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Background: Neonatal sleep is pivotal for their growth and development, yet manual interpretation of raw images is time-consuming 
and labor-intensive. Quantitative Electroencephalography (QEEG) presents significant advantages in terms of objectivity and con-
venience for investigating neonatal sleep patterns. However, research on the sleep patterns of healthy neonates remains scarce. This 
study aims to identify QEEG markers that distinguish between different neonatal sleep cycles and analyze QEEG alterations across 
various sleep stages in relation to postmenstrual age.
Methods: From September 2023 to February 2024, full-term neonates admitted to the neonatology department at the Obstetrics and 
Gynecology Hospital of Fudan University were enrolled in this study. Electroencephalographic (EEG) recordings were obtained from 
neonates aged 37–42 weeks, within 1–7 days post-birth. The ROC curve was employed to evaluate QEEG features related to 
amplitude, range EEG (rEEG), spectral density, and connectivity across different sleep stages. Furthermore, regression analyses 
were performed to investigate the association between these QEEG characteristics and postmenstrual age.
Results: The alpha frequency band’s spectral_diff_F3 emerged as the most potent discriminator between active sleep (AS) and quiet 
sleep (QS). In distinguishing AS from wakefulness (W), the theta frequency’s spectral_diff_C4 was the most effective, whereas the 
delta frequency’s spectral_diff_P4 excelled in differentiating QS from W. During AS and QS phases, there was a notable increase in 
entropy within the delta frequency band across all monitored brain regions and in the spectral relative power within the theta frequency 
band, correlating with postmenstrual age (PMA).
Conclusion: Spectral difference showcases the highest discriminative capability across awake and various sleep states. The observed 
patterns of neonatal QEEG alterations in relation to PMA are consistent with the maturation of neonatal sleep, offering insights into the 
prediction and evaluation of brain development outcomes.
Keywords: quantitative EEG, neonates, sleep, postmenstrual age

Introduction
Sleep is fundamental to the growth, development, and restoration of the body, with its role being critically important in 
newborns and infants during the first year of life1—a time characterized by rapid developmental changes.2,3 Sleep 
significantly contributes to brain maturation, enhancing learning and memory by optimizing synaptic architecture during 
periods of reduced neural network efficiency, thus facilitating energy conservation.4,5 REM sleep twitching is crucial not 
only for the development of sensory perception but also for motor skills.6 NREM sleep specifically enhances memories 
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tagged as relevant during waking periods, refining and optimizing memory networks.7 In mammals, sleep can improve 
learned motor skills8 and promote infants’ recognition of stimuli.7

Additionally, sleep is not merely a simple negation of physiological sleep deprivation and disorders; it must also adapt 
to individual, social, and environmental needs to achieve physical and mental health.9 It is essential for emotional 
regulation, influencing the regulation of neurochemicals that affect emotional and stress responses.10,11 During early 
developmental stages, the quality of sleep is a critical determinant of future cognitive abilities and is associated with the 
emergence of psychopathological symptoms.12,13 Early sleep disturbances are linked with a range of negative outcomes, 
including compromised health, emotional dysregulation, impaired decision-making, reduced concentration, increased 
obesity risk, and diminished academic performance.14

The gold standard for monitoring neonatal sleep patterns is video electroencephalogram-polysomnography (EEG- 
PSG).15,16 EEG technology is widely utilized in the assessment of neonatal conditions and to monitor the efficacy of 
treatment such as hypoxic-ischemic encephalopathy and epileptic discharges, among other neurological disorders.17,18 

However, interpreting raw EEG data for neonatal sleep staging is a resource-intensive task that demands substantial 
expertise and time, with skilled professionals required to analyze complex data over extended periods.

