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Objective: To develop a clinical-radiomics model using a multimodal machine learning method for distinguishing ductal carcinoma 
in situ (DCIS) from breast fibromatosis.
Methods: The clinical factors, ultrasound features, and related ultrasound images of 306 patients (198 DCIS patients) were retro-
spectively collected. Patients in the development and validation cohort were 184 and 122, respectively. The independent clinical and 
ultrasound factors identified by the multivariable logistic regression analysis were used for the clinical-ultrasound model construction. 
Then, the region of interest of breast lesions was delineated and radiomics features were extracted. Six machine learning algorithms 
were trained to develop a radiomics model. The algorithm with higher and more stable prediction ability was chosen to convert the 
output of the results into the Radscore. Further, the independent clinical predictors and Radscore were enrolled into the logistic 
regression analysis to generate a combined clinical-radiomics model. The receiver operating characteristic curve analysis, DeLong test, 
and decision curve analysis were adopted to compare the prediction ability and clinical efficacy of three different models.
Results: Among the six classifiers, logistic regression model was selected as the final radiomics model. Besides, the combined 
clinical-radiomics model exhibited a superior ability in distinguishing DCIS from breast fibromatosis to the clinical-ultrasound model 
and the radiomics model.
Conclusion: The combined model by integrating clinical-ultrasound factors and radiomics features performed well in predicting 
DCIS, which might promote prompt interventions to improve the early diagnosis and prognosis of the patients.
Keywords: multimodal machine learning, clinical-ultrasound features, radiomics, ductal carcinoma in situ

Introduction
Breast cancer is the most frequent malignant tumor in females worldwide with over half of these cases occurring in 
developed countries.1 In the United States and Europe, breast cancer is one of the leading causes of cancer-related 
mortality.2 Besides, breast cancer is diagnosed in 12.2% of women in China.3 With medical advances, the calcifications 
and breast imaging reporting and data system (BI-RADS) lexicon have been identified which represent variable under-
lying histologic conditions related to ductal carcinoma in situ (DCIS) or invasive breast cancer.4 It was estimated that 
about 51,400 females would have DCIS in 2022 according to the American Cancer Society.5 At stage 0 of breast cancer, 
DCIS is a precursor to invasive ductal carcinoma and features a neoplastic proliferation of epithelial cells surrounded by 
myoepithelial cells. Myoepithelial cells are confined by an intact basement membrane that separates these cells from the 
breast stroma and prevents tumor cells from metastasizing.6 Early detection can prevent DCIS from progressing into 
a more invasive cancer.6 Breast fibromatosis is a locally invasive lesion with no metastatic potential caused by fibroblasts 
or myofibroblasts that may occur within the breast parenchyma or originate from the thoracic fascia and extend into the 
breast.7 Therefore, it is necessary to investigate a novel method to identify DCIS or breast fibromatosis and give 
corresponding treatment to improve the diagnosis and prognosis of patients.

Ultrasound features including infiltrative margins, microcalcifications, and hypoechoic have been reported to be 
related to higher suspicion of malignancy.8 To achieve a more quantitative prediction method, radiomics has been 
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introduced into many studies. Radiomics is involved in converting digital images into high-dimensional mineable 
features using high-throughput extraction analysis to explore the underlying tissue information of the images that are 
hard to recognize by the human eye.9 Radiomics performs more satisfactorily in predicting multi-parameter imaging 
features than traditional imaging indicators. These extracted features can be used to build efficient models by incorpor-
ating with genomic, histologic, laboratory, and clinical data for prediction, histological classification or classification of 
benign and malignant lesions, lymph node metastasis detection, and diagnosis by using machine learning (ML) 
methods.10–13 In addition, the predictive value of radiomics for treatment selection or treatment response and clinical 
prognosis has been demonstrated, which is closely associated with proteomic, transcriptomic, and genomic 
characteristics.14,15 However, few studies developed ML models to distinguish DCIS from breast fibromatosis.

