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Abstract: Tumor vessels characterized by abnormal functions and structures hinder the infiltration and immune antigen presentation 
of immune cells by inducing the formation of an immunosuppressive microenvironment (“cold” environment). Vascular-targeted 
therapy has been proven to enhance immune stimulation and the effectiveness of immunotherapy by modulating the “cold” 
microenvironment, such as hypoxia and an acidic microenvironment. Notably, a therapeutic strategy based on “vascular-immune” 
crosstalk can achieve dual regulation of tumor vessels and the immune system by reprogramming the tumor microenvironment (TME), 
thus forming a positive feedback loop between tumor vessels and the immune microenvironment. From this perspective, we discuss 
the factors of tumor angiogenesis and “cold” TME formation. Building on this foundation, some vascular-targeted therapeutic drugs 
will be elaborated upon in detail to achieve dual regulation of tumor vessels and immunity. More importantly, we focus on cutting- 
edge nanotechnology in view of “vascular-immune” crosstalk and discuss the rational fabrication of tailor-made nanosystems for 
efficiently enhancing immunotherapy. 
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Introduction
Cancer is the leading cause of mortality worldwide. The International Agency for Research on Cancer (IARC) predicts 
that the annual number of cancer cases will increase from approximately 18.1 million in 2018 to 27.5 million in 2040.1 

Cancer immunotherapy has gradually become a powerful treatment for solid tumors, with the aim of enhancing the 
activation of the immune system to kill cancer cells. Immunotherapeutic agents, such as immune checkpoint inhibitors 
(ICIs) and tumor vaccines that can reactivate dysfunctional and/or exhausted T cells, have been proven to be effective 
against multiple cancers.2,3 However, 50–80% of cancer patients do not benefit from ICIs and many experience severe 
adverse events.4,5 The characterized microenvironment of immunosuppressive cancer, lack of immune cell infiltration, 
and low T cell activity are responsible for the low immune response.6 In addition, immunosuppressive tumor micro-
environment (“cold” TME), characterized by hypoxia, low pH, also reduces the effectiveness of immunotherapy via 
inhibiting T-cell function and recruiting immunosuppressive cells.7,8

Recent research has revealed that tumor vessels are an important factor in triggering the formation of a “cold” 
environment. Firstly, tumor cells release pro-angiogenic factors to promote tumor angiogenesis with structural and 
functional abnormalities. These abnormal tumor vessels further promote tumor hypoxia owing to uneven oxygen delivery 
and further reprogramming of tumor metabolism.9 Subsequently, its metabolites, such as lactate, are released by tumor cells 
and accumulate in the TME, exacerbating the formation of a “cold” TME and inducing resistance to tumor 
immunotherapy.10 In addition, tumor vessels are also reported to hinder immune effector cells infiltration and the delivery 
of therapeutic drugs.11,12 As the “cold” TME worsens, immunosuppressive cells release a series of bioactive molecules, 
such as cytokines, chemokines, which in turn affect the process of tumor angiogenesis. They can also regulate tumor 
angiogenesis by directly acting on endothelial cells (ECs) or activating signaling pathways related to tumor angiogenesis.13 

And increasing clinical research supports the substantial enhancement of overall survival (OS) and overall response rate 
(ORR) with the combination of ICIs and antiangiogenic therapy.14,15 Furthermore, preclinical and clinical research also 
found low-dose anti-angiogenic drugs could induce vascular normalization by augmenting ECs coverage within vascular 
tissue and pericytes, which increase the infiltration of immune effector cells into tumors and convert the intrinsically “cold” 
TME to “hot” one.16,17 In summary, the reciprocal modulation between immune cells and tumor vessels (“vascular- 
immune” crosstalk) is vital in enhancing the effectiveness of cancer immunotherapy, and understand “vascular-immune” 
crosstalk will be essential for developing potent combination cancer immunotherapies.

In this review, we elaborate on the immunosuppressive mechanisms of tumor vessels, therapeutic drugs, clinical 
treatments, and nano-delivery strategies based on the “vascular-immune” pathway. In addition, this review discusses the 
associated mechanisms and feasible therapeutic drugs based on the “vascular-immune” effect. Notably, drug delivery 
nanosystems customized for tumor vessels have been elaborated and discussed in detail using cutting-edge nanotechnology. 
Finally, the future prospects and potential breakthroughs of these antiangiogenic agents and nanosystems are briefly discussed.

The Aberrant Tumor Vessels and Poor Drug Delivery
Under physiological conditions, endothelial progenitor cells are locally stimulated, recruited, and differentiated into 
mature vascular endothelial cells, which ultimately form blood vessels.18 Tumor angiogenesis begins with locally 
damaged endothelial basement membranes, and pro-angiogenic factors induce ECs migration and promote ECs prolif-
eration, thus forming capillary loops and new basement membranes.19 Tumor angiogenesis is simultaneously regulated 
by pro- and anti-angiogenic factors, and its balance is disrupted during tumor progression.20 Overexpression of pro- 
angiogenic factors such as vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and 
angiopoietin (Ang) in the TME is responsible for tumor angiogenesis. These molecules induce ECs migration and attach 
to vessels by binding to receptors on ECs, thus forming structurally and functionally abnormal tumor vessels.21 VEGF, 
a key protein in angiogenesis, is responsible for maintaining the activity of the immature vasculature and accelerating 
vascular permeability by binding to VEGF receptors (VEGFR-1 and −2), which impairs vascular perfusion and elevates 
interstitial hydraulic pressure.22 In addition, TGF-β regulates the migratory and invasive activities of ECs by increasing 
the expression of metalloproteases that degrade extracellular matrix (ECM) such as MMP-2 and MMP-9.23 Ang is 
closely related to the development of mature blood vessels, endothelial sprouting, vessel wall remodeling, and the 
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recruitment of mural cells.24 Under the common effect of these factors, the perivascular cells of tumor vessels are 
detached or absent, causing a reduction in vascular integrity, incoherent perfusion, and vessel immaturity, thus forming 
hyperleaky tumor vessels. It has been reported that hyperleaky tumor vessels not only restrict the delivery of oxygen and 
elevate interstitial fluid pressure (IFP) but also facilitate the dissemination and metastasis of tumor cells. In addition, it 
reduces the efficacy of immunotherapy by hindering the entry of antitumor therapeutics and immune cells from the 
bloodstream into tumor tissue.25 Moreover, other adverse effects on tumor vessels, such as inflammation, hypoxia, low 
pH, and poor delivery of therapeutic drugs, are important reasons for reducing tumor immunogenicity and promoting 
immunosuppression.26