Quantitative Electroencephalography (QEEG) represents a progressive approach that builds on the traditional visual 
analysis of electroencephalographic data to extract specific metrics.19 This quantitative technique offers the potential to 
replace the intricate, laborious, and subjective process of manual EEG interpretation with a streamlined, rapid, and 
reproducible computer-assisted methodology, though it currently cannot completely detach from expert interpretation.20 

Unlike deep learning methods such as multi-branch convolutional neural networks,21 QEEG relies on hand-crafted 
feature-based classification, extracting various features from the time domain, frequency domain, and spatial domain.22 

This allows for continuous, objective measurement of EEG activity and can be easily scaled to monitor a large number of 
newborns.23

While QEEG has been widely applied in the evaluation of brain development in newborns with medical conditions,24 

research on the sleep of healthy newborns remains limited. Furthermore, there is a dearth of information on the evolution 
of QEEG parameters during the early postnatal period in correlation with postmenstrual age (PMA). This study utilizes 
810 parameters composed of leads, spectral, and EEG features to examine full-term infants within the first week after 
birth to (1) delineate the range of QEEG parameters and identify those most effective in distinguishing between different 
sleep states; (2) explore the variations in QEEG parameters in relation to the progression of PMA.

Methods
Participants
This study recruited 60 neonates from September 2023 to February 2024 at a prominent obstetrics and gynecology hospital in 
China, which averages 8000 deliveries per year. The neonatal cohort presented various conditions, such as neonatal infections, 
hyperbilirubinemia, and wet lung. Inclusion criteria for the neonates were a gestational age between 37 and 42 weeks; 
no requirement for resuscitation post-delivery; and an Apgar score greater than 8 at 5 minutes post-birth. Exclusion criteria 
encompassed a maternal history of epilepsy25,26 or diabetes;27 birth weight below 2.5 kg;28 presence of congenital malforma-
tions or chromosomal abnormalities; inclusion in a multiple birth;29 or technical issues with the EEG apparatus, like low 
power or electrode detachment. Since some infants do not require phototherapy, to ensure experimental consistency, we 
conducted EEG collections only when neonates were not undergoing phototherapy. All neonates in our cohort were in good 
general condition with no disease exacerbation during their hospital stay, and they were followed up in the outpatient clinic 
without any readmissions.

Recording Protocol
An attended polysomnogram lasting 3–6 hours was conducted after the infant was considered medically stable, 
necessitating no respiratory support and able to undergo a bedside polysomnogram. A polysomnographic technologist, 
present at the bedside, carefully documented behavioral observations throughout the session. The polysomnograms were 
later scored offline by the technologist and reviewed by an expert from the Children’s Hospital of Fudan University, who 

https://doi.org/10.2147/NSS.S472595                                                                                                                                                                                                                                  

DovePress                                                                                                                                                        

Nature and Science of Sleep 2024:16 1012

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


had specialized training and extensive experience in data annotation. The infants were housed in open bassinets, with 
routine care and feeding schedules (typically every three hours) maintained. Except during interventions like diaper 
changes, when recording was paused to reduce data interference, infants primarily stayed in the bassinets.

EEG Monitoring
EEG data were recorded using a Nicolet One machine (sampling frequency: 500 Hz), with electrode placement adhering 
to the neonate-modified 10–20 system endorsed by the American Clinical Neurophysiology Society.30 Electrodes were 
positioned at the frontal pole (Fp1, Fp2), frontal (F3, F4), central (C3, C4), mid-temporal (T3, T4), and parietal (P3, P4) 
scalp regions, with a reference electrode at Cz. The parietal region (P3/P4) was chosen over the occipital (O1/O2) to 
minimize artifacts. The comprehensive setup included a 10-channel EEG, bilateral electrooculogram, chin electromyo-
gram, oxygen saturation, electrocardiogram, and digital video recording.

EEG Sleep Staging Principles
Neonatal sleep staging was conducted in accordance with the AASM guidelines, utilizing EEG, EOG, and EMG data. 
The primary EEG derivations employed were F3-Cz, C3-Cz, and P3-Cz, with F4-Cz, C4-Cz, and P4-Cz serving as 
secondary options. Sleep stages were determined in 30-second intervals based on identifiable biomarkers within each 
epoch. The EEG trace, ancillary channel data, and video review were integral to identifying sleep states, in line with the 
American Clinical Neurophysiology Society’s standard terminology and categorization for neonatal continuous EEG 
monitoring.31 For example, quiet sleep (QS) was classified into tracé alternant or slow-wave EEG patterns, whereas 
active sleep (AS) was identified by continuous, low-voltage waves. Additionally, the power spectrum of the EEG was 
crucial for differentiating between sleep stages, contributing to a more efficient analysis process.