ML is an emerging artificial intelligence tool, critical in improving prediction accuracy of the diagnosis and 
prognosis.16 Improved medical database management yielded a potential use of ML in medicine.17 Compared to other 
statistical methods, ML algorithms allow interactions between variables, identify key predictors, find optimal algorithms 
between the study outcomes and potential predictors by learning from dataset patterns, and show greater accuracy in 
clinical settings.18 Our study incorporated the clinical data, ultrasonic characteristics, and radiomics features to build 
related models. The predictive ability and clinical efficacy of the models were compared to select an optimal model for 
predicting DCIS.

Materials and Methods
Patients and Data Collection
Patients diagnosed with DCIS (n=198) via surgery and those diagnosed with breast fibromatosis (n=108) via B-mode 
ultrasound from Ningbo Medical Centre Lihuili Hospital between January 2016 and June 2023 were enrolled in the 
study. The 306 participants were randomly divided into the development cohort and internal validation cohort at a ratio of 
6:4 (184 in the development cohort and 122 in the internal validation cohort).

Inclusion criteria: (1) Patients were confirmed as DCIS by postoperative pathology, and immunohistochemistry test 
results were obtained or those diagnosed with breast fibromatosis by B-mode ultrasound; (2) Breast ultrasound was 
performed within 1 week prior to surgery and the image quality was good; (3) There were no other primary tumors.

Exclusion criteria: (1) Poor image quality; (2) Patients who have previously undergone breast puncture, surgery, 
radiation, chemotherapy, or hormone therapy.

The clinical and B-ultrasonic features of patients were collected: age, tumor size, tumor location, morphology, 
calcification, blood flow, BI-RADS grade, orientation, margin, echo mode, and rear echo signature. The multivariate 
logistic regression analysis was utilized to select the independent clinical and B-ultrasonic features as a clinical-ultrasonic 
model to predict DCIS. The value of the clinical-ultrasonic model in predicting DCIS was analyzed by receiver operating 
characteristic (ROC) curve analysis in the training cohort, test cohort, and validation cohort.

Under the Declaration of Helsinki, this study involving human participants was reviewed and approved by the Ethics 
Committee of Ningbo Medical Centre Lihuili Hospital (Approval NO.KY2022PJ139). Written informed consent for 
participation was not required for this study following the national legislation and the institutional requirements.

Image Acquisition and Segmentation
The ultrasound doctor performed a routine two-dimensional ultrasound examination on both mammary glands of the 
patient, identified the breast lesions, recorded the location, shape boundary, and blood flow, marked the lesions on 
the body surface, and scanned the bilateral axillary lymph nodes. The diagnostic report was obtained by referring to 
the BI-RADS classification standard (5th edition): PHILIPS IU22, Q5, MINDRAY DC-8, APLIO5000, probe 
frequency 3–12 MHz.

The sonographer selected the largest plane of each breast lesion without knowing the histopathological information 
and delineated a region of interest (ROI) covering the entire lesion with the ITK-SNAP software (open-source software; 
http://www.itk-snap.org).
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Radiomics Feature Extraction and Evaluation
The ultrasound radiomics features including first-order, gray-level co-occurrence matrix (glcm), gray-level dependence 
matrix (gldm), gray-level run length matrix (glrlm), gray-level size zone matrix (glszm), and neighbourhood gray-tone 
difference matrix (ngtdm) features were extracted using the “pyradimoics” package in the 3D slicer software (version 
5.4.0) by the intraobserver and interobserver. The interclass correlation coefficient (ICC) was employed to evaluate the 
consistency of the extracted radiomics features. Features with ICC >0.70 demonstrated a good consistency of these 
characteristics and were used for subsequent feature selection.

