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Abstract: Whiskers are nanoscale, high-strength fibrous crystals with a wide range of potential applications in dentistry owing to their 
unique mechanical, thermal, electrical, and biological properties. They possess high strength, a high modulus of elasticity and good 
biocompatibility. Hence, adding these crystals to dental composites as reinforcement can considerably improve the mechanical 
properties and durability of restorations. Additionally, whiskers are involved in inducing the value-added differentiation of osteoblasts, 
odontogenic osteocytes, and pulp stem cells, and promoting the regeneration of alveolar bone, periodontal tissue, and pulp tissue. They 
can also enhance the mucosal barrier function, inhibit the proliferation of tumor cells, control inflammation, and aid in cancer 
prevention. This review comprehensively summarizes the classification, properties, growth mechanisms and preparation methods of 
whiskers and focuses on their application in dentistry. Due to their unique physicochemical properties, excellent biological properties, 
and nanoscale characteristics, whiskers show great potential for application in bone, periodontal, and pulp tissue regeneration. 
Additionally, they can be used to prevent and treat oral cancer and improve medical devices, thus making them a promising new 
material in dentistry. 
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Introduction
Whiskers are fibers that form naturally or grow under artificially controlled conditions (predominant form) as single 
crystals.1 They have a very small diameter of about 0.1–10 μm, and an aspect ratio of 5–1000.2 They do not contain 
defects such as grain boundaries, dislocations, or cavities, that are usually present in other material, and their atomic 
arrangement is highly ordered. Consequently, their strength is close to the theoretical value of the intact crystals, and their 
mechanical strength is equal to the inter-atomic forces between neighboring atoms.3 In addition to high modulus and 
elongation, the highly oriented structure of whiskers imparts them with superior electrical, optical, magnetic, dielectric, 
conductive, and superconductive properties. With a nearly complete crystal structure, whiskers have incredible mechan-
ical strength, as plastics, coatings and light brittle class of inorganic and other materials modification additives, showing 
excellent physicochemical properties and mechanical properties. Thus, they are known as the reinforcing and toughening 
materials of the 21st century.4,5

In 1574, Erker L found a hair or beard-like material on the surface of sulfate ores of copper and silver.6 Subsequently, 
Boyle (1661) compared the different forms of growth of silver whiskers on stone and glass.7 In 1952, the American Bell 
Telephone Company determined the strength of tin (Sn) whiskers for the first time in the laboratory and found that it was 
much greater than (close to the theoretical strength) that of the ordinary metal Sn.8 The earliest industrialized whiskers 
product appeared in 1962, however, its application was limited by its extremely high price (3000–5000/kg for silicon 
carbide (SiC) whiskers). Subsequently, a breakthrough in their application occurred in the 1980s, when the cheaper 
potassium titanate(K4TiO4) whiskers were introduced in Japan. Calcium sulfate (CaSO4) and calcium carbonate (CaCO3) 
whiskers were successfully developed at lower costs. The aluminum borate (H3AlBO2) whisker was examined in Japan 
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in 1987, followed by small batch production (10 tons per annum [t/a]) in 1991 and a large-scale production (200 t/a) in 
1995. In the late 1990s, the study of whiskers became a hot topic in materials science research, resulting in the 
development of more than 100 different whiskers, to date.5,9

Whiskers are used in various applications due to their unique physical and chemical properties.5,9 Autologous bone 
grafting is considered the gold standard for bone regeneration in the treatment of bone defect repair.10 However, 
autologous bone grafts have drawbacks, such as limited access and donor damage, and allogeneic bone grafts may 
cause severe immune rejection. The proposal and development of bone tissue engineering (BTE) has led to new ideas for 
the repair and regeneration of bone defects.11 The current materials applied to BTE are deficient in biocompatibility, 
bioactivity, and osteoinductive capacity.12,13 Some materials may trigger an immune or inflammatory response, leading to 
tissue damage or dysfunction,14 while others have limited osteoinductive ability to meet the needs of complex bone 
defect repair.15,16 Owing to their unique physicochemical properties and biocompatibility, whiskers can be used as high- 
performance scaffolding materials and carriers of bioactive factors for BTE, aiding in the effective repair and regenera-
tion of bone defects.17

Periodontal and pulpal regeneration involves the repair of damaged periodontal and pulpal tissues, respectively, via 
biological means, resulting in the restoration of their normal functions.18 Existing periodontal and pulpal regeneration 
materials can lead to impaired cellular connectivity, microenvironmental disruption, and impaired cell loss and 
differentiation.19–22 Whiskers with high strength and modulus provide stable support structures during regeneration 
and promote tissue reconstruction and repair.23 The superior biocompatibility of this material helps reduce irritation and 
damage to periodontal and pulpal tissues and facilitates cell adhesion and proliferation.24 In addition, as a nanoscale 
material, whiskers facilitate close bonding with periodontal and pulpal tissues, promoting cellular exchange and nutrient 
transfer during regeneration.25 They offer significant benefits in periodontal and pulpal regeneration applications and are 
expected to bring significant advances in dentistry.

Oral cancer is a major health challenge in today’s world. The existing materials face poor carrier selection and 
release, limited delivery, and significant side effects during the prevention and treatment of this disease.26 Insufficient 
targeting performance may lead to phagocytosis, and the mechanisms of action and power sources of these materials need 
to be clarified.27 Moreover, drug transportation is limited, and safety is doubtful.28 Alternatively, the highly targeted 
positioning of whiskers enables precise action on tumor tissues and reduces damage to normal cells.29 Furthermore, the 
biocompatibility of this material can effectively reduce the immune rejection reaction during treatment.30 The excellent 
drug-carrying properties of whiskers can aid in transporting large amounts of drugs directly to the lesion, thereby 
improving the therapeutic effect.31 The emergence of whiskers provides new and innovative strategies for cancer 
treatment and opens up new directions for future research and applications.

Oral medical devices have issues related to biocompatibility, corrosion resistance, abrasion resistance, and mechanical 
properties.32–35 However, whiskers have high strength, high modulus of elasticity, and low density and can serve as 
reinforcement and support in medical devices.36,37 They significantly enhance the mechanical properties of the material 
through various mechanisms, such as crack bridging, crack deflection, and pullout effect. This improves the toughness, 
crack extension resistance, and fatigue life of the composite material and enhances the overall performance of the 
material.38 Whiskers have good compatibility with human tissues and do not readily cause rejection or inflammatory 
reactions in the body. They have good chemical stability, which is conducive to maintaining a stable performance of the 
medical device in the physiological environment.39 In addition, they have antimicrobial properties, which help prevent 
medical devices from causing infections during use, thus further improving the safety and reliability of the devices.40

Whiskers have been extensively studied in biomedical applications. Some whisker-based materials, such as chitin 
whiskers (which are used to promote osseointegration between the jawbone and the implant), have reached the clinical 
trial and translational stage.41 Chitin whiskers significantly enhance gingival production and angiogenesis.24 Titanium 
dioxide (TiO₂) whiskers act as drug carriers to increase the intracellular concentration of the anticancer drug garcinia 
cambogia and enhance its potential antitumor efficacy.42 Zinc oxide (ZnO) nanowhiskers significantly mitigate the 
consequences of Staphylococcus aureus-induced dermatitis.43 However, the use of whiskers in dentistry is in its infancy, 
and there are many challenges in the clinical application and translation of this material in the dental field. Rigorous 
regulatory and experimental evaluations and preclinical assessments are required before they can be used in the clinic.44 

https://doi.org/10.2147/IJN.S471546                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2024:19 7072

Han et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Before the clinical application and translation of whiskers in dentistry, it is important to ensure that they strictly comply 
with the relevant medical device regulations and undergo the registration and approval process.45 Thus, whiskers need to 
undergo rigorous and exhaustive clinical trials to fully validate their effectiveness in diagnosing and treating oral 
diseases.46 During clinical application and translation, conducting a thorough safety assessment of whiskers is critical. 
The assessment includes but is not limited to, in-depth studies of the biocompatibility of whiskers with oral tissues and 
cells to ensure that the material does not cause adverse reactions or rejection in the oral environment.47,48 In addition, 
toxicological testing is required to clarify whether the material has any potential toxic or adverse effects on the human 
body.49,50 Therefore, the clinical application of whiskers has a long way to go, and much effort is needed to enhance its 
clinical breakthrough.