The accumulation of drugs at the tumor site needs to undergo intra-circulatory transport and span the vascular wall 
and interstitial spaces, which is hindered by the tumor vessels. Tumor vessels are characterized by high leakage, large 
gaps in defective ECs, chaotic microvascular branches, and irregular arrangements, which affect blood flow behavior, 
vascular perfusion, and hydrostatic and osmotic pressure gradients.27 Diffusion and convection across discrete endothe-
lial intercellular spaces, the main pathways of vascular-mediated drug transport, are dually hindered by a leaky coronary 
system and interstitial ECM, thus resulting in inefficient drug distribution throughout the tumor.28 In addition, the 
enhanced permeability and retention effect (EPR effect) was also the other transport pathway, while diffusion barriers 
composed of dense cellular and stromal components impede transport through the interstitium.29 Interestingly, the ECM, 
which consists of fibrin, glycoprotein (GP), proteoglycan (PG), and glycosaminoglycan (GAG), provides structural 
support, promotes ECs migration, and prevents the entry of macromolecular drugs into the TME. The cross-linking of 
ECM proteins (eg, collagen, elastin, and fibronectin) forms a numerous and highly cohesive fibrous network that 
significantly inhibits their activity and diffusion efficiency by trapping drugs around tumor vessels.30,31 ECM proteins 
induce cancer-associated fibroblasts (CAFs) to synthesize matrix proteins, which impairs the deep penetration of 
macromolecular drugs by increasing tumor stiffness.32 In addition, a hypoxic environment upregulates the expression 
of drug resistance genes (eg, P-gp, MDR, MRP1) and increases drug efflux to enhance drug resistance in tumor cells.33,34 

In summary, tumor vessels hinder multiple aspects of therapeutic drugs, including drug delivery, penetration, and 
sensitivity.

The Vascular-Immune Crosstalk
A complete immune response chain is necessary for effective cancer immunotherapy; however, it encounters an 
immunosuppressive TME caused by abnormal tumor vessels (Figure 1). Additionally, immune cells exhibit pro- 
angiogenic activities that regulate tumor angiogenesis. Thus, reciprocal modulation exists between immune cells and 
tumor vessels. Understanding this interplay is crucial to achieve sustained immune activation and effective immunother-
apeutic outcomes. In this section, we will elaborate on the effects of “vascular-immune” crosstalk from different 
perspectives, including immune cell infiltration, immune response, and tumor vessels.

Effect on Immune Cells Infiltration
Tumor vessels usually impair the adhesion between immune cells and ECs and upregulate the expression of immuno-
suppressive molecules to form a barrier, making it difficult for them to reach the tumor site. ECs can prevent immune cell 
adhesion through intracellular sequestration or transcriptional repression of endothelial adhesion molecules (EAMs), 
whereas post-inflammatory ECs impair EAM sequestration via inducing P-selectin expression and pro-inflammatory 
cytokine activation.35 These pathways activate the gene expression of EAMs (eg, E-selectin, ICAM-1 and VCAM-1) and 
secretion of chemokines, which further affect the migration of immune cells. E-selectin and P-selectin are involved in 
leukocyte capture and rolling, while ICAM-1, ICAM-2, and VCAM-1 are involved in the subsequent steps of rolling, 
crawling, arrest, and transendothelial migration.36,37 However, the expression of multiple EAM genes in tumor-asso-
ciated endothelial cells (TECs) is inhibited by vascular-related factors, including pro-angiogenic factors, inflammatory 
factors, and chemokines, which reduce T cell-endothelial cell interactions. For example, immune cell adhesion is initiated 
by ECs activation via tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), resulting in the upregulation of 
adhesion molecules and chemokine production.38,39 bFGF and VEGF inhibit proinflammatory cytokine-induced ECs 
adhesion by inhibiting the expression of ICAM-1, VCAM-1 and E-selectin.40 The death mediator FAS ligand (FASL) is 
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usually found in the vasculature of solid tumors, and upregulated by VEGF-A, which selectively kills effector T cells, 
resulting in a lack of intratumoral CD8+ T cells.41 In addition, TECs can upregulate multiple inhibitory molecules, 
including galectin 1 (Gal-1) and endothelin B receptor (ETBR), creating an endothelial barrier for immune cells to 
infiltrate tumor tissue. The ETBR plays a pivotal role in maintaining vascular homeostasis. Its binding to endothelin-1 
reduces the adhesion between T cells and ECs, thereby decreasing the homing of T cells.42 Gal-1 is overexpressed in the 
neovascularization of tumors and specifically upregulated in TECs to induce T-cell apoptosis. Additionally, research has 
noted a substantial reduction in T lymphocyte recruitment with significant expression of Gal-1.43