Radiomics Feature Selection
All the radiomics features were performed with z-score normalization before screening features. Then, the least absolute 
shrinkage and selection operator (LASSO) method was adopted to select the important radiomics features. Next, 
collinearity analysis was conducted and features with a variance inflation factor (VIF) value greater than 6 indicating 
high collinearity were removed. Subsequently, the top five features were identified using XGBoost and random forest 
(RF) methods, respectively. The intersection of the two methods was considered as the vital features and used for the 
following radiomics model construction.

Radiomics Model Development and Performance
In the development cohort, 147 (80%) patients were randomly selected to train models and tune hyperparameters, and 37 
(20%) patients to test the models. We used six machine learning algorithms to develop the models: XGBoost, logistic 
regression, RF, support vector machines (SVM), K Nearest Neighbors (KNN), and multilayer perceptron (MLP). 
Resampling was utilized to address class imbalance. The area under the ROC curve (AUC), the area under the precision- 
recall curve (AP), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F1 
scores, and Kappa value served as evaluation metrics to compare the performance of six algorithms in the train and test 
sets. AUC was used to obtain the optimal model and to assess the consistency of the models in the training and test sets. 
The classifier with the best performance in the two sets was regarded as the radiomics model and the predicted 
probability was considered as Radscore (RD). The ROC was used to explore the predictive performance of the model 
in distinguishing DCIS from fibroma patients in the training cohort, test cohort, and validation cohort.

Clinical-RD Model Development
Factors in the clinical-ultrasonic model as well as the RD were enrolled into multivariate logistic regression analysis to 
select the independent predictors for clinical-RD construction. Then, the ROC was used to compare the predictive value 
of the clinical-ultrasonic model, the RD model, and the clinical-RD model for DCIS. Besides, decision curve analysis 
(DCA) was employed to evaluate the clinical usefulness of the three models in the development cohort and validation 
cohort, respectively.

Statistical Analysis
All statistical analyses were performed using SPSS software (version 23.0) and R software (version 4.4.2). Categorical 
variables were expressed as count (percent) and the two-group differences were compared by Chi-square test or Fisher’s 
exact test. After performing the Shapiro–Wilk test, all the continuous variables did not meet the normal distribution and 
were presented as median (quartiles). The group differences were analyzed by the Mann–Whitney-U test. P <0.05 
indicated a significance level.

Results
Patient Characteristics and Clinical-Ultrasonic Model Construction
Patient characteristics in the development and validation cohorts are summarized in Table 1. All the variables were not 
significant between the two cohorts. Table 2 demonstrates the clinical characteristics and B-ultrasonic features in the 
development cohort. Patients had a median age of 37 and 52 years in the fibroma and DCIS groups, respectively (P 
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<0.05). In addition, tumor size is significantly larger in the DCIS group (P <0.05). The lesions in the DCIS group tended 
to exhibit irregularity, dotted calcification, higher blood flow grade, and BI-RADS grade (P <0.05). The edges were more 
likely to be angular and fuzzy in the DCIS group (P <0.05). The uneven echo pattern took a proportion of 10.45% and 
23.93% in the fibroma and DCIS groups, respectively (P <0.05). The other factors including tumor location, orientation, 
and rear echo signature had no remarkably different distributions between the two groups (P >0.05).

Following this, the identified significant factors were included in multivariate logistic regression analysis. 
Morphology-quasi-circle, morphology-irregularity, calcification-thick, and diffuse, edge-leaflet, edge-angular and fuzzy, 
edge-cyst, and tumor size were not significantly related to DCIS (P >0.05), while calcification-dotted, BI-RADS grade, 
and age were independent factors for predicting DCIS (P <0.05) (Table 3). Thus, the three significant predictors were 
used for constructing a clinical-ultrasonic model. The AUCs for the clinical-ultrasonic model in predicting DCIS were 
0.943, 0.938, and 0.907 respectively in the training, test, and validation cohorts (Figure 1).