The research and application of whiskers are expanding with the continuous progress of science and technology and 
the growing demand for applications. Refinements in preparation technologies, improvements in performance regulation 
strategies, and expansions in the fields of application may bring whiskers to the forefront, resulting in added benefits and 
contributions to the development and progress of human society.

Classification of Whiskers
Small quantities of natural minerals containing whiskers (eg, suanite) exist in nature. For industrial applications, whiskers 
are mainly synthesized under artificially controlled conditions. More than 100 materials, mainly metals, oxides, carbides, 
halides, nitrides, graphite, and polymers, can be used to make whiskers. Whiskers can be divided into two main 
categories: organic and inorganic.51,52 Among the organic whiskers, cellulose, poly(butyl acrylate-styrene), and poly 
(4-hydroxybenzyl ester) whiskers (PHB whiskers), are more commonly used in polymers. Inorganic whiskers mainly 
include ceramic (such as SiC, K4TiO4, and aluminum borate (H3AlBO2)), inorganic salt (such as CaCO3 and CaSO4), 
and metal (such as alumina oxide (Al2O3) and ZnO) whiskers.

Inorganic Whiskers
Inorganic whiskers are micron- or nanometer-scale fibers grown by the superposition and polymerization of numerous 
single crystals with complete and smooth cross-sections. They include ceramic, inorganic salt, and metal whiskers and 
have a wide range of applications in composites, coatings, batteries, and other products.53,54 Ceramic and inorganic salt 
whiskers can be used in ceramic and polymer composites, respectively, whereas metal whiskers are mainly used in metal 
matrix composites. In addition, inorganic whiskers can be used as fillers, flame retardants, and other products utilized in 
the production of plastics and rubber to improve the strength, wear resistance, corrosion resistance, and other properties 
of medical devices.53,54

Ceramic Whiskers
Ceramic whiskers are manufactured from special ceramic raw materials, including single-crystal fibers and polycrystal-
line fibers, and composed of small grains (5 × 10−3–5 × 10–2 μm). They are characterized by high strength, high modulus 
of elasticity, low density, and high heat resistance. The whiskers are single-crystal short fibers (1–3 μm in diameter and 
20–200 μm in length) grown from composite ceramic materials, such as carbon, silicon, aluminum, and magnesium. 
They are free of defects found in conventional materials, such as grain boundaries, dislocations, and cavities. The atoms 
are arranged in a highly ordered manner; hence, the strength of the whiskers is close to that of the theoretical value of the 
intact crystals. The common ceramic whiskers include Al2O3,55,56 SiC,57–60 boron carbide(B4C),61 zirconium 
dioxide(ZrO2),62,63 aluminum nitride (AlN),64,65 and silicon nitride (Si3N4)66,67 whiskers. These whiskers are widely 
used in medical devices due to their light weight, good toughness, high strength, and superior temperature resistance. 
They can be used as biological scaffolds or enhancement materials in conjunction with stem cells or growth factors 
during pulp regeneration.24 Furthermore, ceramic whisker composites with resin or ceramic substrate can improve the 
mechanical properties and aesthetics of the restorations, reduce the risk of fracture and dislodgement, improve the 
success rate of the restoration, and extend the service life of the denture.68,69
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Inorganic Salt Whiskers
Inorganic salt whiskers are composite crystalline materials composed of inorganic salts with specific topological 
structures and multisystem molecular properties. They can be used to manufacture various types of materials, such as 
ion exchange resins, activated carbon, molecular sieves, and components used in fine chemicals,70,71 The adsorption 
properties, specific surface area, and ionic conductivity of these whiskers can be altered to a certain extent, allowing them 
to have more functions and applications.72 Inorganic salt whiskers mainly include CaSO4,

73–75 CaCO3,76,77 magnesium 
oxide(MgO),72,78 zinc sulfide(ZnS),79 and TiO₂,80,81 which have a wide range of applications in the industrial field. 
CaSO4 whiskers are mainly used for reinforcing and toughening polymer materials such as plastics, rubber, and 
coatings.82 CaCO3 whiskers are used as reinforcing agents and fillers in plastics,83 whereas TiO₂ whiskers have 
photocatalytic and antibacterial properties, which are potentially valuable in the environmental protection and medical 
fields.63 In the biomedical field, inorganic salt whiskers are used in the manufacture of medicines, altering their activity 
and degree of absorption. In dentistry, these whiskers are used as raw materials for oral coatings to improve the hardness 
and corrosion resistance of the tooth surfaces.84 In addition, they can be used as drug delivery carriers to improve the 
therapeutic efficiency of antitumor drugs.85 Inorganic salt whiskers are used the surface or internal structure of implants, 
thereby improving the biocompatibility and osseointegration of implants.86,87

Metal Whiskers
Metal whiskers are naturally formed on the surfaces of metals or artificially controlled, in the form of single-crystal 
growths, commonly found in tin Sn,88,89 Fe,90 Au,91 Ag,92 Cu,93,94 and other metals with low melting points. The 
diameter of the metal whiskers is generally between a few nanometers and tens of nanometers, while the length can reach 
the micron level.95,96 These whiskers look like animal whiskers with high strength and good elasticity and have electrical, 
optical, magnetic, dielectric, conductive, and superconductive properties. In the biomedical field, metal whiskers can be 
used to prepare drug carriers, biosensors, artificial bones, and vascular scaffolds. For example, the excellent conductivity 
of metal whiskers can be used to prepare wearable medical devices or sensors for monitoring human physiological 
signals.97 In addition, they can be used as drug carriers for targeted delivery and controlled release, thereby improving the 
efficacy of the drugs and reducing side effects.31 Metal whiskers have antimicrobial properties and can be used to prepare 
oral care products with antimicrobial functions, such as toothbrushes and toothpastes.98

Organic Whisker
Organic whiskers are high-performance, fibrous materials that utilize natural or synthetic materials. They have an 
acicular or fibrous appearance, a highly oriented and long-range ordered structure, and are usually made of polymer 
compounds. The manufacturing methods of organic whiskers mainly include solution spinning, melt spinning, and 
emulsion spinning. The properties such as high strength, high modulus of elasticity, high temperature resistance, and 
chemical corrosion resistance make organic whiskers an important raw material in several products, including composite 
materials, reinforcing materials, sealing materials, and thermal insulation materials.99,100