Effect on Immune Response
The anti-tumor immune response is a complex and coordinated physiological process in which the body combats tumor 
cells and involves immune recognition, antigen presentation, immune cell activation, and immune effects. However, 
heterogeneous oxygen delivery to tumor vessels induces the formation of a highly hypoxic TME, restraining the effective-
ness of the immune response. The vascular-mediated hypoxic microenvironment contributes to immunosuppression through 
several mechanisms. Firstly, hypoxia induces immune escape of tumor cells by increasing the expression of immunosup-
pressive molecules such as programmed cell death ligand 1 (PD-L1). Recent research has shown that PD-L1 expressed by 
tumor cells can induce the loss of cytotoxic activity in T cells by binding to its PD-1 receptor, which is a crucial pathway for 
immune evasion.44 PD-L1 expressed by TECs can directly inhibit the inactivation of T cells at the vascular site by binding 
to PD-1, which is stimulated by inflammatory cytokines (IFN-γ and TNF-α).45 Secondly, hypoxia alters tumor metabolism 
and upregulates the secretion of immunosuppressive metabolites, predisposing immune cells to an immunosuppressive 
state.46,47 Recent studies have shown that hypoxia can activate hypoxia-inducible factor 1-alpha (HIF-1α), which further 
enhances the expression of pyruvate dehydrogenase kinase 1 (PDK1), leading to the reduced conversion of pyruvate to 
acetyl-CoA and increased lactate production. Lactate acidifies the TME, forming a low-pH environment, which 

Figure 1 Abnormal “vascular-immune” crosstalk contributes to immune suppression by multiple mechanisms. Abnormal tumor vessels elicit immune suppression by 
reducing T cells infiltration (I) and inducing the formation of immunosuppressive cells (II). Immune cells directly regulate the phenotypes and functions of tumor vessels 
through various cytokines (III).
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consequently suppresses proliferation and weakens the anti-tumor function of tumor-infiltrating cells (TILs) by blocking the 
export of lactate from CD8+ T cells and impairing adenosine triphosphate (ATP) production.48,49 Lactate also inhibits the 
activation and proliferation of T cells and induces M2-like polarization of tumor-associated macrophages (TAM).50 It is 
worth mentioning that hypoxia also upregulates the activity of indoleamine 2.3-dioxygenase (IDO), which catalyzes the 
degradation of tryptophan to kynurenine (Kyn), inducing the formation of FoxP3+ T-regs and tolerogenic dendritic cells 
(tolDCs) by binding aryl hydrocarbon nuclear receptors(AHR).51,52 Finally, hypoxia promotes the secretion of immuno-
suppressive factors that worsen the immunosuppressive microenvironment by inducing the secretion of immunomodulatory 
molecules from the TECs. VEGF-A inhibits the function of T cells and upregulates the immune resistance of tumor cells by 
inducing the accumulation and proliferation of myeloid-derived suppressor cells (MDSCs), which can induce the transfor-
mation of M2 macrophages and regulatory T cells (Tregs) by secreting cytokines (such as IL-10 and TGF-β), down-
regulating cell adhesion factors, promoting immune cell extravasation, and depleting nutrients (such as L-arginine and 
cystine).53 Ang2 promotes Tregs infiltration and inhibits CTL activation by recruiting M2 TAMs and Tie-2-expressing 
monocytes/macrophages (TEM).54 TGF-β silences tumor immune surveillance via downregulating T cell receptor (TCR) 
expression and reducing intracellular Ca2+ signaling and transcription factor expression.55

Effect on Tumor Vessels
The role of immune cells in regulating tumor vessels is a complex and multi-level process that involves a variety of cell 
types and molecular signals. Activated CD8+ T cells can secrete IFN-γ to downregulate the expression of delta-like 
protein 4 in ECs, thus inhibiting Notch signaling, which is a critical requirement for sprouting angiogenesis. CD4+ 

T helper 1 (TH1) cells are related to pericyte coverage of tumor vessels, and loss of CD4 TH1 cells causes vascular 
abnormalities.56 The accumulation of Tregs at tumor sites has been demonstrated to promote the release of angiogenic 
cytokines by suppressing the activity of immune cells such as CD4+ effector TH1 cells.57 Tumor-associated immune cells 
participate in angiogenesis. For example, TAMs, which share many features with M2-like macrophages, produce VEGF- 
A and chemokines (CXCL8, CXCL12, and TNFα) to activate and recruit ECs, which are responsible for the induction of 
sprouting, tube formation, and maturation of new vessels.58 Interestingly, M1-like macrophages release anti-angiogenic 
cytokines such as IL-12, IL-18, and TNF-α to suppress sprouting angiogenesis.59

The Therapeutic Strategy Based on “Vascular-Immune” Crosstalk
Based on the immune-regulatory effect of tumor vessels, anti-angiogenic therapy has been widely combined with 
immunotherapy for the treatment of diverse cancers such as breast cancer, melanoma, and lung cancer. Currently, anti- 
angiogenic drugs are categorized into synthetic and natural molecular drugs, both of which exert dual regulatory effects 
on the “vascular-immune” system. This review summarizes several representative classes of natural products and 
synthetic antiangiogenic drugs influencing the “vascular-immune” relationship, emphasizing the promising therapeutic 
potential of combination therapy targeting the “vascular-immune” interplay.