Table 1 Baseline Characteristics of Study Cohorts

Variables Total  
(n=306)

Development Cohort  
(n=184)

Validation Cohort  
(n=122)

P-value

Age 46.71±13.71 46.28±13.27 47.37±14.32 0.497

Size 17.00 [11.00, 26.00] 18.00 [12.00, 28.00] 16.00 [10.00, 23.00] 0.223

Location 0.324
Inner upper 62 (20.25) 43 (23.37) 19 (15.58)

Inner lower 7 (2.29) 5 (2.72) 2 (1.64)

Outer upper 192 (62.75) 109 (59.24) 83 (68.03)
Outer lower 45 (14.71) 27 (14.67) 18 (14.75)

Morphology 0.704
Ellipse 147 (48.04) 91 (49.46) 56 (45.90)

Quasi-circle 35 (11.44) 19 (10.32) 16 (13.12)

Irregularity 124 (40.52) 74 (40.22) 50 (40.98)
Calcification 0.204

No 177 (57.84) 109 (59.24) 68 (55.74)

Thick and diffuse 20 (6.54) 15 (8.15) 5 (4.10)
Dotted 109 (35.62) 60 (32.61) 49 (40.16)

Blood flow 0.307

No 127 (41.50) 79 (42.94) 48 (39.34)
Grade 1 117 (38.24) 67 (36.40) 50 (40.98)

Grade 2 41 (13.40) 22 (11.96) 19 (15.58)

Grade 3 21 (6.86) 16 (8.70) 5 (4.10)
BI-RADS grade 0.114

<4A 96 (31.37) 64 (34.78) 32 (26.23)

≥4A 210 (68.63) 120 (65.22) 90 (73.77)
Orientation 0.434

Parallel 245 (80.07) 150 (81.52) 95 (77.87)

Unparallel 61 (19.93) 34 (18.48) 27 (22.13)
Edge 0.376

Regular 69 (22.55) 41 (22.28) 28 (22.95)

Lobular 109 (35.62) 71 (38.59) 38 (31.15)
Irregularity 128 (41.83) 72 (39.13) 56 (45.90)

Echo pattern 0.970

Uneven 58 (18.95) 35 (19.02) 23 (18.85)
Cyst 248 (81.05) 149 (80.98) 99 (81.15)

Rear echo signature 0.405

Unaltered 243 (79.41) 149 (80.98) 94 (77.05)
Altered 63 (20.59) 35 (19.02) 28 (22.95)

Abbreviation: BI-RADS, breast imaging reporting and data system.
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Table 2 Clinical Characteristics and B-Ultrasonic Features Between Fibroma and Carcinoma in situ 
Groups

Variables Total  
(n=184)

Breast Fibromatosis  
(n=67)

Carcinoma in situ  
(n=117)

P-value

Age 46.00 [38.00, 55.00] 37.00 [27.00, 42.00] 52.00 [45.00, 59.00] <0.001

Size 18.00 [12.00, 28.00] 15.00 [11.00, 21.00] 20.00 [12.00, 31.00] 0.010
Location 0.285

Inner upper 43 (23.37) 21 (31.34) 22 (18.80)

Inner lower 5 (2.72) 2 (2.99) 3 (2.56)
Outer upper 109 (59.24) 35 (52.24) 74 (63.25)

Outer lower 27 (14.67) 9 (13.43) 18 (15.39)
Morphology <0.001

Ellipse 91 (49.46) 50 (74.63) 41 (35.04)

Quasi-circle 19 (10.33) 8 (11.94) 11 (9.40)
Irregularity 74 (40.21) 9 (13.43) 65 (55.56)

Calcification <0.001

No 109 (59.24) 61 (91.05) 48 (41.03)
Thick and diffuse 15 (8.15) 4 (5.97) 11 (9.40)

Dotted 60 (32.61) 2 (2.98) 58 (49.57)

Blood flow 0.007
No 79 (42.94) 39 (58.21) 40 (34.19)

Grade 1 67 (36.40) 21 (31.34) 46 (39.31)

