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Background: Early adverse skin reactions (EASRs) are common side effects of radiotherapy (RT) that impact the quality of life of 
breast cancer patients. This study used global metabolomics profiles of breast cancer populations to identify metabolic pathways and 
biomarkers significantly associated with RT-induced EASRs to identify potential targets for precision interventions.
Methods: We used a frequency-matched study design to identify pre-RT urine samples from 60 female breast cancer patients (30 with 
high and 30 with low EASRs) for metabolomic analysis by Metabolon Inc. using UPLC-MS/MS and GC-MS. Using MetaboAnalyst, 
we performed metabolomic data analysis and visualization on 84 candidate metabolites from 478 total compounds. We used the 
Oncology Nursing Society (ONS) Skin Toxicity Criteria (0–6) for EASRs assessment.
Results: Seven metabolic pathways were significantly associated with RT-induced EASRs, including alanine, aspartate, and glutamate 
metabolism (p = 0.0028), caffeine metabolism (p = 0.0360), pentose and glucuronate interconversions (p = 0.0028), glycine, serine, 
and threonine metabolism (p = 0.0360), beta-alanine metabolism (p = 0.0210), pantothenate and CoA biosynthesis (p = 0.0028), and 
glutathione metabolism (p = 0.0490). The alanine, aspartate, and glutamate metabolic pathway had the lowest false discovery rate 
(FDR)-adjusted p-value and the highest impact value of 0.60. Thirteen metabolite biomarkers were significantly associated with RT- 
induced EASRs.
Conclusion: Our data show that the alanine, aspartate, and glutamate metabolism pathways had the highest impact value on RT- 
induced EASRs. Future larger studies are warranted to validate our findings and facilitate targeted interventions for preventing or 
mitigating RT-induced EASRs, offering a promising direction for further research and clinical applications.
Keywords: breast cancer, metabolomics, radiotherapy, early adverse skin reactions

Background
Breast cancer is one of the most frequently diagnosed cancers and the second leading cause of cancer death among 
women. With over 4 million survivors, 313,510 new cases, and 42,780 deaths expected in 2024, research on breast cancer 
treatment, survival, and quality of life (QOL) remains critical.1 For early-stage tumors, the standard treatment consists of 
breast-conserving surgery, also known as lumpectomy or partial mastectomy, resulting in improved cosmetic effects and 
comparable survival rates to conventional mastectomy procedures.2 Most patients undergoing breast-conserving surgery 
receive postoperative radiotherapy (RT) to reduce the risk of loco-regional recurrence and improve survival.3 Although 
adjuvant RT is well tolerated, many patients experience acute and late side effects that negatively impact the QOL.4 Thus, 
it is important to address RT-related early adverse skin reactions (EASRs) that significantly impact the QOL of breast 
cancer survivors.5

One of the most frequent and burdensome side effects of postoperative breast RT is EASRs6 resulting in itching, 
soreness, peeling, and burning sensations in affected patients. EASRs affect the majority of patients receiving RT, with 
many reporting skin changes during treatment, ranging from mild erythema to moist desquamation and ulceration in 
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more severe cases.7 With a high prevalence and variance in clinical presentations and severity of EASRs,8 it is important 
to evaluate underlying factors that place patients at a heightened risk for severe reactions. Several clinical variables, such 
as body mass index (BMI), age, smoking, breast volume, race/ethnicity, postmenopausal status, and inhomogeneity of 
dose9–12 have been associated with EASRs, and a growing body of evidence suggests radio-sensitivity results from 
a combination of complex genetic risk factors and biological pathways.13 Newer treatment protocols including 5-fraction 
partial breast irradiation and ultra-hypofractionated whole-breast irradiation14,15 may be associated with milder EASR; 
however, not all patients are eligible for these approaches, and EASRs are still a common toxicity. Recent studies have 
begun to explore the biological mechanisms and pathways involved in the development of RT-induced skin toxicities in 
breast cancer populations, including genetic mutations and inflammatory cytokine genes.16,17 So far, our past studies 
reported that elevated levels of the inflammatory biomarker C-reactive protein and polymorphisms in DNA damage 
repair genes may be associated with EASRs in breast cancer patients.18,19