Cellulose Whiskers
Cellulose whiskers are nanomaterials obtained by the modification of natural plant cellulose, They consist of nano-sized 
cellulose fiber particles with high degrees of crystallinity and orientation. The fiber diameter of cellulose whiskers is 
usually between 4–10 nm, and the length is between 100–500 nm.101 Cellulose whiskers have excellent physical 
properties, their strength is close to the theoretical value of intact crystals and much higher than those of other short- 
cut fibers.102,103 In addition, cellulose whiskers have good thermal and chemical stability. After modification treatment, 
these whiskers can have different functional groups and reactivity, enabling them to chemically bond to various 
substrates. Cellulose whiskers can form strong hydrogen bonds, which help to control drug release and provide good 
strength for drug carriers.104 They enhance the toughness and rigidity of composites, reduce brittleness, and enhance the 
range of applications for dental composites.105 Furthermore, they can be used to synthesize silver and other metal 
nanoparticles with controlled morphology and antimicrobial properties to enhance the antimicrobial effect. These 
whiskers can be used as wound dressing for skin repair.106
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Poly (Butyl Acrylate-Styrene) Whiskers
Poly (butyl acrylate-styrene) whisker is a new type of functional composite synthesized using a specific technology. The 
two different polymer chains (poly(butyl acrylate) and styrene) in the whisker growth process aid in realizing the co- 
crystallization and co-orientation, the unique structure of the whisker to show a high degree of mechanical strength and 
toughness.107 The diameter of this whisker is generally between a few to tens of nanometers, while the length can reach 
the micron level. This nano-size effect provides the whisker with a large specific surface area and good interfacial 
interactions, which is conducive to improving the mechanical properties and thermal stability of composites.108 Poly 
(butyl acrylate-styrene) whiskers grow in a specific direction to form a highly oriented structure, increasing their tensile 
strength, modulus of elasticity, and toughness. It is possible to prepare poly (butyl acrylate-styrene) whiskers with 
different morphologies and properties by adjusting the synthesis conditions and formulations; this will enable their use 
for different applications in the biomedical, aerospace, automotive, and construction fields. The excellent heat and low- 
temperature resistance, the high strength and stiffness, and the good impact and abrasion resistance of these whiskers 
make them useful in dental restorations and tooth fabrications.109 The properties aid in reducing the brittleness of 
restorative materials, increasing the strength and wear resistance of restorations, resisting the complexity of the oral 
environment, and extending the service life of restorations.

Poly (4-Hydroxybenzyl Ester) Whiskers (PHB Whiskers)
The PHB whisker is a linear polymer with unique structure and properties and is prepared by microbial fermentation. 
They contain many benzene rings in the molecular chain linked together by ester bonds.110,111 The special arrangement of 
the benzene rings and ester bonds in the molecular chain provides these whiskers with a high degree of crystallinity and 
rigidity, resulting in good mechanical properties and stability. PHB whiskers are biodegradable and biocompatible and 
have a wide range of medical, environmental, and agricultural applications. In dentistry, they are used to prepare surgical 
sutures, drug carriers, and tissue engineering scaffolds. The nanostructure of these whiskers helps to promote cell 
adhesion and proliferation, accelerating the bonding of the implant to the surrounding bone tissue and improving its 
stability and success.112

Characterization of Whiskers
Mechanical Properties
Whiskers are micro- and nano-sized short fibers grown from high-purity single crystals. The mechanical strength of the 
crystal is equal to that generated by the force between neighboring atoms, moreover, the highly ordered atomic structure 
results in whiskers with high strength, modulus of elasticity, and elongation.2,113 The typical whisker elongation is 
comparable to that of glass fibers, while the tensile modulus is comparable to that of boron fibers, combining the best of 
both worlds. Whiskers, as fine single crystals with a complete internal structure, are at least one order of magnitude 
stronger than the corresponding common materials.114,115 They can elastically withstand large strains without permanent 
deformation. Whiskers are not permanently deformed by a strain of 4%, whereas bulk crystals elastically deform in 
a range of less than 0.1%. The excellent mechanical properties enable their use as reinforcing materials that can 
significantly improve the mechanical properties of the composites. Wang et al116 prepared isotactic polypropylene 
(PP)/titanate whiskers composites (PP/whiskers) by melt blending with 3-aminopropyl triethoxysilane as surface 
modification of titanate whiskers and maleic anhydride grafted PP (PP-g-MAH) as a capacitance enhancer (Figure 1). 
The notched impact strength of the PP/whiskers composite was increased to 7.4 ± 0.1 kJ/m2, which was 140% higher 
than that of pure PP, while the tensile and flexural strengths were improved to different degrees. Whiskers are an ideal 
reinforcing and restorative material in dentistry due to their excellent mechanical properties.117 They can be used as 
reinforcing agents for dental composites and introduced into matrix materials, such as resins and ceramics, which can 
effectively improve the strength and toughness of the restorations and increase their abrasion and fracture resistance. This 
is of great significance for improving the service life of restorations and reducing the risk of restoration failure.118,119 

Whiskers can be used as a coating or modifying material on the implant surface, increasing the bonding strength between 
the implant and the surrounding bone tissue and improving the stability of the implant.120,121 The excellent mechanical 
properties also minimize problems such as loosening or fracture of the implant during use.122 Despite the complexity and 
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variability of the oral environment, the high temperature stability of whiskers allows them to maintain stable performance 
in the oral environment.123 Thus, the superior mechanical properties of whiskers bring new possibilities for development 
in the field of dentistry. Through further research and application, whiskers are expected to provide more reliable and 
effective solutions for dental restoration, regeneration, and implantation.

Magnetic and Electrical Properties
Whiskers are ideal for studying the magnetic domains of ferromagnetic substances because of their small size, internal 
structure, and perfect shape. Whiskers with small diameters are single magnetic domains, those with large diameters 
also have relatively simple structures. Similar to the mechanical properties, the coercivity of whiskers is also three 
orders of magnitude higher than that of the common material (close to the theoretically calculated value). The 
coercivity increases with the increase in the diameter of the whisker and is greatly improved when the whisker 
diameter is with 1 μm. The electrical properties of whiskers are sensitive to changes in size, on the one hand, they are 
influenced by the high degree of integrity of their internal structure, while on the other hand, they are affected by the 
strong interaction of the interfaces (the whisker surfaces and grain boundaries).60 The resistance of the whisker is 
significantly reduced by the structural integrity of its internal structure, alternatively, the presence of the interface 
increases the diffraction of electrons, reduces the mean free range of the electrons, and raises the resistance.124,125 The 
magnetic and electrical properties of whiskers are still in the exploratory stage for applications in dentistry, but have 
shown potential applications. Magnetic properties of whiskers used to design novel magnetic dental restorative 
materials.126 Magnetically responsive restorations are prepared by introducing magnetic whiskers into dental compo-
sites. The whiskers are precisely positioned and fixed by an external magnetic field, improving the precision and 
stability of the restoration. In addition, magnetic fields can affect cell growth and differentiation, and magnetic 
whiskers are used as a novel biomaterial for the construction of oral therapeutic devices capable of generating 
localized magnetic fields to promote the regeneration and repair of oral tissues.127,128 Meanwhile, whiskers with 
electrical properties are used to construct electrical stimulation therapy devices to promote healing and regeneration of 
oral tissues by applying appropriate electrical stimulation.129,130

Figure 1 The mechanical properties of titanate whisker reinforced isotactic polypropylene. 
Note: Reprinted from Composites Science and Technology, Vol 164, Wang X, Song R, Chen Y, Zhao Y, Zhu K, Yuan X, Mechanical properties of polypropylene by diversely 
compatibilizing with titanate whiskers in composites, 103–109, Copyright © 2018, with permission from Elsevier.116
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Biosafety
Whiskers are fibrous single crystals with an aspect ratio greater than 10:1. They are highly pure, ultrafine synthetic 
inorganic non-metallic materials, that are biologically safe for the following reasons: good biocompatibility, compat-
ibility with human tissues, and do not produce rejection reactions.131 Whiskers are chemically stable and will not cause 
harm to the human body.43 The mechanical properties of whiskers are excellent, they can withstand tremendous pressure 
and bending, cannot be easily broken, and can maintain their performance for a long time.132 The mature preparation 
process of whiskers makes it possible to control their shape, size, and performance and ensure their stability and 
reliability.39 Whiskers degrade slowly in the human body and can maintain their functionality for a long time. The 
excellent Biosafety of whiskers allows them to integrate well with oral tissues when used as enhancers or bioactive 
coatings, reducing inflammatory reactions and rejection caused by implants or restorative materials.120,133 In addition, 
whiskers with excellent biosafety can be used as scaffold materials or cell culture substrates to provide strong support for 
tooth tissue regeneration.23 Combining whiskers with growth factors and cells makes it possible to construct 
a biologically active tooth regeneration system that promotes the regeneration and repair of tooth tissue.24 Similarly, 
by combining whiskers with antimicrobial drugs or agents, oral restorative materials or oral care products with highly 
effective antimicrobial properties can be prepared to effectively prevent and treat oral infections.134,135

Growth Mechanism of Whiskers
Whisker growth is a complex process influenced by multiple factors, including the temperature, pressure, melting and 
solidification processes, structure and orientation of the crystals, impurities and defects, and various growth kinetic 
processes. The growth of whiskers mainly depends on the diffusion and dislocation motion mechanisms.136 In the 
diffusion mechanism, the reverse surface tension generated by the surface oxidation process that diffuses into the 
neighboring region of the whisker, is the source of whisker growth; it reduces the surface free energy and provides 
the driving force for whisker growth. The dislocation motion mechanism drives whisker growth through the motion of 
dislocations, which are linear defects that occur in crystals and can be eliminated or created through motion.137 The 
position and motion of dislocations can significantly influence the direction and morphology of the whisker growth. 
Additionally, specific conditions, such as surface projections and specific atmospheres, can also affect the motion of 
dislocations and, consequently, the whisker growth.