Grade 2 22 (11.96) 5 (7.46) 17 (14.53)
Grade 3 16 (8.70) 2 (2.99) 14 (11.97)

BI-RADS grade <0.001

<4A 64 (34.78) 55 (82.09) 9 (7.69)
≥4A 120 (65.22) 12 (17.91) 108 (92.31)

Orientation 0.084

Parallel 150 (81.52) 59 (88.06) 91 (77.78)
Unparallel 34 (18.48) 8 (11.94) 26 (22.22)

Edge <0.001

Regular 41 (22.28) 23 (34.33) 18 (15.39)
Lobular 71 (38.59) 40 (59.70) 31 (26.50)

Irregularity 72 (39.13) 4 (5.97) 68 (58.11)

Echo pattern 0.025
Uneven 35 (19.02) 7 (10.45) 28 (23.93)

Cyst 149 (80.98) 60 (89.55) 89 (76.07)

Rear echo signature 0.624
Unaltered 149 (80.98) 53 (79.10) 96 (82.05)

Altered 35 (19.02) 14 (20.90) 21 (17.95)

Abbreviation: BI-RADS, breast imaging reporting and data system.

Table 3 Association of Clinical-Ultrasonic Features with Carcinoma in situ

Variables B Odds Ratio (95% Confidence  
Interval)

P-value

Morphology-quasi-circle −1.073 0.342 (0.056–2.908) 0.246

Morphology-irregularity 0.168 1.183 (0.238–5.889) 0.837

Calcification-thick and diffuse −0.178 0.837 (0.133–5.257) 0.849
Calcification -dotted 2.671 14.448 (1.724–121.049) 0.014

Blood flow-grade 1 0.062 1.064 (0.238–4.752) 0.936

(Continued)
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Selection of Radiomics Features and Radiomics Model Construction
After LASSO screening, totally 14 features with non-zero coefficients were obtained (Figure 2A). The detailed 
information of these features is shown in Table 4. Further collinearity analysis showed that the VIF values of 
10Percentile and interquartileRange were greater than 6, which were deleted for the following analysis (Table 5). 
Among the remaining 12 features, XGBoost and RF algorithm were respectively used to screen the top five important 
features (Figure 2B). Complexity and HighGrayLevelZoneEmphasis were the overlapped features of the two algorithms, 
which were used for constructing the radiomics model and its predicted probability called the RD.

The AUCs for XGBoost, logistic regression, RF, SVM, KNN, and MLP were 1.000, 0.976, 1.000, 0.989, 0.993, and 
0.838, respectively in the training set and their AUCs were 0.961, 0.991, 0.986, 0.952, 0.974, and 0.867, respectively in 
the test set (Figure 3A). The APs for XGBoost, logistic regression, RF, SVM, KNN, and MLP were 1.000, 0.986, 1.000, 
0.993, 0.994, and 0.860, respectively in the training set. The APs were 0.974, 0.997, 0.993, 0.971, 0.979, and 0.931, 
respectively in the test set (Figure 3B). The Results of other evaluation indexes for six machine learning methods are 
exhibited in Table 6. XGBoost was most likely to be susceptible to overfitting, whereas logistic regression was likely to 
be relatively stable Thus, logistic regression was chosen as the final optimal model, which still owned satisfactory 
performance in the validation cohort (AUC=0.947) (Figure S1).

Clinical-RD Model Generation and Evaluation
To obtain a more personalized prediction model, the variables in the clinical-ultrasonic and RD were included in 
multivariate logistic regression analysis. The results showed that RD, age, and BI-RADS grade were associated with 

Table 3 (Continued). 