Metabolomics, a growing field of studying metabolites, could provide insight into biological pathways associated 
with RT-induced EASRs. Metabolomics reflects overall change within biological systems; metabolites, the end products 
of genomic, transcriptomic, and proteomic processes, are closely connected to the functions and characteristics of cells 
and tissues.20 With the expansive advancements in metabolomics-driven technologies, researchers have begun to uncover 
metabolic pathways and biomarkers of interest in breast cancer risk, treatment responses, and survival revealing 
interactions of tumor cells and various biological molecules, including lipids, amino acids, and organic acids.21–24 

There is, however, limited literature exploring the potential contribution of metabolic processes to RT-induced EASRs. 
Therefore, in the present study, we evaluated global metabolomics across multiple biological pathways in the develop-
ment of RT-induced EASRs with the intent to identify potential targets for precision interventions.

Methods
Study Population
Patients were recruited from the University of Miami Sylvester Comprehensive Cancer Center (SCCC) and Jackson 
Memorial Hospital (JMH), Florida, in the United States from 2008 to 2014. Female patients (age ≥18) newly diagnosed 
with breast carcinoma, Stage 0–III were recruited before the initiation of RT. The study was approved by the University 
of Miami’s Institutional Review Board and written informed consent was obtained from each participant after providing 
a detailed description of the protocol in English or Spanish. For the current metabolomics study, 60 patients were 
randomly selected from the parent study, which was previously reported elsewhere,25 based on EASR grade (30 with 
a low grade and 30 with a high grade) and were frequency matched by race/ethnicity and BMI. Urine samples were 
collected before and after RT.

RT-Induced EASRs Assessment
Participants were administered adjuvant RT in the supine position to the whole breast using standard opposed tangential 
fields or to the whole breast and regional lymph nodes at the supervising physician’s discretion. Participants received 
either conventional RT (2.0 Gy/day over 5–6 weeks, mostly 50 Gy in 25 fractions) or hypo-fractionated RT (>2.0 Gy/day 
over 3 weeks, most commonly 42.4 Gy in 16 fractions).25 In some cases, a boost dose of 10 to 16 Gy was delivered to the 
lumpectomy cavity. After the conclusion of RT, EASRs were evaluated by the attending physician using ONS Skin 
Toxicity Criteria. The ONS scale divides EASRs into seven categories (grade 0–6): 0 - No changes noted; 1 - faint or dull 
erythema and/or follicular reaction and/or itching; 2 - bright erythema and/or tender to touch; 3 - dry desquamation with 
or without erythema; 4 - small or moderate amount of wet desquamation; 5 - confluent moist desquamation; 6 - 
ulceration, hemorrhage, and/or necrosis. ONS grades 0 and 1 indicate a low-grade EASR while ONS grade 4+ indicates 
a high-grade EASR.

Metabolomic Profiling
Urine samples were collected before and after radiotherapy (RT), immediately stored at −80°C and then processed at 
Metabolon, Inc. Urine metabolites were processed using liquid chromatography/mass spectrometry and analyzed by 
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Metabolon, Inc. (Morrisville, USA). The platform prepared samples using the MicroLab STAR® system.26 Recovery 
standards were added for quality control (QC) before the extractions. During the extractions, samples underwent a series 
of organic and aqueous extractions to eliminate the protein fraction while maximally preserving small molecules. The 
resulting extract was aliquoted in two divisions: one for UPLC-MS/MS analysis and one for GC/MS analysis. Samples 
were then vortexed on a TurboVap® (Zymark) to evaporate the organic solvent. Finally, each sample was freeze-dried by 
vacuum and prepared for either LC/MS-LC/MS or GC/MS. Internal and derivatization standards were employed for QC 
purposes. The raw data outputs were archived, extracted, and accessioned into the Metabolon Library Information 
Management System (LIMS) for metabolomic profiling. The informatics system included LIMS, data extraction and 
peak-identification software, data processing tools for QC and compound identification, and interpretation and visualiza-
tion tools for enhanced reporting and data analysis. Normalization steps were achieved to correct inter-day tuning 
differences between instruments employed in multiple-day studies. Compound concentrations were normalized by 
equating the run-day medians to one (1.00) and plotting each data point proportionately.