The whisker growth process involves specific growth stages and mechanisms and can be divided into the following 
phases: nucleus formation, primary growth phase, secondary growth phase, and end growth phase.138 Among them, the 
main growth phase has a selective orientation growth characteristic, where rapid directional growth occurs along a certain 
direction of the crystal structure. The secondary growth or overgrowth phase occurs mainly at the top of the whisker. In 
the whisker growth stage, the crystal mainly undergoes a one-dimensional directional growth, the growth rate of the edge 
surface is generally slow, and almost no growth occurs relative to the axial growth rate. Once the difference between the 
anisotropic growth rates of the crystals is small, the crystals grow uniformly in all directions along the three dimensions, 
forming a normal crystal.

Considerable research has been done on the whisker growth mechanism since the discovery of helical dislocations in 
metallic Sn whiskers by Frank in 1958.139,140 Whiskers can be square, rectangular, hexagonal, triangular, or circular in 
cross-section. Depending on the growth process, the growth rates vary from 0.1 nm/s for spontaneous growth to 
several mm/s for some chemical and solution pathways. The five mechanisms proposed for whisker growth are as 
follows:141 (1) the presence of axial helical dislocations, which applies to both vapor-phase growth and liquid–phase 
growth; (2) the vapor–liquid–solid (VLS) mechanism, which applies only to vapor–phase growth; (3) anisotropic growth 
of the structure; (4) toxicoplasmic-induced growth; and (5) restricted diffusion growth.

VLS Growth Mechanism
The VLS growth mechanism was proposed by Wagner and Ellis in 1964 during their study on silicon whisker growth, 
which is the important theoretical basis for the preparation of the vast majority of commercial whiskers.142,143 The V in 
VLS stands for feedstock vapor, S stands for liquid catalyst, and L stands for solid whisker. The main theory of this 
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mechanism is the existence of catalytic droplets between the gas-phase environment and the reactants. Droplets are 
formed by the fusion of impurities and other components, and the gas-phase feedstock enters the catalytic droplets 
through the gas-wave interface. The liquid phase molecules can form whiskers after a supersaturation level for whisker 
growth is reached. The whiskers grow as the gas-phase feedstock continues to enter the catalytic droplet through the gas- 
wave interface by crystallizing at the interface between the liquid and solid whisker products. The droplet is lifted as the 
whisker grows gradually and eventually remains at the top of the whisker. This constitutes the whisker morphology 
characteristic of the VLS growth mechanism, which is applicable to the growth of whiskers in the gas phase.144,145

Vapor-Solid (VS) Growth Mechanism
The VS growth mechanism is derived from the dislocation theory proposed by Frank in his study of the growth mechanism of 
Sn whiskers.146 Stresses on Sn whiskers due to surface oxidation allow them to grow continuous metal fibers in the bulk metal, 
where the screw-type dislocation structure creates conditions for their continuous movement around the whisker roots. The 
reduced surface free energy of the whisker surfaces due to oxidation improves the driving force for whisker growth. The 
degree of supersaturation of the gas-phase reactants in the VS growth mechanism greatly influences whisker growth.147 As 
shown in Figure 2, CO2 whiskers were formed at low temperatures (−70 °C to −65 °C) and moderate pressures (4.4–1.0 bar), 
revealing the VS growth mechanism of CO2 whiskers in the supersaturated state (Figure 3). Whiskers are easily formed when 

Figure 2 Chronological illustrations of the growth process of CO2 whiskers. 
Notes: (a) Condensation of water vapor into droplets. (b) Freezing of water droplets into ice crystals. (c) Formation of the solid CO2 layer over the ice crystals. (d) 
Formation of nuclei on the solid CO2 layer upon gradual depressurization of the stage. (e) Initial growth of CO2 rod-like structures. (f) Growth of CO2 whiskers. Used with 
permission of Royal Society of Chemistry from RSC Advances, Growth of carbon dioxide whiskers, Both AK, Cheung CL, Vol 9(41), 23780–23784, Copyright © 2019; 
permission conveyed through Copyright Clearance Center, Inc.149

Figure 3 Schematics for the growth mechanism of CO2 whiskers. 
Notes: Light blue, nuclei containing water saturated with CO2; blue, particles supersaturated with CO2; beige, solid CO2. Used with permission of Royal Society of Chemistry from RSC 
Advances, Growth of carbon dioxide whiskers, Both AK, Cheung CL, Vol 9(41), 23780–23784, Copyright © 2019; permission conveyed through Copyright Clearance Center, Inc.149
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the degree of supersaturation of the gas-phase material is low. Medium supersaturation results in the formation of flakes, 
dendrites, or a mixture of whiskers and crystals. At high supersaturation, the gas-phase reactants will no longer form whiskers 
and will form granular products instead. This mechanism applies to the vapor-phase environment at high temperatures, where, 
after nucleation, the reactive components are transferred through the vapor phase, and VS reactions occur, causing the crystals 
to grow in a fixed direction to form whiskers.148

Liquid-Solid (LS) Growth Mechanism
As a special case of single crystal growth, whiskers may also exist in two stages: nucleation and growth. Whisker growth 
requires a substrate with helical dislocations and a supply of raw materials for the mass transfer process. The co-solvent acts as 
a high-quality carrier to continuously transport the liquid reactants to the substrate, and as the temperature rises and the 
thermostatic time is prolonged, the nucleus is formed first and then grows, which leads to the proposed four-step growth model 
- the formation of the reaction microregion, the formation of the nucleus, the growth of the nucleus, and the formation of 
whiskers.150 This mechanism is mainly used for the growth of whiskers via the hydrothermal method. It is easy to prepare 
various shapes of whisker materials by changing the composition of the system and the process conditions.

Preparation Methods of Whiskers
There are many ways to prepare whiskers. Different whiskers can be prepared using different methods, and even the 
same kind of whiskers can be prepared using various methods. A whisker is a special form of single crystal, and the 
methods of crystal growth applicable to the preparation of whisker materials include the following,: vapor-phase,3 liquid- 
phase,151–153 solid-phase,154 and electrolytic methods155 (Table 1).