Variables B Odds Ratio (95% Confidence  
Interval)

P-value

Blood flow-grade 2 1.306 3.69 (0.282–48.236) 0.319
Blood flow-grade 3 −0.930 0.395 (0.020–7.593) 0.538

Edge-lobular −0.725 0.484 (0.109–2.159) 0.342

Edge-irregularity 0.962 2.617 (0.331–20.661) 0.361
Echo pattern-cyst −1.468 0.230 (0.041–1.309) 0.098

BI-RADS grade≥4A 2.813 16.654 (3.706–74.836) <0.001

Age 0.109 1.115 (1.051–1.183) <0.001
Size 0.032 1.033 (0.961–1.110) 0.383

Abbreviation: BI-RADS, breast imaging reporting and data system.

Figure 1 The value of clinical-ultrasonic model in predicting carcinoma in situ. 
Abbreviations: ROC, receiver operating characteristic; AUC, the area under the curve.
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DCIS with statistical significance and applied for clinical-RD generation (P <0.05) (Table 7). Finally, the clinical 
value of the three models was compared by the ROC and DCA in the development and validation cohorts. As shown 
in Figure 4A, clinical-RD model (AUC=0.996) had a superior ability to clinical-ultrasonic model (AUC=0.947) and 
radiomics model (AUC=0.980) in the development cohort with statistical difference (P <0.05) (Table 8). The same 
results were observed in the validation cohort with the AUCs of 0.983, 0.945, and 0.907 for the three models 
(Figure 4B and Table 8). The DCA results also showed that the clinical-RD model had the highest clinical efficacy 
compared to the radiomics model and the clinical-ultrasonic model in both development and validation cohorts 
(Figure 4C and D).

Discussion
In this study, the clinical and ultrasonic features of patients with DCIS and breast fibromatosis were collected and 
analyzed. The factors that could independently predict the DCIS were enrolled in the clinical-ultrasonic model 
construction. Besides, the ultrasound images were collected to extract a large number of radiomics features. Based on 
the LASSO method, collinearity analysis, and machine learning algorithm, significant radiomics features were selected 

Figure 2 Selection of radiomics features. (A) The radiomics features screened by LASSO. (B) The top five radiomics features were ranked by XGBoost and random forest 
algorithm.
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for the radiomics model generation. Finally, the predictive value and clinical efficacy of the clinical-ultrasonic model, 
radiomics model, and the combined model were compared, among which the combined model exhibited superior ability.

Routine ultrasound is a basic imaging technique for detecting and diagnosing breast lesions.19 Fine linear branching 
and fine pleomorphic calcifications are closely associated with malignancy of DCIS as well as an elevated risk of 
recurrence than other calcification morphologies.20 In the BI-RADS atlas (second edition), breast lesions are ultimately 
assigned a grade after analyzing ultrasound characteristics. Grade 0: a diagnosis that requires a combination of other 
imaging tests. Grade 1: negative results or no lesions. Grade 2: benign lesion, no suspicious features. Grade 3: benign 
lesions with a 2% probability of malignancy. Grade 4: suspicious lesion with 2–95% probability of malignancy, biopsy is 
recommended. Due to the wide range of the probability, Grade 4 is further divided into 4A, 4B, and 4C with a malignant 
probability of 2–10%, 10–50%, and 50–95%, respectively. Grade 5: suspicious lesion with over 95% probability of 
malignancy. Grade 6: malignancy proved by biopsy.21 Cha et al, reported that calcification was associated with 
pathological and biological markers.22 Besides, Sharma et al, showed the importance of age in DCIS.23 Herein, 
calcification-dotted, BI-RADS grade ≥4A and older age were independently related to a higher probability of developing 

Table 4 Detailed Information of Selected Features with Non-Zero Coefficients

Image Type Feature Class Feature Name Feature  
Coefficient

Original firstorder Maximum 0.486

Original glszm GrayLevelVariance −0.827

Original ngtdm Complexity −3.408
Wavelet-LLH gldm SmallDependenceLowGrayLevelEmphasis 0.004

Wavelet-LHL firstorder MeanAbsoluteDeviation 0.484

Wavelet-LHL gldm LargeDependenceHighGrayLevelEmphasis −0.695
Wavelet-HLL firstorder 10Percentile −0.761