Statistical Analysis
Student’s t-tests were performed on pre-RT metabolite levels to compute differences in metabolite levels of the 478 total 
compounds between skin toxicity groups of low vs high EASRs. A p-value threshold of 0.2 was used to identify the candidate 
metabolites for pathway analysis. Enrichment and topology analyses were conducted on the 84 candidate metabolites to 
identify pathways associated with RT-induced EASRs. Pathway enrichment analysis employed hypergeometric tests to 
identify compounds overrepresented in their respective pathways, while pathway topology analysis evaluated the relative 
betweenness centrality, the proportion of shortest paths passing through a node, to yield pathway impact values (IVs).27 Point- 
biserial correlation coefficients were calculated as measures of the linear relationship between pre-RT metabolite levels and 
skin toxicity groups. False discovery rate (FDR)-adjusted p-values are controlled for multiple testing. Pathway enrichment and 
topology analyses were performed using MetaboAnalyst 3.0 (www.metaboanalyst.ca). Other analyses were performed using 
SAS v. 9.4 (SAS Inc., Cary, NC).

Results
Table 1 summarizes the patient tumor and clinical characteristics of the study population. The nested population 
consisted of 24 Black or African American (40%), 18 non-Hispanic White (30%), 14 Hispanic White (23%), and 4 
others (7%), as well as 4 normal weight (7%), 4 overweight (7%), and 52 (87%) obese patients. Twenty-seven of the 
sixty patients (45%) were older than 60 years of age. Fifty-six patients (93%) received a conventional RT dosage based 
on prevailing practices at that time.

Table 2 reports for 25 metabolites, the correlations between pre-RT metabolite levels and skin toxicity groups 
and reports the pre-RT metabolite means (and standard deviations) by skin toxicity groups. These 25 metabolites 

Table 1 Selected Characteristics of the Study Population by EASR Status

Variables Categories Total  
Patients

% Low EASR  
(ONS Grade 0–1)

% High EASR  
(ONS Grade 4+)

%

Total 60 100% 30 100% 30 100%

Race/ Ethnicity AA 24 40% 12 40% 12 40%
HW 14 23% 7 23% 7 23%

NHW 18 30% 9 30% 9 30%

Other 4 7% 2 7% 2 7%
BMI class Normal 4 7% 2 7% 2 7%

Overweight 4 7% 2 7% 2 7%

Obese 52 87% 26 87% 26 87%
Age < 60 33 55% 12 40% 21 70%

(Continued)

Breast Cancer: Targets and Therapy 2024:16                                                                                   https://doi.org/10.2147/BCTT.S466521                                                                                                                                                                                                                       

DovePress                                                                                                                         
371

Dovepress                                                                                                                                                       McMahon et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.metaboanalyst.ca
https://www.dovepress.com
https://www.dovepress.com


Table 1 (Continued). 

Variables Categories Total  
Patients

% Low EASR  
(ONS Grade 0–1)

% High EASR  
(ONS Grade 4+)

%

≥ 60 27 45% 18 60% 9 30%
ER Positive 47 78% 25 83% 22 73%

Negative 13 22% 5 17% 8 27%

PR Positive 43 72% 21 70% 22 73%
Negative 17 28% 9 30% 8 27%

Triple negative No 52 87% 27 90% 25 83%

Yes 8 13% 3 10% 5 17%
Tumor stage 0 9 15% 4 13% 5 17%

1 30 50% 16 53% 14 47%

2 19 32% 10 33% 9 30%
3A 2 3% 0 0% 2 7%

Prior chemo No 49 82% 26 87% 23 77%

Yes 11 18% 4 13% 7 23%
RT type Conventional 56 93% 27 90% 29 97%

Hypo-fractionated 4 7% 3 10% 1 3%

Note: no group difference due to frequency-matching. 
Abbreviations: AA, Black or African American; HW, Hispanic white; NHW, non-Hispanic white; EASR, early adverse skin reaction; BMI, body mass index; ER, 
estrogen receptor; PR, progesterone receptor; RT, radiotherapy.