Vapor Phase Method
Whisker preparation using the vapor-phase method involves heating and gasifying the raw material, followed by crystal 
nucleation and growth in the low-temperature region. This preparation method has the advantages of simple operation 
and high controllability.3 The commonly used vapor-phase whisker preparation methods include chemical vapor 
deposition (CVD)172,173 and physical vapor deposition (PVD).174,175 CVD is a chemical reaction of vapor-phase feed-
stocks where the reaction products grow into whiskers in a region of lower temperature. This method is commonly used 
to prepare oxides, nitrides, carbides, and other ceramic whiskers (Figure 4). PVD is a physical method used to vaporize 

Table 1 Methods and Conditions for the Preparation of Whiskers

Whiskers Preparation Methods Raw Materials Temperature (°C) Catalyst

SnO2
156 Vapor-phase transfer method Sn; SnO; O2 400–1300 SN/Al;Fe/K/Ca

Si3N4
30,157 Chemical vapor deposition Si2Cl6; NH3; H2 1200 Fe

β-Si3N457,158 Chemical vapor deposition Si2Cl6; NH3 1200 Cr

MgO159 Liquid-phase method MgCl; H20 700–900 KCl

Si160 Vapor-phase transfer method Si; I2 800–1100 Ni

CaSO4
75,161 Hydrothermal method CaSO4; H2O 110–160 -

Mullite162–164 Vapor-phase method Al2O3; AlF3 1150–1700 -

AlN165,166 Carbothermic method Al2O3; C; N2 1800 -

TiO2
42,167,168 Chemical vapor deposition Na2TiF6 700–1300 -

Sn160,169 Spontaneous reaction Sn Indoor temperature -

Al2O3
170,171 Liquid-phase method AlF3; H2O 1400 -

SiC60,99 Chemical vapor deposition SiCl4; CCL4; H2 1300–1450 -
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the surface of the material source into gaseous atoms and molecules or to partially ionize them into ions under vacuum 
conditions. Subsequently, the vapor-phase feedstock is introduced into the low-temperature growth zone, where the 
vapor-phase feedstock has a low degree of supersaturation, and the vapor-phase coalesces to form nuclei and grows into 
whiskers. PVD is mainly used to prepare whiskers of metals with low melting points, such as Zn and Ge.

Liquid Phase Method
Whisker preparation by the liquid-phase method involves dissolving the raw material in a solvent and then controlling the 
crystallization conditions so that the raw material precipitates and grows into whiskers in the solution. The nucleation and 
growth of the crystals can be controlled by controlling the concentration, temperature, pH, and other parameters of the 
solution, and whiskers of desired shapes and sizes can be achieved. Whiskers prepared by the liquid-phase method have 
the advantages of a fast growth rate and high crystal quality.

The commonly used liquid-phase methods for whisker preparation include hydrothermal,151–153 solvent-thermal,4 and 
anti-solvent methods. The hydrothermal method is performed in a sealed pressure vessel using water as solvent. The 
temperature and pressure are adjusted to create an environment similar to the geological formation of high temperature 
and pressure conditions, so that the raw materials in the liquid- or vapor-phase chemical reaction, and ultimately the 
formation of whiskers. It is mainly used to prepare oxide whiskers with heat and corrosion resistance, such as MgO, 
Al2O3, and ZnO. In addition, the hydrothermal method can be used to prepare other whiskers with specific properties, 
such as metal sulfide whiskers with excellent electrical properties. The solvothermal method involves dissolving the raw 
material in an organic solvent and subjecting it to chemical reactions in the liquid phase to form whiskers under specific 

Figure 4 Diagram showing the atomic diffusion and growth process of SiC whiskers under microwave synthesis. 
Notes: (a) Spherical SiO2 adhered to the surface of C. (b) Microwave coupling of C resulted in heat generation and caused SiO2 to melt. (c) Microwave coupling of 
C resulted in local thermal effects. (d) CO and SiO, in turn, activated the instantaneous microwave plasma. (e) Local interface reactions led to the formation of the SiC 
crystal nucleus. (f) The oriented arrangement of SiC crystallites led to the formation of whiskers driven by the escaping gases. (g) Newly formed SiC microcrystals adhered 
to the surface and generated crystallite knots. (h) The microwave coupling effect caused the atoms in the knots to diffuse and form smooth SiC whiskers. Used with 
permission of Royal Society of Chemistry from Phys Chem Chem Phys, Investigation on the growth mechanism of SiC whiskers during microwave synthesis, Song B, Zhao B, Lu 
Y, et al, Vol 20(40), 25799–25805, Copyright © 2018; permission conveyed through Copyright Clearance Center, Inc.60
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temperature and pressure conditions. This method is suitable for preparing whiskers with lower growth temperatures and 
lower growth rates, such as carbides, nitrides, and silicides. In the anti-solvent method, the anti-solvent is added to the 
solution, the rate of addition and concentration is controlled until the solution reaches a supersaturated state, and the 
formation of whiskers is promoted. This method is suitable for preparing salt whiskers with specific solubility, such as 
CaCO3 and magnesium chloride (MgCl).

Solid-Phase Method
The solid-phase method of whisker preparation involves the formation of whiskers from raw materials through physical 
or chemical reactions.176 In the solid state, atoms or molecules move slowly and require higher temperature and pressure 
conditions to activate reactions. Under high temperature and pressure conditions, the speed of movement of the atoms or 
molecules in the raw material and the frequency of their mutual collisions are increased, thus facilitating the reaction. 
When the reaction reaches a certain level, nuclei begin to form and gradually grow into whiskers.

Common solid-phase methods for preparing whiskers include hot pressing,56 melting,177 and reaction methods.47 Hot 
pressing involves heating the raw materials to high temperatures and reacting and sintering them under pressure to finally 
form whiskers. This method is suitable for preparing high-purity and high-crystallinity whiskers, such as oxides and 
carbides.The melting method involves heating the raw material above the melting point to form a molten state and then 
forming whiskers by controlling the cooling rate and crystallization conditions. It is suitable for preparing whiskers with 
lower melting points, such as sulfides and nitrides. In the reaction method, the raw materials and reactants are mixed and 
allowed to undergo chemical reactions under specific temperature and pressure conditions to generate the required 
whiskers. This method is suitable for the preparation of whiskers with complex chemical compositions, such as 
composite materials, and functional materials.

Electrolytic Method
The electrolytic method of preparing whiskers involves the electrolysis of a specific solution so that the ions undergo 
a reduction or oxidation reaction under the action of the electric field. This method uses a metal or alloy as an anode to 
precipitate the whiskers on the cathode with high purity, crystallinity, and good mechanical properties. The advantages of 
this method include the fast growth rate and high purity of the whiskers, and the controllability of the process. The anodic 
oxidation and electrolytic crystallization methods of whisker preparation are commonly used; they are mainly applicable 
to the preparation of metal and some non-metal whiskers, such as Mo,178,179 and Si.180

Other whisker preparation methods include mechanical alloying, sol-gel, template, and laser methods. The mechan-
ical alloying method is used to prepare metal powders into whiskers via high-energy ball milling. The metal powder can 
be alloyed, and whiskers can be generated by controlling conditions, such as the ball milling time, ball material ratio, and 
ball milling medium. The sol-gel method involves dissolving raw materials in a solvent to form a sol, followed by 
gelation under specific conditions and heat treatment to grow the crystals into whiskers. The template method involves 
filling the template holes with template material and performing crystal growth under specific conditions so that the 
crystals grow in the direction of the template holes to form whiskers.In the laser method, crystals are subjected to large 
amounts of energy via laser irradiation, resulting in the formation of whiskers. The laser whisker preparation has the 
advantages of high controllability and efficiency. Commonly used laser whisker preparation methods include laser fusion 
and laser induction.

Application of Whiskers in Dentistry
Bone Regeneration
Whiskers have a high degree of crystallinity and orientation, and can exert a strong mechanical interlocking effect on the 
surface of the material, thus improving the interfacial bonding.131 During osseointegration, the mechanical interlocking 
action helps to increase the strength of the connection between the jawbone and the implant material, improving the 
overall stability, additionally, whiskers facilitate osseointegration through a range of biological and biomechanical 
mechanisms.181–183 They can induce the differentiation of bone marrow mesenchymal stem cells to osteoblasts, thus 
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promoting a tight bond between the jawbone and the implant material.184 In addition, whiskers accelerate the process of 
osseointegration by modulating the inflammatory response and tissue regeneration processes. Wang et al185 composited 
calcium silicate whiskers (CSws) with poly(ether-ether-ether-ketone) (PEEK) to prepare PEEK/CSw composites. The 
tensile, compressive, and flexural strengths of the PEEK/CSws composites were increased by 20%, 18%, and 52%, 
respectively, compared to those of PEEK. In addition, the PEEK/CSw composites significantly improved bone formation 
and osseointegration and possessed higher bone repair capability than PEEK.