EEG Pre-Processing and QEEG Features
The preprocessing steps employed the Auto-Neo-electroencephalography system from the Children’s Hospital of Fudan 
University. Data were filtered (0.3 to 50 Hz), denoised, and subjected to Independent Component Analysis (ICA) to 
remove electrooculographic artifacts.

The QEEG features adhered to the characteristic indicators for neonates as outlined by John M. O’Toole and 
Geraldine B. Boylan.32 An exhaustive extraction of 810 neural signal features was performed, encompassing amplitude, 
rEEG, spectral density, and connectivity. Initially, the signal data were segmented into four frequency bands: delta (0.5–4 
Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz), across ten channels. For each band and channel, a set of 
features were calculated: six related to amplitude (total power, standard deviation, skewness, kurtosis, envelope mean, 
envelope standard deviation), eight to rEEG (mean, median, lower margin, upper margin, width, standard deviation, 
coefficient of variation, asymmetry), and five to spectral aspects (absolute power, relative power, flatness (Wiener 
entropy), entropy (Shannon entropy), difference), resulting in 760 features [(6+8+5) * 4 (frequency bands) * 10 
(channels)]. Additionally, three spectral features (95th and 50th percentile spectral edge frequencies, fractal dimension) 
across ten channels yielded 30 features (3 * 10 channels). Moreover, five connectivity features (brain symmetry index, 
correlation (Pearson), mean coherence, maximum coherence, frequency of maximum coherence) per frequency band 
resulted in 20 features. In total, this approach enabled the extraction of 810 (760+30+20) neural signal features per 
sample, illustrating a comprehensive methodology for the quantitative analysis of neural signals.

Statistical Analysis
Descriptive statistical measures, namely mean and standard deviation (SD), were employed to summarize the normative 
data of QEEG across different states of consciousness, including awake, AS, and QS. The assessment of data normality 
was conducted using histogram analysis and the Shapiro–Wilk test. To determine the differences in QEEG parameters 
across various sleep states, a comprehensive analysis utilizing repeated measures of variance (the Friedman test) was 
performed. If the global analysis indicated significant results, post-hoc pairwise comparisons were conducted using the 
Wilcoxon signed-rank test. To adjust for the heightened risk of Type I error arising from multiple pairwise comparisons 
across the three sleep states, a Bonferroni correction was applied to the p-values from these posthoc tests. A p-value of 
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less than 0.05 was considered statistically significant. Additionally, the discriminative ability of QEEG parameters to 
differentiate between the sleep states was assessed using receiver operating characteristic (ROC) curves. The 95% 
confidence interval for the area under the curve (AUC) was determined using DeLong’s method. The optimal cutoff 
points for each QEEG parameter were identified by maximizing the Youden index (sensitivity + specificity - 1).

The influence of postmenstrual age (PMA) on QEEG features was examined through multivariable linear regression 
analysis using the Stepwise Method. This method allowed for the calculation of β weights (standardized regression 
coefficients), which indicate the extent of change, in standard deviation units, in the dependent variable for each standard 
deviation increase in the independent variable. To reduce the risk of Type I error associated with multiple comparisons, 
a more stringent significance threshold of 0.01 was set for all multivariable linear regression analyses.

Results
Demographics
Table 1 presents demographic details for the 54 full-term neonates included in the study, comprising 26 males and 28 
females. Among the 54 infants, 15 were delivered by cesarean section. Of these, 36 infants (66.67%) were admitted due 
to hyperbilirubinemia, 20 infants (37.04%) due to infections, and 1 infant (1.85%) due to wet lung. These neonates 
underwent EEG examinations within the first 7 days post-birth, contingent on their physical condition. The mean 
gestational age (standard deviation) was 39.50 (1.14) weeks, the mean post-menstrual age was 40.11 (1.12) weeks, the 
age post-birth was 4.31 (1.68) days, and the birth weight was 3309.06 (328.65) grams. On average, each newborn was 
recorded for 248.08 (46.37) minutes.

We also compared whether cesarean delivery, hyperbilirubinemia, and infections influence EEG indices. Since only 
one newborn was diagnosed with wet lung, we did not analyze this potential influencing factor. The only significant 
finding was in the theta frequency band’s spectral flatness (AS_4_8_spectral_flatness_Fp1) in lead F1, which differed 
between the cesarean and vaginal delivery groups, with a P-value of 0.0133. However, given that we analyzed a total of 
810 indices and found only one positive result, this finding is not convincing.