Table 2 Pre-RT Metabolites That Differ by RT-Induced EASRs Status

Metabolites Pathway Correlation P Low EASRs High EASRs Pa

Mean SD Mean SD

Ethanolamine Phospholipid Metabolism 0.384 0.002 0.80 0.38 1.14 0.44 0.002

Thymine Pyrimidine Metabolism, Thymine containing 0.320 0.013 0.86 0.33 1.09 0.37 0.013

3-ureidopropionate Pyrimidine Metabolism, Uracil containing 0.312 0.015 1.04 0.39 1.40 0.69 0.016

Glucuronate Amino-sugar Metabolism 0.297 0.021 0.96 0.52 1.39 0.86 0.022

Cinnamoylglycine Food Component/Plant 0.298 0.021 0.94 0.75 2.36 3.19 0.023

Fucose Pentose Metabolism 0.286 0.027 0.96 0.51 1.31 0.66 0.027

Orotate Pyrimidine Metabolism, Orotate containing 0.281 0.029 0.92 0.42 1.29 0.82 0.031

Uracil Pyrimidine Metabolism, Uracil containing 0.280 0.030 0.87 0.43 1.19 0.63 0.031

Ribulose Pentose Metabolism 0.275 0.033 0.99 0.43 1.27 0.54 0.033

Glutamate Glutamate Metabolism 0.274 0.034 0.86 0.50 1.20 0.69 0.034

Alanine Alanine and Aspartate Metabolism 0.271 0.036 0.88 0.35 1.16 0.62 0.037

Gamma-aminobutyrate Glutamate Metabolism 0.270 0.037 0.81 0.52 1.27 1.05 0.038

Glucose Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 0.274 0.034 0.95 0.49 6.55 14.2 0.039

Cortolone Steroid 0.249 0.055 0.86 0.54 1.27 1.03 0.057

2-hydroxyphenylacetate Phenylalanine and Tyrosine Metabolism 0.249 0.055 0.99 0.32 1.09 0.44 0.060

Inosine Purine Metabolism, (Hypo)Xanthine/Inosine containing 0.241 0.064 0.90 0.42 1.12 0.46 0.064

Gamma-CEHC Tocopherol Metabolism 0.241 0.063 0.56 0.49 0.68 0.69 0.064

5,6-dihydrouracil Pyrimidine Metabolism, Uracil containing 0.239 0.066 0.86 0.37 1.07 0.47 0.065

4-methyl-2-oxopentanoate Leucine, Isoleucine and Valine Metabolism 0.239 0.066 0.72 0.32 1.03 0.84 0.069

3-methoxy-4-hydroxyphenylglycol Phenylalanine and Tyrosine Metabolism 0.233 0.073 0.92 0.51 1.18 0.59 0.073

Glucose-6-phosphate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 0.231 0.075 0.66 0.49 1.59 2.77 0.080

N-acetylmannosamine Amino sugar Metabolism 0.224 0.085 0.89 0.84 1.16 1.41 0.086

3-hydroxycotinine glucuronide Tobacco Metabolite 0.211 0.106 0.40 0.12 0.60 0.62 0.111

Aspartate Alanine and Aspartate Metabolism 0.189 0.148 1.01 0.61 1.39 1.29 0.150

Putrescine Polyamine Metabolism 0.184 0.160 1.13 1.37 1.85 2.43 0.161

Notes: Correlation: Point-Biserial correlation between pre-RT metabolite level and skin toxicity low and high EASR groups. aStudent’s t-test comparing pre-RT 
metabolite mean between low and high EASR groups. 
Abbreviations: EASRs, early adverse skin reactions; SD, standard deviation; P, p-value.