Whiskers are biologically active and can demonstrate good biocompatibility with the jawbone, providing a suitable 
environment for the growth of bone cells. Whiskers help to improve the speed and quality of bone healing and accelerate 
the process of osseointegration by promoting bone growth. They accelerate the repair of jawbone injuries by stimulating 
the activity of osteoblasts and promoting the formation and mineralization of the bone matrix,186 thus shortening the 
recovery time and improving the quality of the bone repair. Huang et al41 uniformly dispersed chitin whiskers with an 
average length and width of 300 and 20 nm, respectively, in a negatively charged aqueous sodium alginate solution, 
which resulted in a homogeneous nanocomposite hydrogel. Strong electrostatic interactions between chitin whiskers and 
alginate inhibited the swelling tendency and improved the mechanical properties of alginate hydrogels, while the 
incorporation of chitin whiskers significantly promoted the adhesion and proliferation of osteoblasts (Figure 5). Owing 
to their unique properties, such as enhancing the interfacial bonding, promoting bone growth, improving the mechanical 
properties, promoting bone repair, and facilitating osseointegration, whiskers play a significant role in improving jaw 
health and have broad application prospects in the biomedical field.

Periodontal Regeneration
Periodontal disease is one of the leading causes of tooth loss, and periodontal tissue regeneration is an important 
treatment for this disease.187 Whiskers have excellent biocompatibility and bioactivity and can effectively promote 
periodontal tissue regeneration.188 The mechanical properties of these materials are similar to those of periodontal 
tissues, hence, they can be used as a replacement or supplemental material for periodontal tissues to provide the 

Figure 5 (a) TEM images of the ultrathin 2 section of SC4-4 hydrogel. (b) Compressive stress-strain curves of the composite hydrogels. (c) Fluorescence micrographs of 
composite hydrogels. (d) SEM images of the osteoblasts spreading on the composite hydrogels. 
Note: Reprinted with permission from Huang Y, Yao M, Zheng X, et al. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based 
Nanocomposite Hydrogels. Biomacromolecules. 2015;16(11):3499–3507. Copyright © 2015 American Chemical Society.41
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necessary support and stability. The structure and function of periodontal tissues can be enhanced by implanting or filling 
whiskers, thus promoting tissue regeneration and repair. Nanostructures on the surfaces of whiskers can interact with cell 
membranes and activate intracellular signaling pathways, which regulate cell proliferation, differentiation, migration, and 
other biological processes to promote periodontal tissue regeneration and repair.23 Furthermore, whiskers can induce 
stem cells to differentiate into various cells in periodontal tissues, such as osteoblasts, odontogenic osteocytes, and 
adipocytes, thus promoting the regeneration of periodontal tissues. They can promote the proliferation and migration of 
vascular endothelial cells, thereby promoting the formation of new blood vessels. In addition, whiskers can regulate the 
expression of angiogenesis-related factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast 
growth factor (bFGF), to further promote angiogenesis.189,190 Whiskers reduce the inflammatory response by inhibiting 
the production and release of inflammatory mediators. They promote the differentiation of immune cells and regulate the 
immune response by regulating the activity of immune cells, thus contributing to the reduction of inflammatory damage 
to periodontal tissues and the regeneration of periodontal tissues. Whiskers effectively promote periodontal tissue 
regeneration through mechanisms that promote cell proliferation and differentiation, guide tissue growth, promote 
angiogenesis, and facilitate anti-inflammation and immunomodulation. However, the application of whiskers in period-
ontal tissue regeneration needs to be further investigated and explored in more detail. Future studies should focus on 
optimizing the preparation and properties of whiskers and exploring their application in clinical treatment to provide 
a more effective periodontal disease treatment.

Treatment and Prevention of Oral Cancer
Oral cancer is a common malignant tumor that poses a serious threat to human health. The immune system is the body’s 
vital defense against foreign pathogens and tumors. Whiskers prevent and treat oral cancer by enhancing the function of 
the immune system. The active groups on the surfaces of the whiskers can interact with immune cells, activate the 
immune cells, and improve their ability to kill tumor cells. Whiskers can be used as carrier materials, loaded with 
antitumor drugs or immunomodulators, combining the drugs with whiskers via physical adsorption or chemical bonding 
can help achieve controlled release and targeted drug delivery, and inhibit tumor growth through direct administration or 
stimulation of immune response.191–193 Xu et al42 piggybacked TiO2 whiskers with the anticancer drug garcinia 
cambogia for potential application in photodynamic therapy, the TiO2 whiskers, which had the same diameter distribution 
and a high degree of conjugation, were safe and effective sensitizers. Additionally, the TiO2 whiskers could enhance the 
efficacy and attenuate the side effects of garcinia cambogia. In the study by Qing et al,85 the drug-releasing effect of TiO2 

whiskers led to an increase in the therapeutic concentration in cancer cells and improved the dosage efficiency of the 
drugs, thus addressing some of the limitations of anticancer drugs (Figure 6).

Whiskers can inhibit tumor growth through multiple mechanisms. They can inhibit the proliferation of tumor cells, 
the active groups on the surfaces of whiskers can bind to receptors on the tumor cell membranes, interfere with the signal 
transduction pathway and inhibit their proliferation and division. Whiskers can induce apoptosis of tumor cells by 
regulating the expression of apoptosis-related genes, triggering programmed death, and inhibiting tumor growth.194 In 
addition, whiskers can inhibit tumor growth and proliferation by inhibiting tumor angiogenesis. They can inhibit the 
proliferation and migration of vascular endothelial cells, thus cutting off the nutrient supply to tumor cells and inhibiting 
their growth.

Whiskers reduce the inflammatory response, which helps to prevent and treat oral cancer. They can inhibit the release 
of inflammatory mediators, reduce the degree of inflammatory response, and decrease the inflammatory damage to the 
oral mucosa. The active groups on the surfaces of whiskers can interact with oral mucosal cells, promote cell 
proliferation and differentiation, and accelerate the regeneration of oral mucosal tissues. In addition, whiskers can be 
used as scaffolding materials to provide support for the attachment and growth of oral mucosal cells, promoting tissue 
repair and functional recovery. Studying the interaction mechanism between whiskers and oral cancer and optimizing the 
preparation and application technology of whiskers can provide a novel and effective therapeutic strategy for the 
prevention and treatment of oral cancer.
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Control of the Infection
The antimicrobial properties of whiskers are mainly attributed to their sharp shape and good biocompatibility.43 Whiskers 
can kill bacteria by piercing the cell wall and destroying the cell structure. Some whiskers can also inhibit infection by 
adsorbing onto the surface of the bacteria and preventing them from reproducing and spreading.195,196 Niu et al197 

verified the hypothesis that tetrapod-like ZnO whiskers (T-ZnOw) simultaneously enhance the antimicrobial activity and 
mechanical properties of a two-component composite resin. The antimicrobial activity of the material was evaluated 
using the broth dilution and direct contact tests. Optical microscopy, SEM, flexural strength, compressive strength, and 
radial tensile strength were used for mechanical characterization. The results showed that T-ZnOw provided the resin 
with strong antimicrobial activity and better mechanical properties in all tested groups. The T-ZnOw antimicrobial agent 
was doped into the composite resin to improve its antimicrobial properties, which were better than those observed after 
doping the silver-based inorganic antimicrobial agent into the composite resin. Chen et al63 mixed silanized aluminum 
borate whiskers (ABW), silanized ZrO2 nanoparticles (nano-ZrO2), and poly(methyl methacrylate) (PMMA) powder to 
obtain ZrO2-ABW/PMMA composites.TiO2, silver-supported TiO2 (Ag/TiO2), silver-supported zirconium phosphate 
(Novaron), and T-ZnOw were mixed with ZrO2-ABW/PMMA composites. The colony- forming units in the plaque 
biofilm were examined, and the cytotoxicity and mechanical properties of the materials were also evaluated. All the 
composites showed good antimicrobial activity and mechanical properties.