Synthetic Drugs
Small-molecule tyrosine kinase inhibitors (TKIs) and VEGF monoclonal antibodies are the main components of synthetic 
antiangiogenic drugs, many of which have been approved for clinical cancer treatment (Table 1). Sunitinib, an oral broad- 
spectrum TKIs, is used to treat renal cell carcinoma (RCC) through the inhibition of VEGFR-1, 2, and 3. In addition, 
sunitinib treatment demonstrated potent immune regulatory capabilities, including suppression of Tregs function, decreased 
numbers of MDSCs, and enhancement of immune cell infiltration. It also leads to a reduction in the expression of immune 
checkpoint receptors on CD4+ and CD8+ T cells.60,61 Preclinical and preliminary clinical findings have shown that apatinib 
not only efficiently activates natural killer (NK) cells but also enhances the expression of PD-L1 on tumor cells.62,63 

Simultaneously, apatinib increases the proportion of CD4+ CD25+ T cells, which is recognized as a promising indicator of 
apatinib prognosis and contributes to the extension of progression-free survival (PFS) in patients.64 Axitinib has been 
developed as a selective inhibitor of VEGFRs 1–3, and is well-established as a second-line treatment for metastatic RCC.65 

A preclinical study observed that after treatment with axitinib, immunosuppressive cells, including tumor-associated mast 
cells, TAM, and monocytic MDSCs, significantly decreased, enhancing the therapeutic efficacy of ICIs therapy.66 
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Lenvatinib, a multi-kinase inhibitor targeting VRGFR 1–3 and fibroblast growth factor receptor (FGFR 1–4), has been 
reported to reduce PD-L1 expression and Tregs infiltration in tumors. Lenvatinib enhances proteasomal degradation of PD- 
L1 and inhibits Tregs differentiation by blocking FGFR4, thereby enhancing the immune response to ICIs 
immunotherapy.67

VEGF monoclonal antibody-based therapy has become one of the most important strategies for the treatment of solid 
tumors. Bevacizumab (Bev) is a recombinant humanized immunoglobulin G monoclonal antibody that targets VEGF-A 
and inhibits formation of the VEGF-A/VEGFR-2 complex. It increases the number of mature DCs and inhibits tumor 
infiltration by immunosuppressive cells.68 Bev has been reported to reduce the proportion of Tregs in the blood of 
metastatic CRC patients.69 Ramucirumab (Ram) is a human monoclonal antibody that specifically targets VEGFR2 by 
blocking its interactions with VEGF ligands. A clinical trial demonstrated that after treatment with Ram, there was an 
increase in the expression of PD-L1 on tumor cells and CD8+ T-cell infiltration in the TME. Concurrently, the number of 
Tregs and PD-1 expression in CD8+ T cells within TILs are significantly decreased.70

Natural Molecules
Plant molecules are safer than synthetic drugs and exhibit remarkable potential for treating angiogenesis-related diseases. 
Consequently, natural compounds are being explored as promising candidates for inhibiting pathological angiogenesis. 
Table 2 provides a summary of different natural extracts and molecules with “vascular-immune” dual regulatory functions, 

Table 1 Synthetic Drugs with Dual-Modulatory Effects on “Vascular-Immune”

Drugs Vessel-Associated Target Immune-Associated Target Indications Ref

Sunitinib VEGFR-1, 2, 3, PDGFRs MDSCs and T-regs RCC [60,61]

Apatinib VEGFR-2 NK cells, PD-L1 and CD4+ T cell GC, HCC [62–64]

Axitinib VEGFR-1, 2, 3, PDGFRs Mast cells, TAM, monocytic MDSCs, CD4+ T  

cells and CD8+ T cells

Metastatic RCC [65,66]

Lenvatinib VEGFR-1, 2, 3, PDGFRα, FGFR PD-L1 and T-regs Unresectable HCC [67]

Bevacizumab VEGF-A DCs, T-regs CRC, NSCLC, RCC [68,69]

Ramucirumab VEGFR2 PD-L1/PD-1, CD8+ T cells, T-regs GC, NSCLC, HCC [70]

Abbreviations: NSCLC, Non-small cell lung cancer; RCC, Renal cell carcinoma; HCC, Hepatocellular carcinoma; GC, Gastric cancer; CRC, Colorectal 
cancer; PDFFRs, Platelet-derived growth factor receptor; FGFR, Fibroblast growth factor receptor; VEGF, Vascular endothelial growth factor; MDSCs, Myeloid- 
derived suppressor cells; NK cells, Natural killer cells; TAM, Tumor-associated macrophages.

Table 2 Natural Molecules with Dual-Modulatory Effects on “Vascular-Immune”

Natural Compounds Antiangiogenic Target Immunomodulatory Mechanisms Ref

Curcumin VEGF expression Reverses T cell-mediated adaptive immune dysfunctions 
Inhibits the suppressive activity of T-regs 

Downregulates the production of TGF-β and IL-10

[71,72]

Resveratrol VEGF receptors, GLUT1, IL-6 and 
VEGF expression

Enhances the IFN-γ expression of CD8+ T cells 
Induces accumulation of activated CD8+T cells

[73–76]

Artemisinins PGE2 production Promotes T cell activation and quells immunosuppression from 

T-regs and MDSCs

[77,78]

Baicalein HUVEC proliferation, migration and 

tube formation

Inhibits PD-L1 expression [79,80]

Epigallocatechin-3-Gallate 
(EGCG)

VEGF transcription 
Blocks VEGF and its receptors

Inhibits the expression of IDO [81–83]