https://doi.org/10.2147/BCTT.S466521                                                                                                                                                                                                                                

DovePress                                                                                                                                            

Breast Cancer: Targets and Therapy 2024:16 372

McMahon et al                                                                                                                                                       Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


were included in the pathway analysis using a p-value threshold of 0.20. The top 13 metabolites listed differ 
significantly at p < 0.05 between low and high EASR groups; these were ethanolamine, thymine, 3-ureidopropio-
nate, glucuronate, cinnamoylglycine, fucose, orotate, uracil, ribulose, glutamate, alanine, gamma-aminobutyrate, and 
glucose. Various carbohydrates including glucose (r = 0.274; p = 0.034), ribulose (r = 0.275; p = 0.033), fucose (r = 
0.286; p = 0.027), and glucuronate (r = 0.297; r = 0.021) showed positive correlations between pre-RT metabolite 
level and skin toxicity, and all showed statistically significant higher mean pre-RT metabolite levels in high EASR 
group compared to low EASR group. Similar positive correlations between pre-RT metabolite levels and skin 
toxicity groups were observed for metabolites involved in pyrimidine metabolisms such as uracil (r = 0.280; p = 
0.030), 3-ureidopropionate (r = 0.312; p = 0.015), orotate (r = 0.281; p = 0.029), and thymine (r = 0.320; p = 0.013), 
as well as compounds such as alanine (r = 0.271; p = 0.036), ethanolamine (r = 0.384; p = 0.002), cinnamoyl 
glycine (r = 0.298; p = 0.021) and gamma-aminobutyrate (r = 0.270; p = 0.037); and for all these metabolites, mean 
pre-RT metabolite level was higher in the high EASR group. Of special interest was the molecule glutamate, 
showing pre-RT levels positively correlated with skin toxicity (r = 0.274, p = 0.034; mean 0.86 vs 1.20, in low and 
high EASR groups, respectively, p = 0.034).

Metabolic Pathways Associated with RT-Induced EASRs
Pathway enrichment and topology analyses identified pathways associated with RT-induced EASRs. Table 3 summarizes 
the results, presenting the expected and the actual number of hits, FDR-adjusted p-values, and impact values (IV) for the 
pathways. The following seven metabolic pathways were significantly associated with RT-induced EASRs: alanine, 
aspartate, and glutamate metabolism (p = 0.0028; IV = 0.60); caffeine metabolism (p = 0.0360; IV = 0.29); pentose and 
glucuronate interconversions (p = 0.0028; IV = 0.15); glycine, serine, and threonine metabolism (p = 0.0360; IV = 0.11); 
beta-alanine metabolism (p = 0.0210; IV = 0.07); pantothenate and CoA biosynthesis (p = 0.0028; IV = 0.06); and 
glutathione metabolism (p = 0.0490; IV = 0.04). Alanine, aspartate, and glutamate metabolism had the most significant 
FDR p-value and the highest IV in predicting RT-induced EASRs among the pathways observed.

Table 3 Metabolic Pathways That Differ by RT-Induced EASR Status at FDR<0.20

Significant Pathways Total Expected Hits Raw pa -log(p) Holm- adjusted p FDR p Impactb

Alanine, aspartate and glutamate metabolism 24 0.7 6 4.34x10−5 1.00x101 3.47x10−3 2.83x10−3 0.60

Pantothenate and CoA biosynthesis 27 0.79 6 8.91x10−5 9.33 x10° 7.04x10−3 2.83x10−3 0.06

Pentose and glucuronate interconversions 53 1.54 8 1.06x10−4 9.15x10° 8.29x10−3 2.83x10−3 0.15

Beta-Alanine metabolism 28 0.81 5 1.05x10−3 6.86x10° 8.10x10−2 2.10x10−2 0.07

Glycine, serine and threonine metabolism 48 1.4 6 2.28x10−3 6.08x10° 1.73x10−1 3.60x10−2 0.11

Caffeine metabolism 21 0.61 4 2.70x10−3 5.91x10° 2.03x10−1 3.60x10−2 0.29

Glutathione metabolism 38 1.11 5 4.29x10−3 5.45x10° 3.17x10−1 4.90x10−2 0.04

Arginine and proline metabolism 77 2.24 7 6.17x10−3 5.19x10° 4.51x10−1 6.17x10−2 0.11

Ascorbate and aldarate metabolism 45 1.31 5 8.91x10−3 4.72x10° 6.42x10−1 7.92x10−2 0.17

Taurine and hypotaurine metabolism 20 0.58 3 1.88x10−2 3.97x10° 1.00x10° 1.37x10−1 0.05

Citrate cycle (TCA cycle) 20 0.58 3 1.88x10−2 3.97x10° 1.00x10° 1.37x10−1 0.17

Cysteine and methionine metabolism 56 1.63 5 2.18x10−2 3.83x10° 1.00x10° 1.45x10−1 0.17