QEEG Differentiation of Various Sleep Stages
With numerous computational indices at our disposal, we highlighted the top 20 indices based on the AUC from the ROC 
analysis, capable of differentiating between various sleep stages.

Figures 1A, 2A, and 3A rank the top 20 QEEG parameters by their efficacy in distinguishing between awake and sleep 
states, as determined by the ROC analysis AUC. Predominantly, spectral differences within the alpha and beta frequency 
bands were the most effective in differentiating between AS and QS, as depicted in Figure 1A. The alpha band spectral 
difference at the F3 lead emerged as the most discriminating parameter with an AUC of 0.88, closely followed by the beta 
band spectral difference at the C4 lead with an AUC of 0.87. In distinguishing between Awake and AS stages (Figure 2A), the 

Table 1 Demographics

N = 54 Mean ± std Range

Sex, Female/male 28/26 –
Mode of delivery, CS/VD 15/39

Record time (mins) 248.08 ± 46.37 188~361

Gestational age (weeks) 39.50 ± 1.14 37.14~41.29
Postmenstrual age (weeks) 40.11 ± 1.12 37.71~41.86

Chronological age (days) 4.31 ± 1.68 1~7

Birth weight (grams) 3309.06 ± 328.65 2640~4200
Reasons for admission
Hyperbilirubinemia 36 (66.67%)

Infections 20 (37.04%)
Wet lung 1 (1.85%)

Abbreviations: CS, cesarean section; VD, vaginal delivery.
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Figure 1 The ROCAUC of the top 20 parameters that differentiate between AS and QS. (A) shows the top 20 indicators that distinguish between AS and QS periods and their 
corresponding ROC-AUC values. The blue bars represent the ranking of ROC-AUC values, and the T-shaped black lines indicate the standard error. (B) displays the ROC 
curves, with the legend showing the color lines corresponding to the 20 indicators. The values and specific details of these indicators can be found in Supplementary Table 1.
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Figure 2 The ROCAUC of the top 20 parameters that differentiate between AS and W. (A) shows the top 20 indicators that distinguish between AS and W periods and their 
corresponding ROC-AUC values. The blue bars represent the ranking of ROC-AUC values, and the T-shaped black lines indicate the standard error. (B) displays the ROC 
curves, with the legend showing the color lines corresponding to the 20 indicators. The values and specific details of these indicators can be found in Supplementary Table 2.
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Figure 3 The ROCAUC of the top 20 parameters that differentiate between QS and W. (A) shows the top 20 indicators that distinguish between QS and W periods and their 
corresponding ROC-AUC values. The blue bars represent the ranking of ROC-AUC values, and the T-shaped black lines indicate the standard error. (B) displays the ROC 
curves, with the legend showing the color lines corresponding to the 20 indicators. The values and specific details of these indicators can be found in Supplementary Table 3.
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theta band spectral difference and relative power showed significant differentiation capability, with the theta spectral difference 
at the C4 and C3 leads achieving an AUC of 0.93, and the beta band spectral relative power at the P4 lead reaching an AUC of 
0.91. Theta band spectral differences at the F3, F4, P3, P4, and T3 leads, alongside theta band spectral relative power at the C4 
and alpha band spectral relative power at the P4 leads, all surpassed an AUC of 0.90. Regarding the differentiation between 
QS and Wakefulness (Figure 3A), the delta band spectral differences and the 50% spectral edge frequency across various 
bands showed strong discriminative capacities, with the delta band spectral difference at the P4 lead attaining the highest AUC 
of 0.94, and the 50% spectral edge frequencies at the C4 across all bands each exhibiting an AUC of 0.88.