Abbreviations: VEGF, Vascular endothelial growth factor; GLUT, Glucose transporters; IL-6/-10, Interleukin 6/10; TGF-β, Transforming growth factor β; IFN-γ, Interferon γ; 
MDSCs, Myeloid-derived suppressor cells; IDO, Indoleamine (2,3)-dioxygenase.
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along with details on antiangiogenic targets and therapeutic mechanisms of immune regulation. Curcumin, a diketone 
compound extracted from the rhizome of Curcuma longa, exhibits anti-angiogenic effects by inhibiting VEGF expression, 
reducing extracellular VEGF secretion, and impeding VEGFR binding.71 Curcumin restores NF-κB activity and reactivates 
the TNF-α signaling pathway to reduce T cell apoptosis. Additionally, it inhibits Tregs function by hindering FOXP3 
transcription, leading to downregulation of TGF-β and IL-10.72 Resveratrol (RSV), a non-flavonoid polyphenol organic 
compound, has antioxidant, anti-inflammatory, anticancer, and cardiovascular protective effects. In a study by Karina 
B Cullberg et al, it was observed that RSV has inhibitory effects on hypoxia-induced angiogenesis in a dose-dependent 
manner, including glucose transporter-1 (GLUT1), VEGF and IL-6.73,74 Yoolhee Yang et al found that RSV enhances the 
accumulation of CD8+ T cells and IFN-γ production.75,76 PGE2, a proangiogenic agent, induces angiogenesis by stimulating 
tumor cells to secrete CXCL1. This process directly triggers ECs migration, survival, proliferation, and tube formation as well 
as the phosphorylation and activation of fibroblast growth factor (FGF) receptor 1.89 Artemisinin (ART) has been reported to 
significantly decrease the production of PGE2. Additionally, it exhibits immune regulatory functions by activating T cells and 
inhibiting the proliferation of both Tregs and MDSCs.77,78 Baicalein, a bioactive flavonoid, exhibits potent inhibitory activity 
on the in vitro proliferation, migration, and tube formation of HUVEC while significantly impeding the growth of lung 
cancer.79 It also serves as a highly effective immune checkpoint regulator, which further downregulates IFN-γ-induced PD-L1 
expression by reducing STAT3 activity, thus restoring the sensitivity of T cells to killing tumor cells.80 Epigallocatechin- 
3-Gallate (EGCG), the main constituent of green tea, not only directly blocks VEGF/VEGFR but also inhibits VEGF 
transcription via impeding the DNA binding activity of AP-1 and VEGF promoters.81 Additionally, Kengo Ogawa et al 
found that EGCG inhibited the transcriptional activity of the IDO promoter, IFN-stimulated response element, and IFN-γ 
activation sequence activated by STAT1 phosphorylation.82

Clinical Implications
Numerous preclinical studies have provided evidence that angiogenesis-induced immunosuppression can improve 
immunotherapy. Hence, the addition of anti-angiogenic agents to immunotherapies is currently considered an attractive 
treatment approach. In recent years, anti-angiogenic therapy has been shown to enhance the therapeutic effect of ICI 
immunotherapy, and related strategies are summarized in Table 3. Impower 150 (NCT02366143), an open-label, 
randomized, Phase 3 trial, evaluated the therapeutic effects of atezolizumab plus Bev plus carboplatin/paclitaxel 
chemotherapy in patients with metastatic NSCLC. This study indicated that combining atezolizumab with Bev-based 
treatment significantly improved the PFS and OS of patients with metastatic non-squamous NSCLC patients.84 In a study 
by CheckMate 9ER (NCT03141177), an open-label, randomized, phase 3 trial, previously untreated patients with 
advanced RCC were treated with sunitinib or nivolumab plus cabozantinib. Compared with sunitinib, nivolumab plus 
cabozantinib demonstrated improved efficacy in OS and PFS analyses, providing additional support for first-line 

Table 3 Therapeutic Strategies of ICI Immunotherapy Combined with Antiangiogenic Therapy in Recent Years

ICI Drugs Anti- 
Angiogenic 
Drugs

Cancer Clinical Efficacy (Combined Group vs Control Group) Ref

Atezolizumab Bevacizumab Metastatic non- 

squamous NSCLC

mPFS 8.3 months vs 6.8 months (HR 0.62, 95% Cl 0.52–0.74, p<0.001); mOS 

19.2 months vs 14.7 months (HR 0.78, 95% Cl 0.64–0.96, P=0.02)

[84]

Nivolumab Cabozantinib Advanced RCC mPFS 16.6 months vs 8.3 months (HR 0.7, 95% Cl 0.46–0.68, p<0.0001); mOS 
37.7 months vs 34.3 months (HR 0.56, 95% Cl 0.55–0.90, p=0.0043)

[85]

Pembrolizumab Axitinib Advanced RCC mPFS 15.1 months vs 11.1 months (HR 0.69, 95% Cl 0.57–0.84, p<0.001); 12- 

months OS 89.9% vs 78.3% (HR 0.53, 95% CI 0.38–0.74; P < 0.0001)

[86]

Atezolizumab Bevacizumab Ovarian cancer mPFS 13.5 months vs 11.3 months (HR 0.83, 95% Cl 0.69–0.99, P=0.041); 

immature OS 35.5 months v 30.6 months (HR 0.81, 95% Cl 0.65–1.01)

[87]

Sintilimab IBI305 EGFR-mutated non- 
squamous NSCLC

mPFS 6.9 months vs 4.3 months [HR 0.46, 95% Cl 0.34-0.64, p<0·0001] [88]

Abbreviations: NSCLC, Non-small cell lung cancer; RCC, Renal cell carcinoma; mPFS, Median progression free survival; mOS, Median overall survival; HR: Hazard ratio.
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treatment of advanced RCC.85 In addition, the combination of pembrolizumab and axitinib in patients with previously 
untreated advanced RCC significantly prolonged the final OS and PFS, as well as a higher objective response rate.86 

Furthermore, different combinations of anti-angiogenic and immunotherapy agents are under evaluation, and novel 
therapeutic agents are continuously developed.87,88 Thus, more therapeutic strategies combining anti-angiogenic therapy 
and immunotherapy will appear in the future, and are expected to provide more effective and personalized treatment 
options for patients.