Whiskers contribute to the healing of damaged oral mucosa, acceleration of tissue repair, reduction in mucosal damage by 
oral infections, and improvement in the oral mucosa’s ability to resist infections by stimulating cell growth and promoting 
neovascularization.106,198 Grizzo et al135 synthesized multifunctional bilayer membranes from poly(lactic acid), β-chitin 
whiskers, and silver nanoparticles (Figure 7), the bilayer membranes had high surface area and porosity (>80%), significant 
stability in aqueous media, and good mechanical properties, which are useful for applications in wound healing.

Whiskers can promote the adhesion and proliferation of oral mucosal cells, forming a dense mucosal layer, reducing 
the invasion of bacteria and other microorganisms, enhancing the barrier function of the oral mucosa, and improving the 
oral mucosa’s ability to resist infection. They have good biocompatibility and degradability, and can be gradually 

Figure 6 Illustration of the possible mechanism involved in enhancing the uptake of daunorubicin into SMMC-7721 cells via TiO2 whiskers drug delivery. 
Note: Reprinted from Biomaterials, Vol 30(27), Li Q, Wang X, Lu X, et al, The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers, 
4708–4715, Copyright © 2009, with permission from Elsevier.85
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degraded in the oral environment without toxic side effects or allergic reactions.Pang et al199 doped chitin nanowhiskers 
(CtNWs) with carboxymethyl chitosan (CMCS) and dextran dialdehyde (DDA) into Schiff base cross-linked hydrogels 
to construct a mechanically reinforced tissue adhesive. The composite hydrogel demonstrated anti-swelling properties in 
phosphate-buffered saline with optimal antimicrobial and hemostatic capabilities, in the in vivo experiments, the 
composite hydrogel demonstrated the ability to promote wound healing without causing an inflammatory response.

The properties of whiskers make them a potential material for oral infection control. However, in-depth research on their 
clinical applications is warranted. Future research directions should include improving the preparation process of whiskers, 
enhancing their antimicrobial and tissue regeneration properties, and exploring their synergistic effects with other materials.

Figure 7 Schematic of the production method of bilayer membranes. 
Note: Reprinted from International Journal of Biological Macromolecules, Vol 251, Grizzo A, Dos Santos DM, da Costa VPV, et al, Multifunctional bilayer membranes composed 
of poly(lactic acid), beta-chitin whiskers and silver nanoparticles for wound dressing applications, 126314, Copyright © 2023, with permission from Elsevier.135
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Pulp Regeneration
Patients with pulpitis and apical periodontitis are treated via root canal therapy, which inevitably leads to permanent loss 
of the vitality and sensitivity of the tooth.200,201 Therefore, regeneration of functional pulp in the deactivated pulp space 
is a promising alternative for restoring the biological function of the tooth.202 Dental pulp regeneration is a complex 
biomedical process involving the synergistic action of multiple factors, such as stem cells, growth factors, and specific 
microenvironments. Although whiskers do not have pulp regeneration ability, they can be used as biological scaffolds or 
enhancement materials that combine with stem cells and growth factors to participate in the pulp regeneration process.203 

They can be used as biological scaffolds in combination with cells, such as pulp stem cells or gingival tissue. Whisker 
scaffolds can provide space and guidance for cells to grow and promote the regeneration of pulp tissue. Furthermore, 
whiskers can stimulate the proliferation and differentiation of pulp stem cells, promote the growth of newborn pulp 
tissue, and improve the effectiveness of pulp regeneration. In addition, they can be combined with biologically active 
substances, such as growth factors, to further enhance the effect of pulp regeneration. Wang et al24 reported that 
exosome-loaded hydroxypropyl chitosan (HPCH)/chitosan whisker (CW) thermosensitive hydrogels had strong mechan-
ical properties and bioactivity. In vitro, cellular experiments demonstrated that the value-added differentiation of 
whiskers and exosome delivery significantly enhanced the hydrogel’s ability to promote gingival generation and 
angiogenesis. In vivo, animal experiments revealed the formation of new pulp-like tissues in dental models. The whiskers 
demonstrated excellent mechanical properties and stability and provided the necessary support and protection during pulp 
regeneration to promote the formation of new tissues (Figure 8).

Whiskers have antimicrobial properties that can effectively inhibit the growth of bacteria in the oral cavity, reduce the 
risk of infection, and create a favorable environment for pulp regeneration. They have good compatibility with human 
tissues, thus reducing the chances of rejection and facilitating cell growth and tissue fusion during pulp regeneration. 
Whiskers are malleable and degradable, can be formed into different shapes and sizes according to the needs, and 
degrade on their own within a certain period of time with no long-term side effects on the surrounding tissues.

Due to their good biocompatibility, stable physical and chemical properties, ability to promote cell proliferation and 
differentiation, antimicrobial properties, plasticity, and degradability, whiskers are a promising material in the field of 
pulpal regeneration and may be used for the treatment of pulpal injuries.

Improvement of Medical Devices
Whiskers have high strength, high modulus of elasticity, and low density. These properties may aid in the reinforcement and 
support of medical devices and improve their durability and reliability.204 Whiskers have good chemical stability, which is 
beneficial for maintaining a stable performance in physiological environments.39,205,206 T-ZnOw has the same perfect surface 
as conventional whiskers. Unlike conventional whiskers, T-ZnOw has a unique three-dimensional structure with four needles 
growing from a single point and an angle of 109.28° between two needles.207 This special structure gives T-ZnOw-filled dental 
resin composites tropical rather than anisotropic properties, which means that forces can be more evenly distributed inside 
them. The filler needles can create a more robust interface by increasing integration with the resin matrix.132 Zhang et al208 

prepared ZrO₂-ABW/PMMA composites by mixing modified nano-ZrO₂ and ABWs with PMMA, the mechanical properties 
of silanized ZrO₂-ABW/PMMA composites were significantly improved. The flexural strength reached a maximum value of 
108.01 ± 5.54 MPa when 2 wt% of nano-ZrO₂ was mixed with ABWs at a ratio of 1:2, which was 52% higher than pure 
PMMA. The surface hardness reached a maximum value of 22.50 ± 0.86 MPa when 3 wt% of nano-ZrO2was blended with 
ABWs at the same ZrO₂/ABW ratio, which was a 27% increase compared to that of pure PMMA. Zhu et al209 prepared a two- 
component thermal/photodual dual-sensitive hydrogel (M/C) by physically and chemically cross-linking chitin whiskers 
(CHW) and methacrylated hydroxybutyl chitosan (MHBC) as raw materials (Figure 9). The introduction of CHW signifi-
cantly enhanced the mechanical properties of the M/C hydrogel and improved the resistance to deformation.

Xu et al210 fused silica particles onto SiC whiskers to promote silanization and improve whisker retention in the 
matrix. Hardened glass ionomers were ground to a fine powder, mixed with whiskers, and used as fillers in dental resins. 
The materials were tested for flexural strength, modulus of elasticity, and fracture toughness, and a fluoride ion selective 
electrode was used to measure the fluoride release. The whisker-added resin exhibited moderate fluoride release and 

https://doi.org/10.2147/IJN.S471546                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2024:19 7086

Han et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


superior mechanical properties. In another study, Yang et al204 compared the properties of whisker-reinforced calcium 
fluoride-containing composite resins with those of resin-modified glass ionomer cement. The reinforcement of SiC 
whiskers increased the mechanical properties of the composites. The addition of whiskers promoted the release of 
calcium, phosphate, and fluoride ions from the materials, which showed superior remineralization effects in the dentin of 
the lesions.