Figures 1B, 2B, and 3B display the ROC curves for QEEG parameters that effectively differentiate between awake 
and sleep states. Tables 2–4 detail the AUC values for the top 5 parameters along with their 95% confidence intervals. 
Detailed information on the top 20 parameters by AUC can be found in Supplementary Tables 1–3

QEEG Changes with Postmenstrual Age
Supplementary Figures 1–3 illustrate the trends in QEEG changes relative to PMA. Tables 5–7 present the regression model 
coefficients and P-values for the wakefulness, AS, and QS phases, respectively. When encountering multiple leads all correlating 

Table 2 The Top 5 Parameters Capable of Distinguishing Between 
as and QS

Indicator AUC AUC 95% CI Best Cutoff

8_13_spectral_diff_F3 0.88 (4.74e-5, 6.68e-4) 3.29e-4

13_30_spectral_diff_C4 0.87 (1.50e-5, 4.43e-4) 9.79e-5

8_13_spectral_diff_F4 0.87 (1.07e-4, 6.84e-4) 3.45e-4
8_13_spectral_diff_C4 0.87 (5.22e-5, 6.81e-4) 2.80e-4

13_30_spectral_diff_T3 0.86 (3.02e-5, 4.05e-4) 1.65e-4

Abbreviations: AUC, area under the receiver operator characteristics curve; CI, 
confidence interval; Cutoff values associated with minimal false-negative and positive 
results are shown. Data are expressed with a 95% CI.

Table 3 The Top 5 Parameters Capable of Distinguishing Between as and W

Indicator AUC AUC 95% CI Best Cutoff

4_8_spectral_diff_C4 0.93 (6.43e-6, 4.02e-4) 1.34e-4

4_8_spectral_diff_C3 0.93 (5.28e-6, 4.18e-4) 1.64e-4

13_30_spectral_relative_power_P4 0.91 (2.62e-3, 6.44e-2) 1.42e-2
4_8_spectral_diff_P4 0.91 (3.19e-6, 4.32e-4) 9.22e-5

4_8_spectral_diff_T3 0.91 (6.99e-6, 4.16e-4) 1.70e-4

Abbreviations: AUC, area under the receiver operator characteristics curve; CI, confidence 
interval; Cutoff values associated with minimal false-negative and positive results are shown. Data 
are expressed with a 95% CI.

Table 4 The Top 5 Parameters Capable of Distinguishing 
Between QS and W

Indicator AUC AUC 95% CI Best Cutoff

0.5_4_spectral_diff_P4 0.94 (1.23e-6, 1.55e-4) 2.56e-5

0.5_4_spectral_diff_C4 0.93 (1.49e-6, 1.50e-4) 2.47e-5

0.5_4_spectral_diff_C3 0.92 (1.09e-6, 1.51e-4) 1.71e-5
0.5_4_spectral_diff_F4 0.92 (1.59e-6, 2.06e-4) 2.58e-5

0.5_4_spectral_diff_T4 0.92 (1.41e-6, 1.25e-4) 3.00e-5

Abbreviations: AUC, area under the receiver operator characteristics curve; CI, 
confidence interval; Cutoff values associated with minimal false-negative and positive 
results are shown. Data are expressed with a 95% CI.
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Table 5 The Pattern of Changes in QEEG Parameters During the 
Wakeful State Across Postmenstrual Age

Spectral Power Signal Features R2 Beta P value

13_30 Spectral_entropy_F3 0.14 0.0004 <0.01

Spectral_entropy_F4 0.14 0.0004 <0.01

Spectral_flatness_F3 0.14 0.0012 <0.01

Table 6 The Variation Pattern of QEEG Parameters During as Across 
Postmenstrual Age

Spectral Power Signal Features R2 Beta P value

0.5_4 Spectral_edge_frequency_95_C3 0.15 0.2014 <0.01
Spectral_entropy_C4 0.28 0.0019 <0.01

Spectral_entropy_F4 0.31 0.0024 <0.01

Spectral_entropy_P3 0.21 0.002 <0.01
Spectral_flatness_F3 0.32 0.0037 <0.01

Spectral_flatness_F4 0.35 0.0039 <0.01

4_8 Spectral_edge_frequency_95_C3 0.15 0.2014 <0.01
Spectral_relative_power_C3 0.34 0.0012 <0.01

Spectral_relative_power_F4 0.32 0.0012 <0.01

8_13 rEEG_asymmetry_P3 0.15 −0.0035 <0.01
Spectral_edge_frequency_95_C3 0.13 0.2014 <0.01

Spectral_entropy_P4 0.13 −0.0001 <0.01

Spectral_flatness_C4 0.18 −0.0005 <0.01
Spectral_relative_power_C3 0.13 0.0006 <0.01