Nano-Delivery Systems Enhance Cancer Immunotherapy by Modulating 
“Vascular-Immune” Crosstalk
Although the combination of anti-angiogenesis and immunotherapy greatly enhances the efficiency of ICIs immunother-
apy, only a few treatment options are clinically available. Furthermore, patients receiving long-term ICIs treatment may 
develop acquired drug resistance owing to defects in antigen presentation mechanisms and the depletion of new 
antigens.90 To further enhance the effectiveness of immunotherapy, novel immune drugs based on drug delivery systems 
(DDS) has been developed. In this section, we provide an overview of the use of DDS to reprogram the immune system 
to fight cancer. Regarding DDS, we present nanoconstruction methods and therapeutic mechanisms based on the tumor 
immune microenvironment (Figure 2).

Nanosystems with “Vascular-Immune” Crosstalk for New Antigen Presentation Release
Tumor-associated antigens (TAAs) release is a crucial step in antigen presentation, however, an “cold” microenvironment and 
its immune evasion mechanisms result in limited antigen expression. Given the aim of promoting TAAs release in patients 

Figure 2 Nanosystems enhance cancer immunotherapy by multiple mechanisms.
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with solid tumors, extensive research has led to the development of nanomedicines for various immunotherapies. 
Immunogenic cell death (ICD) effect can induce the release of damage-associated molecular patterns (DAMPs) that are 
recognized by pattern recognition receptors (PRRs), thereby inducing the activation, differentiation, and maturation of 
antigen-presenting cells (APCs).91 Chemotherapeutic drugs and photosensitizer, act as ICD inducers, are often used in 
combination with ICIs in clinical practice.92,93 However, the long-term use of chemotherapeutic drugs, such as paclitaxel 
(PTX) and doxorubicin (DOX), is associated with cumulative toxicity, imposing a certain limit on the viability of this 
treatment strategy. Co-loading chemotherapeutic drugs and antiangiogenic drugs into nanosystems can enhance the ther-
apeutic effects of ICD. Zhicheng et al designed a dual-targeting nanoparticle (PLA-PEG-ACUPA/TPP) to co-deliver DOX 
and Ingenol-3-angelate (I3A), an emerging antitumor drug with dual chemotherapeutic and anti-angiogenic effect 
(Figure 3A). Compared to DOX nanoparticle group, those treated with I3A/DOX nanoparticles led to increased levels of 
ICD proteins, such as calreticulin (CRT) and high-mobility group box 1 (HMGB1), along with enhanced T cells infiltration, 
effectively reversing the immunosuppressive microenvironment.94 In addition, the generation of reactive oxygen species 
(ROS) generated by photodynamic therapy (PDT) modulate immunity and anti-tumor responses, yet face limitations in 
hypoxic microenvironment. Combining with vascular normalization treatment was considered as a strategy to enhance the 

Figure 3 Nanosystems with “vascular-immune” crosstalk for new antigen presentation release. (A) the dual-targeting delivery system for the codelivery of I3A and DOX for 
chemoimmunotherapy. Reprinted with permission from Wang ZC, Sun C, Wu HJ, et al. Cascade targeting codelivery of ingenol-3-angelate and doxorubicin for enhancing 
cancer chemoimmunotherapy through synergistic effects in prostate cancer. Materials Today Bio. 2022 13:100189. Copyright © 2022.94 (B) The synthesis route and 
mechanism of BSA-MHI148@SRF nanoparticles mediated cascade two-stage re-oxygenation and immune re-sensitization strategy for enhanced PDT immunotherapy. 
Reprinted with permission from Zhou ZG, Chen JS, Liu Y, et al. Cascade two-stage tumor re-oxygenation and immune re-sensitization mediated by self-assembled albumin- 
sorafenib nanoparticles for enhanced photodynamic immunotherapy. Acta Pharm Sin B. 2022 12(11): 4204–4223. Copyright © 2022.95 (C) The pECM nanovaccine for 
nasopharyngeal carcinoma therapy via enhancing the formation of tertiary lymphoid structures (TLS). Reprinted with permission from Nanovaccines Fostering Tertiary 
Lymphoid Structure to Attack Mimicry Nasopharyngeal Carcinoma, ACS Nano 17(8) (2023) 7194–7206. Copyright (2023) American Chemical Society.96 (D) Combined 
strategy of mannose-LCP NP-based vaccine (a) and SUNb-PM to enhance anti-tumor immune response (b). Reprinted from J Control Release, 172(1), Xu ZH, Srinivas 
Ramishetti, Tseng Yu-Cheng, et al. Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against 
melanoma and its lung metastasis, 259–265, Copyright (2013, a), with permission from Elsevier97 and J Control Release, 245, Huo MR, Zhao Y, Andrew Benson Satterlee, et al. 
Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment, 81–94, Copyright (2017, b), with 
permission from Elsevier.98
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therapeutic effects of PDT. The team led by Jianliang S teams designed BSA-MHI148@SRF nanoparticles by using near- 
infrared photodynamic dye MHI148 and Sorafenib (SRF) (Figure 3B). These nanoparticles not only alleviated tumor oxygen 
consumption via inhibiting mitochondrial oxidative phosphorylation, but also enhanced oxygen perfusion through promoting 
vascular normalization, ultimately enhanced MHI148-induced ICD.95

Tumor vaccines can be derived from autologous tumor cells, tumor-associated antigens, tumor-specific antigens, or genetic 
vaccines, all of which activate CD4+ and CD8+ T-cells to generate an immune response. However, subcutaneous adminis-
tration of tumor vaccines often faces challenges like low APC activity due to self-clearance and phagocytosis by other immune 
cells. Encapsulating antigens and adjuvants within nanoparticles improve vaccine delivery and retention in draining lymph 
nodes. This facilitates the controlled release of antigens and adjuvants, thereby enhancing antigen presentation levels.99 

