabolic genes that have the potential to 
predict overall survival. Out of these 101 genes, 13 genes have shown significant prognostic value through univariate 
COX analysis, as depicted in Figure 4A and B.

We established the prognosis model using the TCGA cohort and subsequently validated it using the GEO database 
(GSE161158). To efficiently sift through these genes, we initially conducted a univariate Cox analysis. This analysis led 
to the identification of 13 genes associated with prognosis (Figure 4C). For further filtering, lasso regression analysis was 
applied to identify 8 genes (PRELP, NOTCH3, CNOT6, ASRGL1, SRSF1, PSMD4, RPL31, and CNOT7) for con-
structing the prognosis model (Figure 4D–F).

Subsequently, we utilized these 8 metabolic genes to construct a prognosis model for CRC patients. Using the median 
point as the cutoff, we stratified patients in the TCGA into two distinct categories: the high-risk group and the low-risk 
group. The gene expression profiles showed the following patterns: PRELP, NOTCH3, PSMD4, and RPL31 displayed 
elevated expression in the high-risk group (HR > 1). In contrast, CNOT6, ASRGL1, SRSF1, and CNOT7 exhibited 
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Figure 3 High metabolic tumor patterns play a role in promoting the immunosuppressive phenotypes in colorectal cancer. (A) The waterfall plot shows the top 20 most 
frequently mutated genes in Cluster 1. (B) The waterfall plot shows the top 20 most frequently mutated genes in Cluster 2. (C) Percentage abundance of 22 immune cells in 
two M2 subclusters. (D) Heatmap and box plots illustrating 22 immune cell abundance, ESTIMATE scores, immune scores, and stromal scores for the two M2 subclusters. 
(E) The expression of MHC-I molecules in the two M2 subclusters. (F and G) The expression of co-stimulatory and co-inhibitory molecules in the two M2 subclusters. ns, 
no significance; *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.
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Figure 4 Construction of 8-gene signature prognosis model in TCGA. (A) Venn diagram showing overlap genes of Differential expression genes and MEGENA. (B) 
Univariate COX analysis results for 13 overlapped genes in CRC patients. (C) Lasso regression of independent factors. (D) Risk profiles of high-risk and low-risk patients for 
the 8-gene signature prognostic model (TCGA dataset). (E) Scatterplot analysis of risk-survival in high- and low-risk patients with the 8-gene signature prognostic model 
(TCGA dataset). (F) Heatmap of metabolic gene expression profiles of 8 metabolic genes (TCGA dataset). (G) Kaplan-Meier survival analysis of 8-gene signature prognostic 
model (TCGA dataset). (H) ROC curve analysis demonstrates the prognostic performance of the 8-gene signature prognostic model in predicting 1-3-5-year survival times 
in TCGA. *P<0.05; **P<0.01; ***P<0.001.
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higher expression levels in the low-risk group (HR < 1), as depicted in Figure 4F. We generated KM survival curves to 
evaluate the survival rate between the high-risk and low-risk groups (Figure 4G). Notably, the Area Under the Curve 
(AUC) values for 1-year, 3-year, and 5-year OS prediction in the Receiver Operating Characteristic (ROC) curve all 
exceeded 0.65 (Figure 4H), indicating a strong performance in predicting survival. Finally, we conducted similar analyses 
on the GEO dataset, consistently reaching the same Conclusions regarding the importance of the 8 genes (Figure S2C– 
S2F). Importantly, the 1-year and 3-year AUC values of the ROC curve exceeded 0.6 (Figure S2G), demonstrating the 
broad potential applicability of this prognosis model for predicting CRC patient outcomes.

Nomogram Was Constructed Based on the 8-Metabolic Genes Model and 
Determined That the Two Groups Differed in the Sensitivity of Chemotherapy
In our analysis, we integrated clinicopathologic characteristics including age, gender, pathological TNM, pathological 
stage, and risk score for univariate Cox analysis to observe whether these factors could serve as independent prognostic 
factors. Notably, we observed that risk score, pathologic T, and age were independent prognostic factors (Figure 5A), 
while other factors were excluded. Based on the results of the univariate analyses, we then incorporated these specific 
indicators into a multivariate Cox model to analyze whether these factors were influenced by other factors, and ultimately 
found that age, pathological T, and risk score were the 3 factors that could be used in the next step of the calculation 
(Figure 5B). Following this, we proceeded to create nomograms, along with 1-year, 3-year, and 5-year calibration curves, 
utilizing the independent prognostic factors, all of which displayed P-values below 0.05 (Figure 5C, D, and E). The 
ultimate predictors incorporated into the nomograms comprised the risk score, pathologic T, and age (Figure 5F). 
Furthermore, the C-index was determined to be 0.8, indicating excellent discriminative ability of the nomogram 
prediction model. Consistent with the results obtained with the risk score, the inhibitory immune checkpoint molecules 
were higher expressed in the high-risk group (worse prognosis) relative to the low-risk group (better prognosis), and we 
subsequently expanded our study of the expression patterns of these molecules in both the high- and low-risk groups. 
Indeed, there was a consistent trend where the expression levels of immune checkpoint molecules, specifically LAG3, 
TIGIT, CTLA4, PDCD1, and HAVCR2, were notably higher in the low-risk group (Figure 5G and H). Additionally, we 
conducted an exploration to identify potential chemotherapy drugs that might be sensitive in the high-risk group. This 
investigation led us to uncover 14 drugs exhibiting negative correlation coefficients, including Olaparib, Sabutoclax, 
Venetoclax, ABT737 (Figure 5I). These findings strongly indicate the potential efficacy of single drugs or combination 
treatments, particularly when used in conjunction with immune checkpoint inhibitors, for managing high-risk CRC 
patients with promising anti-tumor effects.