Butanoate metabolism 40 1.16 4 2.72x10−2 3.60x10° 1.00x10° 1.63x10−1 0.11

Pyrimidine metabolism 60 1.74 5 2.85x10−2 3.56x10° 1.00x10° 1.63x10−1 0.17

Histidine metabolism 44 1.28 4 3.71x10−2 3.29x10° 1.00x10° 1.86x10−1 0.05

Phenylalanine metabolism 45 1.31 4 3.99x10−2 3.22x10° 1.00x10° 1.86x10−1 0.01

Amino sugar and nucleotide sugar metabolism 88 2.56 6 4.04x10−2 3.21x10° 1.00x10° 1.86x10−1 0.11

Valine, leucine and isoleucine biosynthesis 27 0.79 3 4.18x10−2 3.17x10° 1.00x10° 1.86x10−1 0.06

Notes: Total, number of compounds in pathway; Hits, matched number of compounds from uploaded data. aPathway enrichment analysis. bPathway topology 
analysis. 
Abbreviation: FDR, false discovery rate.
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Discussion
As postoperative breast RT remains a standard postoperative treatment for many breast cancer survivors, it is important to 
thoroughly evaluate the adverse effects associated with this practice. Although previous studies suggest that the severity 
and symptomatology of EASRs differ by patient disease and treatment characteristics,19,28 there is generally limited 
knowledge on the role of metabolic pathways and biomarkers in the development of RT-induced EASRs. Our study 
addresses the dearth of literature on the biological mechanisms of EASRs by capitalizing on advancements in metabo-
lomic profiling to evaluate biomarkers associated with these reactions. As EASRs significantly affect the QOL of breast 
cancer survivors, our findings target an important gap in breast RT research and offer insight into potential precision 
medicine targets for RT-induced adverse reactions.

In our pilot study of 60 breast cancer patients, seven metabolic pathways were significantly associated with RT- 
induced EASRs after adjusting for race/ethnicity and BMIs. Among those pathways, the alanine, aspartate, and glutamate 
metabolism pathways had the highest IV at 0.60 with an FDR-adjusted p-value of 0.0028, representing the highest 
cumulative percentage of matched metabolite nodes exhibiting pathway importance by relative betweenness centrality. 
This finding enhances preliminary evidence of the importance of glutamate metabolism in RT-induced EASRs supporting 
the exploration of novel clinical interventions targeting glutaminase.29 Additional pathways including pantothenate and 
CoA biosynthesis, pentose and glucuronate interconversions, beta-alanine metabolism, glycine, serine, and threonine 
metabolism, caffeine metabolism, and glutathione metabolism were associated with RT-induced EASRs; however, the 
IVs of these pathways were lower than that of glutamate ranging from 0.04 to 0.29. Thus, alanine, aspartate, and 
glutamate metabolism emerged as a pathway of interest in the development of RT-induced EASRs.

Our interest in glutamate metabolism was further enhanced by the identification of glutamate as a significant metabolite 
in the correlation with RT-induced EASRs (r = 0.274; p = 0.034). Glutamate, the most abundant amino acid in the human 
body, plays a crucial role in multiple physiological processes including cognition, learning, and behavior, and high levels of 
production can lead to neuronal dysfunction.30 More importantly, glutamate plays a critical role in tumor bioenergetics 
serving as a growth factor and signal mediator in both neuronal and non-neuronal neoplasms.31 Past research has shown that 
hyperglycemic conditions promote more aggressive phenotype in various cancers, including breast,32 and there is growing 
evidence to suggest that glutaminase inhibition may enhance radiosensitivity.33,34 Our glutamate-related findings are 
supported by previous studies that revealed the influence of RT on serum/plasma concentrations of various energy- 
related metabolites in patients with breast cancer.35,36 Aside from RT-induced changes, the potential target role of glutamate 
in breast cancer therapy has been furthered by studies exploring the importance of estrogen-mediated glutamate-signaling 
to the aggressiveness of triple-negative breast cancer, as well as the role of glutamine-signaling in cancer-induced pain.37,38 