Zhenfu et al engineered a nanovaccine consisting of Epstein–Barr virus nuclear antigen 1 (EBNA1) and Mn2+/CpG bi- 
adjuvant (Figure 3C). These nanovaccines not only activate LT-α/β pathways to increase DCs maturation, but also facilitate 
T cells activation through the MHC-II antigen presentation pathway. More importantly, the nanovaccines promote normal-
ization of tumor vessels and lymphatic vessels to increase the aggregation of tumor memory T cells, ultimately enhancing local 
immune responses significantly.96 In addition, Meirong et al developed a potent mannose-modified lipid calcium phosphate 
(LCP) NPs containing both tumor-specific antigen (tyrosinase-related protein 2 (Trp2) peptide) and adjuvant (CpG) (CpG/ 
Trp2-LCP) and a targeted polymeric micelle loaded with sunitinib base (SUNb-PM) (Figure 3D). CpG/Trp2-LCP nanovac-
cine enhanced MHC I-restricted cytotoxic T-lymphocyte response by targeting DC cells, which was furtherly enhanced by 
combining SUNb-PM. They further studied the mechanism and found that SUNb-PM remodeled immune-suppressive 
microenvironment, such as the ratio of immune cells/immune-suppressive cells and tumor vessel, by inhibiting Stat3 and 
AKT signaling pathways, thus increasing the efficiency of MHC-I mediated antigen presentation.97,98

Nanosystems with “Vascular-Immune” Crosstalk for Antigen Presentation
The presence of both tumor cells and TILs in tumor tissues implicates dysfunctional antigen presentation and recognition 
are primary factor limiting immunotherapy efficacy.100 DCs take up TAAs, digest them into immunogenic peptides, present 
them on MHC-peptide complexes, and activate T cells through TCR. Nanotechnology-based tumor vaccine, combined with 
anti-angiogenic therapy, has been applied to enhance DCs maturation and increase immunogenic peptides expression for 
improved tumor antigen presentation. For example, Ying et al utilized electrostatic forces to load tumor cell lysates onto 
polydopamine nanoparticles (NPs), creating TCLN nanovaccine (Figure 4A). This nanovaccine, in conjunction with an 

Figure 4 Nanosystems with “vascular-immune” crosstalk for antigen presentation. (A) Construction of polydopamine nanovaccine and endostar alginate hydrogel to enhance 
anti-tumor immune response. Reprinted with permission from Yang Y, Wang N, Tian XX, et al. Synergy of Polydopamine Nanovaccine and Endostar Alginate Hydrogel for 
Improving Antitumor Immune Responses Against Colon Tumor. Int J Nanomedicine. 2022 17:4791–4805. Doi: 10.2147/IJN.S372048. Copyright © 2022.101 (B) Construction of 
hydrogel/nanoparticles to combine anti-angiogenesis therapy and immunotherapy. Reprinted from Acta Biomater, 153, Yang Af, Sheng SP, Bai Y, et al. Hydrogel/nanoparticles- 
mediated cooperative combination of antiangiogenesis and immunotherapy, 124–138, Copyright (2022), with permission from Elsevier.106
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alginic hydrogel loaded with Endostar, effectively enhanced DC-mediated antigen presentation. In their study, the sustained 
release of Endostar from the alginic hydrogel inhibited tumor angiogenesis, significantly boosting CD8+ and CD4+ T cells 
number in the spleen, draining lymph nodes, and tumors. Precise delivery of the nanovaccine substantially enhanced DCs 
maturation and CTL lytic activity, as evidenced by increased MHC expression on DCs and upregulation of IL-12 levels 
within the tumor.101 Furthermore, TME-induced tumor metabolic reprogramming plays a negative regulatory role in the 
“vascular-immune” crosstalk. Specifically, metabolites released by tumor cells, such as lactate and Kyn, promote tumor 
vessels formation and inhibit DCs function.102,103 Notably, tumor microvascular density is positively correlated with IDO 
expression, which promotes luminal formation of ECs and tryptophan depletion.104 Based on this discovery, researchers 
designed an antigen carrier (BN@HM-OVA), a pH-sensitive antigen carrier co-loading NLG-919 and ovalbumin (OVA). 
This carrier, using poly (ethylene glycol)-hydrazide-poly(caprolactone) (PEG-hyd-PCL) copolymers and cationic poly 
(ethylene imine)-poly(caprolactone) (PEI-PCL) copolymers, released tumor antigens under acidic conditions to enhance 
DCs antigen presentation through two MHC-I pathways. Additionally, NLG-919 was precisely delivered to tumor cells, 
depleting tolDCs and inhibiting IDO activity to enhance ICIs immunotherapy.105