Discussion
The heterogeneity and poor prognosis associated with CRC have been well-established.33 With the advancement of 
guidelines and extensive research, various treatment options are now available for CRC patients. However, even within 
the same clinical stage, the standardized treatment approaches still exhibit heterogeneity. The diversity in CRC can be 
explained by the lack of attention given to unique molecular traits in patients. Due to the varying clinical results 
observed, it is important to study the genomic features of CRC patients and create a new system for classifying them 
based on molecular characteristics.

Our study utilized advanced technologies to explore the idea of tumor heterogeneity. We performed single-cell RNA- 
seq analysis to understand the behavior of immune cell subsets and M2 macrophages in the TME. Prior research has 
highlighted the close relationship between the TME and tumor heterogeneity, highlighting the crucial role of macro-
phages in regulating immunity.34 M1 macrophages are associated with an anti-tumor role, while M2 macrophages are 
implicated in tumor cell development. A previous study found that inhibitors targeting MAT2A regulated methionine 
metabolism in TAMs and tumor cells, revealing that methionine metabolism regulates TAMs polarization in gastric 
cancer.35 Moreover, both macrophage subtypes have prognostic implications and influence the response to immunother-
apy. Our findings demonstrate the activation of immune-inflammatory pathways within immune cell clusters, and we 
observed a progressive increase in M2 macrophages during tumor progression. We propose that genes along the 
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Figure 5 A nomogram was constructed based on 8 metabolic genes and determined that the two groups differed in the sensitivity of chemotherapy. (A) Univariate COX 
analysis results for clinical characteristics and risk score. (B) Multivariate COX analysis results for significant clinical characteristics and risk score. (C, D, E) Calibration 
curves for the nomograms predicting 1-3-5-year OS of CRC patients. (F) Nomogram was conducted of CRC patients with risk scores. (G) Correlation between risk scores 
and the immune checkpoint molecules. (H) Multiple immune checkpoint molecules of CRC grouped by risk score. (I) The sensitivity to chemotherapies of CRC grouped by 
risk score. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.
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evolutionary trajectory of M2 macrophages may serve as important prognostic markers and contribute to the hetero-
geneity of clinical outcomes, thus forming a solid foundation for constructing a molecular classification system.

To uncover heterogeneous molecular clusters, we utilized the CDF algorithm and successfully identified two well- 
defined clusters within the TCGA-CRC cohort. This clustering was substantiated by multiple evaluation metrics, 
ensuring its robustness. Upon further examination of the prognostic implications, it became evident that Cluster 2 
(C2) displayed an unfavorable prognosis and had the potential to serve as an independent prognostic indicator. In 
addition, we used GSEA analysis to investigate metabolic pathways in these two M2 clusters. This analysis unveiled an 
elevated expression of metabolic pathways within the C2. Consequently, the two subclusters of M2 could be further 
subdivided into a high-metabolism group and a low-metabolism group. In general, M1 macrophages predominantly 
utilize aerobic glycolysis, while M2 macrophages depend on oxidative metabolism. Metabolic investigations have shed 
light on the fact that the metabolic profile of TAMs and the presence of specific metabolites in the TME play critical roles 
in governing the function and polarization of TAMs. Nonetheless, the exact impacts of metabolic reprogramming on both 
tumors and TAMs remain to be fully comprehended and are still subject to further exploration.22,36