Spectral_relative_power_F4 0.14 0.0005 <0.01

13_30 rEEG_CV_P3 0.14 −0.0046 <0.01
Spectral_edge_frequency_95_C3 0.15 0.2014 <0.01

Table 7 The Variation Pattern of QEEG Parameters During QS Across 
Postmenstrual Age

Spectral Power Signal Features R2 Beta P value

Spectral_entropy_F3 0.53 0.0029 <0.01
Spectral_entropy_F4 0.53 0.0033 <0.01

Spectral_flatness_F3 0.55 0.0048 <0.01

Spectral_flatness_F4 0.55 0.0054 <0.01
4_8 Spectral_diff_P3 0.16 4.54E-06 <0.01

Spectral_relative_power_C3 0.413 0.0014 <0.01

Spectral_relative_power_P3 0.5 0.0013 <0.01
Spectral_entropy_F3 0.17 −0.0002 <0.01

Spectral_entropy_P4 0.33 −0.0002 <0.01
Spectral_flatness_F3 0.19 −0.0007 <0.01

Spectral_relative_power_C3 0.14 0.0004 <0.01

Spectral_relative_power_P3 0.16 0.0003 <0.01
13_30 rEEG_asymmetry_C3 0.23 −0.0074 <0.01

rEEG_asymmetry_P3 0.22 −0.0076 <0.01

rEEG_CV_F4 0.17 −0.0064 <0.01
Spectral_diff_C3 0.16 4.33E-06 <0.01

Spectral_diff_T3 0.17 4.34E-06 <0.01
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with post-menstrual age for the same indicator, we have retained only the two leads with the best fit (ie, the highest R2) in Table 6 
and Table 7. The complete data for these indicators can be found in Supplementary Tables 4 and 5. During wakefulness 
(Supplementary Figure 1A–C and Table 5), there was an observed increase in both Wiener and Shannon entropy within the beta 
frequency band of the frontal lobe correlating with PMA. In the AS phase (Supplementary Figure 2 and Table 6) and the QS 
phase (Supplementary Figure 3 and Table 7), an increase in entropy within the delta frequency band across all monitored brain 
regions was noted (AS: Supplementary Figure 2B–Q) (QS: Supplementary Figure 3A–P). Additionally, the spectral relative 
power within the theta frequency band also showed an upward trend with PMA during both AS (Supplementary Figure 2S–Z) 
and QS (Supplementary Figure 3R–Y) phases.

Specifically, during the AS phase, there was a decrease in rEEG asymmetry within the alpha frequency band at the P3 
lead (Supplementary Figure 2AA), and in the beta frequency band across the temporal and parietal lobes during the QS 
phase (Supplementary Figure 3AG-AJ) associated with increasing PMA. Moreover, the 95% spectral edge frequency in 
every frequency band within the midline central area exhibited an upward trend with PMA during the AS phase 
(Supplementary Figure 2A, R, AB and AH).

In the QS phase, an increase in spectral relative power within the alpha frequency band across the frontal, central, and 
parietal lobes was observed with advancing PMA (Supplementary Figure 3AD–AF), while entropy showed a decrease 
(Supplementary Figure 3Z–AC). Additionally, there was an increase in spectral difference within the beta frequency band 
across the frontal, central, and parietal lobes correlated with PMA (Supplementary Figure 3AL–AR).

Discussion
The index that was most capable of distinguishing between AS and QS stages was the spectral difference within the alpha 
frequency band at the F3 electrode (spectral_diff_F3). The theta frequency spectral difference at the C4 electrode 
(spectral_diff_C4) proved to be the most effective in differentiating AS from wakefulness (W), while the delta frequency 
spectral difference at the P4 electrode (spectral_diff_P4) was the best at distinguishing QS from W. During the AS and 
QS phases, there was an observed increase in entropy within the delta frequency band across all monitored brain regions 
and an increase in the spectral relative power within the theta frequency band with PMA. Additionally, there was 
a decrease in rEEG asymmetry within the alpha frequency band at the P3 lead during the AS phase, and a decrease in the 
beta frequency band rEEG asymmetry across the temporal and parietal lobes during the QS phase, associated with 
increasing PMA.