With recent expansions in clinical applications of glutaminase inhibitors and a clinically available glutaminase inhibitor, 
telaglenastat (CB-839),39 this may be a promising treatment option to prevent RT-induced EASRs while also capitalizing on 
their anticancer mechanisms to improve treatment outcomes.29,40

In addition to glutamate, pre-RT levels of 12 metabolites including ethanolamine, thymine, 3-ureidopropionate, 
glucuronate, cinnamoyl glycine, fucose, orotate, uracil, ribulose, alanine, gamma-aminobutyrate, and glucose were 
significantly higher in the high EASR group. Changes in metabolite concentrations of carbohydrates, including glucose, 
pentose, ribulose, fucose, and glucuronate, were positively correlated with RT-induced EASRs. As high levels of fucose and 
glucuronate are linked to the degradation and recycling of extracellular glycoproteins and glycosaminoglycans, they may 
play critical roles in the impairment of skin repair.41,42 Whereas elevated levels of nucleic acid metabolites, such as uracil 
and 3-ureidopropionate and orotate may reflect the breakdown of pyrimidine nucleotides required for tissue recovery.43 Our 
findings are supported by previous studies reporting significant changes from pre- to post-RT in serum/plasma metabolome 
profiles, including levels of phospholipids as well as metabolites involved in glycolysis, citric acid cycle, and amino acid 
metabolism.35,36,44,45 Furthermore, our findings contribute to the literature suggesting that microbial metabolites modulate 
immune pathways and tissue injury and repair mechanisms46 and that the microbiome may impact the efficacy and toxicity 
of anti-cancer therapeutics, including radiotherapy.47 The growing body of evidence illustrates the importance of metabo-
lites in predicting RT-induced changes, encouraging future longitudinal studies of metabolomics-based modeling in RT- 
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induced EASRs. As technological advancements in artificial intelligence continue, there may be increasing opportunities to 
leverage pre-RT metabolome profiles to develop predictive algorithms for EASRs.48,49

This study had several strengths and weaknesses. First, we used a prospective study design to capture the develop-
ment of RT-induced EASRs, which is impossible with a cross-sectional or retrospective study design. Second, the study 
findings capitalized on recent advancements in metabolomics-based technologies by employing liquid chromatography- 
mass spectrometry (LC-MS), and gas chromatography (GC-MS) to profile biological compounds of interest in the 
development of RT-induced EASRs. The collateral use of LC-MS and GC-MS has led to improved compound profiling 
capacity along with advancements in the sensitivity and selectivity platform of MS which enhanced metabolic profiling 
in recent years.50 Third, this is one of the first studies to use metabolomics-based analyses to evaluate radiosensitivity in 
breast cancer populations, and our findings demonstrate potential applications of metabolomics to study RT-induced 
EASRs and related QOL in cancer patients receiving adjuvant RT. The major limitation of this study is the relatively 
small sample size (n=60). To overcome this limitation to some extent, we employed a frequency-matched study design to 
select samples (30 low and 30 high EASRs). It is also important to recognize that many patients are now able to receive 
moderately or ultra-hypofractionated protocols, which may have less skin toxicity. Future larger studies are warranted to 
validate our findings in the setting of modern radiotherapy schedules and facilitate the discovery and development of 
metabolism-targeted agents to protect normal tissue from RT-induced EASRs and improve the quality of life in breast 
cancer patients undergoing RT.

Our study findings contribute to an increased understanding of metabolic pathways and biomarkers in the develop-
ment of RT-induced EASRs. Metabolomic profiling is relatively quick, non-invasive, and inexpensive and supplies high- 
throughput methods to analyze gross patient phenotypes indicative of upstream biological processes. To the best of our 
knowledge, this is the first study to evaluate global metabolomics in RT-induced EASRs and explore potential targets for 
interventions with glutaminase inhibitors.

Conclusions
In the present study of breast cancer patients receiving adjuvant RT, alanine, aspartate, and glutamate metabolism was 
a key pathway of interest in predicting RT-induced EASRs given its high impact value (0.60) and significant FDR- 
adjusted p-value (p = 0.0028). Our findings suggest that glutaminase inhibitors may have potential applications in 
preventing RT-induced EASRs.
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