Furthermore, our study aimed to characterize the underlying biology of these two clusters. The subgroup identified as 
C2, characterized by a high metabolic phenotype, exhibited poor prognosis, aggressiveness, high mutational load, and 
extensive immune infiltration. The results of the GSEA enrichment analysis concurred in demonstrating that C1 was 
predominantly linked to immune response pathways, signifying its strong affiliation with immune-related processes. 
Conversely, C2 exhibited substantial enrichment in pathways related to the ECM, underscoring its involvement in ECM- 
associated biological activities. Additionally, the two clusters exhibited distinct genomic signatures. Somatic mutations 
and CNVs emphasized that C2 demonstrated pronounced genomic instability. Prior research has consistently demon-
strated that patients with TP53 mutations tend to have a higher likelihood of experiencing immune evasion and a less 
favorable prognosis.37 In line with these established findings, our study illuminated that C2, which was distinguished by 
the highest TP53 mutation burden, indeed experienced a poorer prognosis. In contrast, patients within C1 were more 
inclined to display anti-tumor activity, derive benefits from immunotherapy, and showcase favorable clinical outcomes, 
all while maintaining stable genomic features. As previously discussed, C2 is distinguished by heightened levels of cell 
adhesion molecules, significant genomic instability, a pronounced malignant phenotype, and an unfavorable prognosis. 
Consequently, it necessitates meticulous attention to enhance patient prognosis and therapeutic effectiveness. In clinical 
settings, it’s important to recognize that certain patients may respond favorably to specific drug treatments, while others 
might experience adverse drug effects.

To identify key genes that shape the distinct metabolic patterns of M2 macrophage subclusters in CRC, we intersected 
DEGs between the two M2 clusters with MEGENA results to identify key molecules in the CRC that are associated with 
M2 macrophages and linked to metabolic alterations. Eight important overlapped genes were identified: PRELP, 
NOTCH3, CNOT6, ASRGL1, SRSF1, PSMD4, RPL31, and CNOT7. We proceeded to construct a prognostic model 
and subsequently validated its predictive performance both internally and externally with 8 genes, making use of the 
TCGA-CRC database. Furthermore, we extended our analysis by integrating clinical factors that exhibited significant 
prognostic value, leading to the successful creation of a nomogram. This nomogram demonstrated a relatively strong 
discriminatory capability.

Within our prognosis model, it was observed that four genes, namely PRELP, ASRGL1, CNOT6, and CNOT7. 
A study has shown that the loss of PRELP reduces cell-cell adhesion and facilitates epithelial-mesenchymal transition 
(EMT).38 ASRGL1 plays a protective role in endometrial carcinoma by participating in asparagine catabolism via 
L-aspartic acid.39 CNOT6 and CNOT7 are members of the CCR4-NOT transcription complex.40 Notably, the knockdown 
of CNOT7 has been found to have inhibitory effects on cell proliferation, reduce cell migration and invasion abilities in 
cancer, and simultaneously promote cell apoptosis and autophagy. These findings suggest that targeting CCR4-NOT, 
particularly CNOT7, could hold promise as a therapeutic approach in certain disease scenarios.41,42 The other four genes 
within the prognosis model, which are associated with the regulation of metabolism, demonstrated diagnostic potential 
for distinguishing between normal and colorectal tumor tissues. These genes are NOTCH3, SRSF1, PSMD4, and RPL31. 
Overexpression of NOTCH3 is positively associated with poor clinical outcomes.43,44 The overexpression of NOTCH3 
has been positively linked to poor clinical outcomes. SRSF1 impedes the progression of hepatocellular carcinoma (HCC) 
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by inhibiting the ERK signaling pathway.45,46 On the other hand, PSMD4 has been observed to increase autophagy, 
enhance antigen presentation, and activate CD4+ T and natural killer cells when inhibited.47 RPL31 was found to restrict 
CRC cell proliferation, migration, and colony formation while enhancing cell apoptosis when its expression was knocked 
down.48

Our research has identified two distinct clusters and suggested personalized treatment approaches. However, it is 
crucial to recognize certain limitations. Primarily, all the samples in this study are retrospective, underscoring the 
importance of prospective studies to authenticate and corroborate the outcomes obtained in this investigation. 
Secondly, it is imperative to conduct additional research utilizing multicenter large sample datasets that include eligible 
patients who have undergone immunotherapy. This is crucial for a comprehensive evaluation of clinical efficacy. Thirdly, 
further investigation and exploration of potential therapeutic drugs through more research is necessary to translate 
research findings into tangible clinical applications for patient benefit.

Conclusions
Our study has uncovered tumor metabolism and immune cell populations as sources of intertumoral and intratumoral 
heterogeneity in CRC. Notably, we have linked the M2 macrophage subtype to an unfavorable prognosis in patients with 
CRC, showcasing remarkable metabolic disparities in this context. Through differential gene analysis and MEGENA, we 
have identified eight genes highly correlated with the M2 subtype and metabolism. Based on these findings, we have 
formulated a risk model to forecast the response to immunotherapy by employing a gene signature associated with M2 
macrophages. We aspire that the collaborative analysis of single-cell RNA-seq and bulk RNA-seq data can advance 
a new era of colorectal cancer immunotherapy and precision therapy.
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