The association of QEEG parameters with outcomes in neonatal sleep research, particularly concerning growth and 
development, was notable A greater proportion of quiet sleep and higher state entropy were correlated with poorer 
neurological examination scores, whereas decreased delta power during quiet sleep was associated with better examina-
tion outcomes (rho = −0.43, p = 0.023).33

Innovative EEG Metrics for Differentiating Sleep Stages
This study employed hundreds of EEG indices to differentiate between sleep stages, identifying the most discriminative 
markers. The primary indices for distinguishing between sleep and wakefulness phases were mainly spectral difference 
measures, an aspect not extensively explored in previous research. Other indices like spectral entropy and Spectral Edge 
Frequency (SEF) had been validated in earlier studies for their ability to differentiate sleep stages.34,35

Spectral difference, defined as the change in spectra between consecutive time segments in a spectrogram32 – a visual 
representation of the frequency spectrum of a signal over time obtained through Short-Time Fourier Transform (STFT)– 
was significantly discriminative. The superior discriminative power of spectral difference in distinguishing between 
various sleep stages may be attributed to the distinct predominant frequency bands characteristic of neonatal wakefulness 
and sleep phases.36 For example, wakefulness was typically marked by theta activity with low-voltage, irregular delta 
waves, AS by mixed-wave activity, and QS predominantly by delta slow waves, with occasional theta waves. This 
variation in primary frequency bands across sleep states highlighted the effectiveness of spectral difference as 
a discriminating feature.

We introduced the parameter of spectral flatness, also known as Wiener entropy, along with Shannon entropy (spectral 
entropy), to quantify the uniformity of the spectral distribution.37 These metrics showed trends that consistently aligned 
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Table 8 Comparison of Different Research for QEEG in Neonatal Sleep Stages

Study Year Authors Demographics EEG channel Features Sleep stage Results

Comparison of 

quantitative EEG 
characteristics of quiet 

and active sleep in 

newborns43

2003 Karel Paul, 

Vladimír Krajca, 
et al

21 healthy newborns (10 

full-term and 11 pre-term)

Fp1, Fp2, C3, C4, 

O1, O2, T3, T4

AV, Mm, δ1, δ2, 

θ1, θ2, α, D1 and 
D2; L and MF; 

No and t%*

Two sleep classes 

(AS and QS)

AS vs QS: (a) the number and length of quasi- 

stationary segments, (b) voltage and (c) power in 
delta and theta bands

EEG in the healthy term 

newborn within 12 

hours of birth34

2012 I Korotchikova, 

S Connolly, et al

30 normal newborn babies F4, F3, Cz, T4, T3, 

P4, P3

SEF, H, and δR Two sleep classes 

(AS and QS)

SEF and H were significantly higher (p < 0.0001) 

and δR was significantly lower (p < 0.0001) in AS 

than in QS.
Quantitative 

electroencephalogram 

in term neonates under 
different sleep states35

2023 Ian Yuan, 

Georgia 

Georgostathi, 
et al

30 normal neonates37 to 

46 weeks suspected 

seizure or differential 
diagnosis of apneic 

episodes

Fp1-C3, Fp2-C4 Total power, 

power ratio, 

coherence, 
entropy, and SEF 

50 and 90

Three sleep 

classes (AS, QS 

and Wake)

Awake vs AS: Entropy beta AUC-ROC > 0.84; 

Awake vs QS: Entropy beta, entropy delta1, theta 

power %, and SEF50 AUC-ROC > 0.78AS vs QS: 
theta power % AUC-ROC > 0.69

Notes: *The features used in paper: AV—standard deviation of the sample values in the segment; Mm—the difference between maximal positive and minimal negative values of the samples in the segment; D1—maximum of absolute 
values of the first derivative of the samples in the segment; D2—maximum of absolute values of the second derivative of the samples in the segment; MF—average frequency of the EEG activity in the segment; t%—time percentage of the 
relevant class occurrence; No—number of segments of the relevant class; L—average duration of the relevant class segments. 
Abbreviations: AS, active sleep; QS, quiet sleep; SEF, spectral edge frequency; H, spectral entropy; δR: relative delta power.
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with changes in corrected gestational age. Notably, during the quiet and active sleep phases, the entropy within the Delta 
frequency band increased with corrected gestational age, indicating a rise in complexity within this band,38 which 
includes a broader spectrum of waveforms. This increase may signify the gradual transition from neonatal sleep patterns 
to those typical of childhood, characterized by the emergence of slow-wave sleep (0.5Hz-2Hz).39