Wavelet-HLL firstorder InterquartileRange 0.113
Wavelet-HLL glszm HighGrayLevelZoneEmphasis −0.453

Wavelet-HLH glszm SmallAreaLowGrayLevelEmphasis −0.028

Wavelet-HHL firstorder Maximum 0.114
Wavelet-HHH glszm SizeZoneNonUniformityNormalized −0.23

Wavelet-HHH glszm SmallAreaLowGrayLevelEmphasis −0.176

Wavelet-LLL glcm ClusterShade −0.179

Table 5 Collinearity Analysis

Variables VIF

10Percentile 22.763
InterquartileRange 21.097

HighGrayLevelZoneEmphasis 5.709

LargeDependenceHighGrayLevelEmphasis 3.909
Complexity 3.802

HighGrayLevelZoneEmphasis 3.263

MeanAbsoluteDeviation 2.865
ClusterShade 2.607

Maximum 2.296

SizeZoneNonUniformityNormalized 2.288
SmallAreaLowGrayLevelEmphasis 2.188

Maximum 2.17

SmallAreaLowGrayLevelEmphasis 1.761
SmallDependenceLowGrayLevelEmphasis 1.441
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DCIS, and the three factors were used for building a clinical-ultrasonic model with satisfactory performance in 
distinguishing DCIS from breast fibromatosis.

As a method of quantitatively analyzing the gray value of medical images, radiomics reflects the texture and 
morphological characteristics of tumors.24 Many quantitative features from medical images can be extracted by computer 
algorithms.25 The degree of tumor heterogeneity is a prognostic biomarker related to cancer progression revealed by 
genomic analyses.25,26 Notably, radiomics features characterize the heterogeneity throughout the entire tumor volume; 
however, biopsies only represent a small tumor portion or even a single site. Thus, radiomics features are promising 
markers of cancer aggressiveness.15 In addition, radiomics features represent an essential role in predicting treatment 
response and patient survival.14 After LASSO screening, and collinearity analysis, 12 radiomics features were identified 

Figure 3 Predictive performance of six machine learning models. (A) Receiver operating characteristic curve analysis of the six classifiers in the training and test sets. (B) 
Precision curve analysis of the six classifiers in the training and test sets. 
Abbreviations: ROC, receiver operating characteristic; AUC, the area under the curve; PR, precision curve; AP, area under the precision recall curve.
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and their feature classes included firstorder, glszm, ngtdm, gldm, and glcm. The First-order features including gray-level 
mean, maximum, minimum, variance, and percentiles are based on the global gray-level histogram.9 GLSZM counts the 
number of zones of linked voxels with the same gray level from the basis of the matrix.27 NGTDM (Neighborhood Gray- 
Tone Difference Matrix) quantifies the difference between a gray level and the average gray level of its neighbors within 
a predefined distance.28 GLDM (Gray Level Dependence Matrix) reflects the gray homogeneity of the local focus.29 

GLCM refers to the spatial relationship of pairs of pixels or voxels with predefined grayscale intensities and distances in 
different directions.27 These traits that are impossible to detect by visual inspection can be exploited by radiomics, 
providing critical data for the prediction and diagnosis of diseases.30 Interestingly, the logistic regression-based radiomics 
model outperformed the other models with good and stable prediction accuracy. Logistic regression is employed to assess 
the relationship between the binary dependent variables and independent variables, which can estimate the probability of 
the target variable. RF is an ensemble learning algorithm that uses multiple decision trees to provide a class prediction. 
SVM is a supervised model that identifies the optimal hyperplane, dividing the data into different classes. KNN is also 
a non-parametric learning algorithm in which output objects are classified using their local neighborhoods to formulate 
predictions. As a supervised learning algorithm, MLP can learn non-linear models. XG Boost uses an ensemble of weak 
prediction models for classification.31,32