Macrophages, especially TAMs, also exhibit immunobiological functions, and their association with tumor progres-
sion has been observed. The STING pathway plays a critical role in the immune response to multiple cancer treatments, 
but faces challenges in systemic delivery.107 Kaiting et al developed a nanosystem targeting TAMs to enhance antigen 
processing and presentation and induce anti-tumor T cell responses. This nanosystem used cyclic dimeric adenosine 
monophosphate (CDA) polymerized with Zn(NO3)2 through coordination, surface-capped with 1.2-dioleoyl-sn-glycero- 
3-phosphoethanolamine-N-(polyethylene glycol) (DOPA) and encapsulated in DSPE-PEG2000 to form the ZnCDA NPs. 
This nanosystem enhanced tumor accumulation by disrupting ECs in the tumor vasculature and downregulated lysosomal 
enzyme-related genes in TAM by activating the endogenous STING signaling pathway, thereby delaying tumor antigen 
degradation and reinvigorating the anti-tumor activity of ICIs in immunologically “cold” pancreatic and glioma tumor 
models.108 Afeng et al constructed a hydrogel/nanomaterial system loaded with apatinib (Apa) and cytosine-phosphate- 
guanine (CpG) to enhance the TAM-mediated antigen presentation (Figure 4B). This nanosystem was prepared by cross- 
linking BSA and polyethyleneimine (PEI), then complexed with CpG via electrostatic adsorption to create Apa-loaded 
CpG NPs. These were incorporated into a hydrogel (GEL-Apa-CpG NP) by mixing with a solution of PEG-4000 and α- 
cyclodextrin (α-CD) containing aCD47. The obtained GEL-Apa-CpG NPs achieved a step-by-step controlled release of 
antiangiogenic and immunotherapeutic drugs. Notably, aCD47 activates the phagocytic capacity of TAM by binding to 
SIRPα, and CpG facilitated TAM-mediated antigen presentation through its interaction with the PPR Toll-like receptor 9 
(TLR9). Apa-mediated vascular normalization increased immune effector cells in tumors, significantly improving the 
immune response.106

TILs consist of immune cells both effectors and suppressors, serving as indicators to assess immunotherapy 
efficacy.109 Vascular-targeted nanotechnology enhances the infiltration of immune effector by normalizing tumor vessels 
with low-dose antiangiogenic drugs, improving vascular function and the immune microenvironment, thus becoming 
a common strategy to enhance the efficacy of immunotherapy. Jing Y’s teams used a chemical linkage to graft low- 
molecular-weight heparin (LMWH), gambogic acid (GA), and F3 peptides to form vascular-targeted micelles (FLGs). 
These micelles induced vascular normalization, increasing immune effector cells (CD4+ and CD8+ T cells), and 
enhancing the therapeutic efficacy of CCR inhibitors.110 Nitric oxide (NO), synthesized in ECs, is a multifunctional 
signaling molecule that mediates angiogenesis and maintains vascular homeostasis and endothelial function. Yun-Chieh 
Sung et al constructed NanoNO by encapsulating DNIC [Fe(μ-SEt)2(NO)4] into PLGA liposomes with polyethylene 
glycol (PEG) modification. PLGA controls the sustained release of low-dose NanoNO from DNIC NPs to induce 
vascular normalization. This nanosystem reprogrammed immunosuppressive TAMs to an immunostimulatory phenotype 
and facilitated CD4+ and CD8+ T cell infiltration into the tumor tissue. Notably, DNIC also decreased the activity of the 
Sp1 transcription factor that binds to the PD-L1 promoter and mediates PD-L1 expression, thereby enhancing cancer 
vaccines efficacy.111
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Conclusion
Increasing evidence suggests that cancer immunotherapy is encountering challenges, including the immune evasion 
mechanisms and heterogeneity of tumor, immune-related adverse events and resistance, ultimately affecting its clinical 
efficacy. Thus, continuous exploration of immune tolerance mechanisms and novel immunotherapy targets holds promise 
for addressing these limitations. In this review, abnormal tumor vessels were considered as critical factor in impeding the 
infiltration and functionality of immune cells and contributing to the development of an unfavorable TME. The 
interaction between the vascular and immune systems, known as “vascular-immune” crosstalk, highlights the significance 
of tumor vessels in the context of immunotherapy. Despite the promising results observed in clinical studies of “vascular- 
immune” therapy, this therapeutic strategy encounters various obstacles. Firstly, the diverse variations among individual 
patients pose a challenge in guaranteeing optimal benefits for each patient, underscoring the need for the development of 
an improved method to identify those likely to benefit from combined treatment. Furthermore, the therapeutic effects of 
combination therapy may decline over time. Hence, there is a pressing need for enhanced methods to determine the 
treatment timing to maximize the effectiveness of combination treatment. Additionally, both immunotherapy and anti- 
angiogenic therapy drugs can trigger a series of side effects and toxicities, and researchers can direct their attention 
towards understanding and effectively managing the potential adverse reactions arising from combination therapy. 
Finally, combining anti-angiogenic drugs with immunotherapy can be costly, potentially restricting patient access to 
this treatment option. Furthermore, certain novel therapeutic drugs might not be universally accessible across all 
geographic regions or healthcare facilities, posing challenges for patients seeking the latest treatment modalities.

More importantly, although tailored nanosystems have shown effectiveness in enhancing the “vascular-immune” 
therapy, they have not yet received clinical approval, necessitating further research. Firstly, the distinguishing between 
various tumor types and stages during recruitment, animal model selection and treatment evaluation is needed, where the 
majority of clinical and animal studies focused on anti-angiogenesis and immune-related adverse reactions. Secondly, 
considering the mutational and heterogeneous nature of tumors, researchers can focus on drug concentrations of 
nanodrugs in different tumors, including mutants, to evaluate the tumor tissue specificity of nanosystems. 
Additionally, active agents that could trigger immune-related adverse reactions in non-target tissues need doubtlessly 
to be explored. Finally, clinical application considerations are necessary to facilitate translational research. All in all, the 
“vascular-immune” therapy remains a crucial and unmet clinical need, yet our current understanding of its underlying 
mechanisms only scratches the surface. Thus, subsequent research endeavors will concentrate on extensively exploring 
these mechanisms, refining clinical trial designs, and optimizing treatment strategies. We hope this review will inspire the 
design and fabrication of tailored drugs and nanosystems for “vascular-immune” therapy, propelling this amalgamated 
treatment approach into tangible clinical applications, thereby enhancing the treatment efficacy for individuals grappling 
with cancer.
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