The whiskers significantly enhanced the mechanical properties of the material through various mechanisms, such as 
crack bridging, crack deflection, and pullout effect, this improved the toughness, crack extension resistance, and fatigue 
life of the composite material, thus enhancing the overall performance of the material.211–213 Whiskers have good 
compatibility with human tissues and are less likely to cause rejection or inflammation in the body, which is conducive to 
the safe use of medical devices. Additionally, they have antimicrobial properties, which help prevent medical devices 
from causing infections during use, further improving the safety and reliability of the devices. With the advancement of 
new materials and processes, whisker-reinforced composites are expected to continue to improve performance and reduce 
costs. Furthermore, their application areas will be expanded to provide stronger material support in aerospace, 

Figure 8 (a) Schematic diagram of a tooth root model filled with hDPSC encapsulated hydrogels. (b) Photographs of a nude mouse model for tooth root implantation. (c) 
HE staining images of the regenerated pulp-like tissues in the endodontic space. 
Note: The bottom images are magnified views of the images above. D, dentin matrix; P, predentin-like tissue; star indicates odontoblast-like cells. The arrow indicates newly 
formed blood vessels. Used with permission of Royal Society of Chemistry from J Mater Chem B, Fabrication of an exosome-loaded thermosensitive chitin-based hydrogel for 
dental pulp regeneration, Wang S, Xing X, Peng W, et al, Vol 11(7), 1580–1590, Copyright © 2023; permission conveyed through Copyright Clearance Center, Inc.24
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automotive, electronics, new energy, environmental protection, biomedicine, and other cutting-edge fields. However, 
although whisker-reinforced composites have mechanical advantages, the biocompatibility, long-term stability, and safety 
of the manufacturing process of the materials need to be rigorously evaluated before they are applied to medical devices.

In summary, the rapid development of whiskers has revolutionized the advancement of dentistry by providing new 
strategies, such as drug delivery, tissue regeneration, material toughening, and bioimaging, for the prevention, diagnosis, 
and treatment of oral diseases. High-strength and high modulus of elasticity whiskers become ideal scaffold materials for 
oral tissue engineering and regenerative medicine.23,24 Whiskers can enhance the mucosal barrier function and inhibit the 
proliferation of tumor cells, achieving inflammation control and cancer prevention and proliferation.29,30 They exhibit 
excellent drug carrier function, which can aid in precisely delivering drugs to the lesion site, thus enabling the efficient 
and precise treatment of diseases.214,215 In addition, whiskers can be added to dental composites and medical devices as 
reinforcement with excellent mechanical properties and good biocompatibility, which can significantly improve the 
mechanical properties and durability of the materials.216,217 In conclusion, whiskers have become a new hotspot for 
clinical research by virtue of their unique physicochemical and biological properties and nanoscale characteristics. They 
may be expected to deliver more innovations and breakthroughs in the field of oral health and promote the continuous 
development of dentistry.

Prospects
Whiskers are short micro- and nano-sized fibers grown from high-purity single crystals with extremely high aspect ratios. 
Whiskers are generally grown in high purity on merit, with a highly ordered atomic arrangement and a strength close to 

Figure 9 (a) Schematics of the MHBC and CHW synthesis. (b) Schematic representation of the thermo-crosslinked hydrogel and photo-crosslinked hydrogel preparation 
and the 2D/3D cell culture based on the hydrogel scaffold. (c) Compressive stress-strain curves of hydrogels. (d) The Young’s modulus values of the hydrogels (*p<0.05, 
**p<0.01). 
Note: Reprinted from Carbohydrate Polymers, Vol 304, Zhu Y, Qin D, Liu J, et al, Chitin whiskers enhanced methacrylated hydroxybutyl chitosan hydrogels as anti- 
deformation scaffold for 3D cell culture, 120483, Copyright © 2023, with permission from Elsevier.209
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the theoretical value of intact crystals. Ceramic whiskers with high strength and good biocompatibility can be used as 
biomaterials to replace diseased or damaged tissues. For example, they can be used to make artificial joints,218,219 

teeth,47,220 and bones.221–225 Metal whiskers can be used to prepare biosensors and medical devices to improve the 
sensitivity and biocompatibility of the devices.97 Cellulose and polymer whiskers have good biocompatibility and 
bioactivity and can be used to prepare biomedical materials,226 drug carriers,104 and tissue engineering scaffolds.227 

The targeted delivery and slow release of drugs can be realized by loading drugs or bioactive molecules onto whiskers; 
this can improve the therapeutic effect and reduce the side effects. Furthermore, whiskers can be used to construct tissue- 
engineered scaffolds with specific structures and functions to promote cell growth and tissue regeneration. Ceramic and 
metal whiskers with high hardness, high toughness, and excellent thermal and chemical stability are widely used for the 
reinforcement and toughening of composite materials to significantly improve the mechanical properties, thermal 
stability, and corrosion resistance.68,228 As a high-performance material, whiskers show great potential in many fields. 
Incomplete statistics, the total annual production of whiskers has exceeded 10,000 tons. Currently on the market has been 
sold whiskers are mainly K4TiO4 whiskers and its conductive whiskers, magnesium salt (alkali sulfur, Mg) whiskers, SiC 
whiskers, H3AlBO2 whiskers, oxide whiskers, graphite whiskers and Fe2O3 whiskers.

The application of whiskers in dentistry has attracted widespread attention and demonstrated remarkable progress in 
some areas. However, several problems associated with the clinical application and translation of whiskers remain and 
must be addressed. The biocompatibility of whiskers is one of the key issues in their medical applications. Whiskers are 
synthetic materials; hence, the temperature, humidity, and pH of the oral environment can affect their biocompatibility. 
Studies have shown that whiskers may trigger an immune response or produce inflammation, which may affect patient 
health. Therefore, improving the biocompatibility of whiskers for their application in dentistry is a hot research topic. In 
addition, studies on the specific application mechanism and principle of action of whiskers in dentistry are limited. 
Although some studies have shown that whiskers can enhance the performance of oral restorative materials and promote 
the regeneration of oral tissues, the complexity of their interactions with oral tissue cells, signaling, and gene expression 
at multiple levels requires further research. Moreover, the long-term safety and efficacy of whiskers in dentistry remain to 
be verified. Whiskers have good biocompatibility, but strong corrosive properties exist in the oral environment. The 
potential risks of the long-term use of whiskers and their composites in the oral environment need to be evaluated with 
more clinical data and long-term observations. The complexity and high cost of the preparation process of whiskers also 
limit their application in dentistry. Thus, developing more efficient and economical preparation methods and reducing 
their production costs are warranted.

Whiskers show great promise as a high-performance material for future research. Materials with special properties 
can be developed using innovative synthesis methods, and the combination of whiskers with other dental materials and 
technologies can be explored to develop more advanced and effective oral treatment programs. Systematic information 
from proteomics, genomics, transcriptomics, and metabolomics to capture the changes in the metabolism, signaling 
pathways, and biological functions of whiskers might help realize the potential of the applications of this material in 
dentistry. Additionally, in-depth explorations of the interactions between whiskers and oral cells and tissues will provide 
a more solid theoretical basis for its use in preventing, diagnosing, and treating oral diseases. Additional clinical trials 
and long-term observational studies are warranted to verify the long-term safety and efficacy of whiskers in dentistry.

Conclusion
Whiskers have a wide range of applications in bone, periodontal, and pulp regeneration due to their unique physico-
chemical and biological properties. They can control inflammation and prevent the spread of cancer by enhancing the 
mucosal barrier function and inhibiting the proliferation of tumor cells. Furthermore, the excellent mechanical properties 
and biocompatibility of this material enable their use as reinforcing and toughening materials to significantly improve the 
mechanical properties and durability of composite materials and medical devices. The excellent properties of whiskers 
give them great potential in the field of medicine. However, despite the potential advantages and application Prospects of 
whiskers in dentistry, several problems remain to be addressed. Thus, further research and development are needed to 
solve these problems and make full use of the advantages of the material. Additionally, long-term clinical trials and 
studies are needed to evaluate the long-term safety and efficacy of whiskers in dentistry.
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