Radiomics as a non-invasive method has been widely used in various diseases. Jin et al, reported that the ultrasound- 
based radiomics model incorporating clinical information and RD can effectively predict central lymph node metastasis 
in papillary thyroid carcinoma patients with Hashimoto's thyroiditis.33 The machine learning model based on ultrasound 
radiomics features performed well in discriminating primary and metastatic liver cancer.34 Besides, the clinical para-
meters combined with the radiomics can independently predict the microvascular invasion in hepatocellular carcinoma.35 

The MRI-based radiomics model can predict the overall survival and tumor-infiltrating macrophages in gliomas.36 This 

Table 6 Predictive Performance of Six Machining Learning Classifiers in the Training and Test Sets

Model Set AUC (SD) Accuracy Sensitivity Specificity PPV NPV F1 Score Kappa

XGBoost Training 1.000 (0.000) 0.990 0.995 1.000 1.000 0.971 0.997 0.977
Test 0.961 (0.024) 0.878 0.949 0.971 1.000 0.804 0.974 0.761

Logistic regression Training 0.976 (0.004) 0.939 0.941 0.954 0.972 0.889 0.956 0.871

Test 0.991 (0.009) 0.946 0.962 1.000 0.979 0.893 0.969 0.881
Random forest Training 1.000 (0.000) 0.993 1.000 1.000 1.000 0.982 1.000 0.986

Test 0.986 (0.014) 0.959 0.940 1.000 0.979 0.923 0.959 0.909

Support vector machine Training 0.989 (0.000) 0.963 0.974 0.963 0.979 0.937 0.976 0.919
Test 0.952 (0.012) 0.905 0.960 0.927 0.919 0.891 0.939 0.789

K-NearestNeighbor Training 0.993 (0.001) 0.929 0.962 0.955 0.984 0.864 0.972 0.853
Test 0.974 (0.026) 0.932 1.000 0.955 0.978 0.857 0.989 0.850

Multilayer Perceptron Training 0.838 (0.016) 0.844 0.973 0.636 0.821 0.908 0.890 0.639

Test 0.867 (0.101) 0.824 0.950 0.748 0.816 0.813 0.878 0.565

Abbreviations: AUC, area under the curve; PPV, Positive predictive value; NPV, negative predictive value.

Table 7 Logistic Regression Analysis Results

Variables B Odds ratio (95% Confidence  
Interval)

P-value

Radscore 0.275 1.317 (1.175–1.603) <0.001
Age 0.132 1.141 (1.036–1.307) 0.020

BI-RADS grade≥4A 3.626 37.575 (4.718–621.76) 0.002

Calcification-thick and diffuse −0.277 0.758 (0.048–12.998) 0.839
Calcification-dotted 0.585 1.795 (0.118–45.385) 0.673
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study revealed the significance of the model combined with the independent clinical-ultrasonic features and the RD 
obtained from the radiomics in distinguishing DCIS from breast fibromatosis.

For strengths, our study adopted the multimodal machine learning method to construct different models and selected 
the optimal classifier for distinguishing DCIS from breast fibromatosis. Then, the predictive value and clinical efficacy of 
the three models were explored in the development and validation cohorts using ROC and DCA. Despite some promising 
findings, only the ultrasound images were collected. The magnetic resonance imaging and mammography will be 
conducted to extract relevant radiomics features and the clinical efficacy of different radiomics models based on different 
examination methods should be compared in the future.

In conclusion, our study employed machine learning methods to develop a model effectively predicting the DCIS. 
The combined model achieved a satisfactory performance in distinguishing DCIS from breast fibromatosis.

Figure 4 Predictive value and clinical efficacy of the three models in the development and validation cohorts. Receiver operating characteristic curve analysis of three 
models in the (A) development cohort and (B) validation cohort. Decision curve analysis of the three models in the (C) development cohort and (D) validation cohort. 
Model 1: clinical-ultrasonic model; model 2: radiomics model; model 3: Clinical-radiomics model. 
Abbreviation: AUC, area under the curve.
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