rEEG has been shown to vary with corrected gestational age in preterm infants and is associated with growth and 
developmental outcomes.40 In term neonates, we observed that rEEG asymmetry in the beta frequency band decreased 
with increasing corrected gestational age. Voltage asymmetry in a single channel, attributed to positional shifts over time, 
originates from a limited number of neurons firing synchronously at the same frequency during infancy.40 However, as 
age progresses, the number of synchronously firing neurons increases, leading to a gradual synchronization of brain 
discharges. Consistent with previous findings,41 our results also confirmed that during both AS and QS phases, theta 
waves increased with corrected gestational age, serving as an indicator of brain maturation. Particularly noteworthy was 
the gradual increase in the relative spectral power of the Alpha frequency band during the QS phase with advancing 
corrected gestational age, potentially associated with the progressive emergence of sleep spindles (10Hz-16Hz).42 This 
observation underscores the developmental progression in neural activity patterns, indicative of advancing neurological 
maturity and the evolving complexity of sleep architecture in the developing brain.

Innovations and Advantages of This Study
Our study results have established the EEG characteristics of low-risk term infants admitted to the neonatal unit within 
the first week after birth. In Table 8, we have listed the contributions made by previous researchers on neonatal sleep 
QEEG. Previous researchers have long used QEEG to explore differences in various sleep stages,43 but they only 
identified differences without using ROC analysis to determine which metrics contributed the most. Additionally, they 
primarily focused on AS and QS stages, neglecting the awake period.34,43 Considering that newborns exhibit significant 
movement during sleep, including the awake period in the study provides a more comprehensive and rigorous analysis. 
Recent studies have used some metrics from Amplitude, Spectral, and Connectivity features to explore which indicators 
can better distinguish between the three stages.35 Unlike previous studies with smaller sample sizes,34,35 our inclusion of 
54 normal neonates enabled us to provide more robust evidence. By extracting a comprehensive set of features, we 
identified more effective metrics for distinguishing different sleep stages.

Specifically, the alpha band spectral difference at the F3 lead was the most discriminating parameter between AS and 
QS, with an AUC of 0.88. The theta spectral difference at the C4 and C3 leads showed significant differentiation 
capability between Awake and AS stages, achieving an AUC of 0.93. The delta band spectral difference at the P4 lead 
demonstrated strong discriminative capacity between QS and Wakefulness, attaining the highest AUC of 0.94. Finally, 
we have provided, for the first time, a distribution of healthy neonatal brain EEG characteristics and explored the 
relationship between quantitative EEG features and postnatal age. This extensive collection of features has allowed us to 
develop machine learning-based models for individual-level predictions, laying the foundation for precision medicine.

Limitations and Future Research Directions
The limitations of our study include its design as a single-center experiment. While we collected a relatively large sample 
size compared to prior studies,34,35,43 validation through multi-center studies would be advantageous for future research, 
enhancing the generalizability and robustness of the findings. This expanded approach could offer a more comprehensive 
understanding of the research topic. Additionally, due to the presence of numerous artifacts in the occipital lobe, we were 
unable to monitor the occipital brain regions. Future research may need to employ innovative equipment to ensure 
comprehensive monitoring of each brain area.

Conclusion
In summary, our study identified more effective QEEG metrics for distinguishing between awake and sleep states, as well 
as delineated the developmental characteristics of cortical activity across different sleep-wake states in a normal neonatal 
cohort. Notably, the spectral difference emerged as the parameter with the highest overall discriminative capacity for 
differentiating between awake and various sleep states. The observed patterns of neonatal QEEG changes in relation to 
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PMA align with the developmental trajectory of neonatal sleep. The application of QEEG analysis provides valuable 
objective data that can enhance traditional methods of neonatal sleep staging, thereby facilitating the development of 
more comprehensive machine-learning models aimed at predicting neurodevelopmental outcomes. This integration of 
QEEG with machine learning approaches holds the potential to advance our understanding and monitoring of neonatal 
brain development significantly.
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