
© 2012 Lin and Matsui, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

OncoTargets and Therapy 2012:5 47–58

OncoTargets and Therapy

Hedgehog pathway as a drug target: Smoothened 
inhibitors in development

Tara L Lin1

William Matsui2

1Division of Hematology/Oncology, 
Department of Internal Medicine, 
University of Kansas, Kansas City, 
MO, USA; 2Division of Hematologic 
Malignancies, The Sidney Kimmel 
Comprehensive Cancer Center, Johns 
Hopkins University School  
of Medicine, Baltimore, MD, USA

Correspondence: Tara L Lin 
Division of Hematology/Oncology, 
Department of Internal Medicine, 
University of Kansas, 2330 Shawnee 
Mission Parkway, Suite 210, Mail Stop 
5003, Westwood, KS 66205, USA 
Tel +1 913 588 3884 
Fax +1 913 588 4085 
Email tlin@kumc.edu

Abstract: Emerging laboratory and clinical investigations demonstrate that Hedgehog 

signaling (Hh) represents a novel therapeutic target in various human cancers. This conserved 

signaling pathway precisely regulates self-renewal and terminal differentiation in embryonic 

development, but is typically silenced in adult tissues, with reactivation usually only during tissue 

repair. Aberrant Hh pathway signaling has been implicated in the pathogenesis, self-renewal, 

and chemotherapy resistance of a growing number of solid and hematologic malignancies. 

Major components of the Hh pathway include the Hh ligands (Sonic, Desert, and Indian), the 

transmembrane receptor Patched, the signal transducer Smoothened (Smo), and transcription 

factors Gli1–3 which regulate the transcription of Hh target genes. Mutations in Hh pathway genes, 

increased Hh signaling in tumor stroma, and Hh overexpression in self-renewing cells (cancer 

stem cells) have been described, and these different modes of Hh signaling have implications for 

the design of Hh pathway inhibitors and their integration into conventional treatment regimens. 

Discovery of a naturally-occurring Smo inhibitor, cyclopamine, and the identification of Hh 

pathway mutations and over expression in cancer cells prompted the development of several 

cyclopamine derivatives. Encouraging laboratory and in vivo data has resulted in Phase I and 

II clinical trials of Smo inhibitors. In this review, we will discuss the current understanding of 

Hh pathway signaling in malignancy and Smo antagonists in development. Recent data with 

these agents shows that they are well-tolerated and may be effective for subsets of patients. 

Challenges remain for appropriate patient selection and the optimal combination and sequence 

of these targeted therapies into current treatment paradigms.
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Introduction
A growing body of evidence demonstrates a role for conserved embryonic signaling 

pathways such as Hedgehog (Hh), Wingless, and Notch in the development of human 

cancers.1,2 Preclinical data in various tumor types suggests a role for Hh signaling in 

cancers of the skin,3,4 brain,5,6 lung,7 breast,8 prostate,9,10 colon,11 as well as hematologic 

malignancies including leukemia,12–15 lymphoma,16–19 and multiple myeloma (MM).16,20 

Laboratory data suggests that Hh signaling regulates multiple pathogenic processes 

including tumor growth, self-renewal, and resistance to chemotherapy. Given that Hh 

signaling is implicated in a wide range of malignancies, there is much interest in the 

development of Hh pathway inhibitors as novel anticancer therapy. In this review, we 

will discuss the Hh pathway in cancer, mechanisms of its aberrant activation in differ-

ent tumor types, and its role in the self-renewing cell population, or cancer stem cells 

(CSCs). We will then review published and preliminary data regarding Hh pathway 

inhibitors clinical trials.
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The Hh pathway
The Hh signaling pathway regulates cell differentiation 

and self-renewal in the developing embryo and is typically 

silenced in adult tissues.21 Aberrant Hh signaling may result 

from mutations in pathway genes or overexpression of sig-

naling through other mechanisms in either tumor cells them-

selves or cells in the supportive tumor microenvironment.22–26 

Much of our knowledge of the Hh pathway comes from stud-

ies in Drosophila, and although several major components of 

the pathway are well described, some details remain poorly 

understood. In mammals, one of three Hh pathway ligands 

(Desert, Indian, and Sonic) binds to the transmembrane 

receptor Patched (Ptch) to initiate pathway signaling. In the 

inactive state, Ptch exerts an inhibitory effect on the signal 

transducer Smoothened (Smo), and no downstream signal-

ing occurs. When Hh ligand binds to Ptch, the inhibition on 

Smo is released and downstream signaling occurs, regulating 

the expression of the transcription factors Gli1–3 (Figure 1). 

Primary cilia present on most cells during interphase are 

involved in signal transduction, and Hh pathway components 

translocate during activation. In the inactive state, when Hh 

ligand is not present, Ptch is located in the primary cilia but 

Smo is not. When ligand binds and Ptch inhibition of Smo is 

released, Ptch moves out of the primary cilia and Smo moves 

in to facilitate interaction with Glis and associated proteins. 

They subsequently enter the nucleus and regulate expression 

of Hh target genes.27–32

Hh expression is precisely regulated through both  positive 

and negative feedback loops which may be interrupted by 

mutations in Hh pathway genes themselves or epigenetic 

changes. Increased transcription of Hh target genes results in 

increased cell proliferation and survival, induction of stem cell 

markers, as well as promotion of bone metastases.33  Aberrant 

Hh signaling has also been associated with chemotherapy-

resistance in gliomas,34 pancreatic cancer,35 leukemia,36,37 

lymphoma,17,38 and MM.39 Interactions with other signaling 

pathways, including Notch, PI3K, RAS-MEK/AKT, and 

NF-κB, to promote cancer growth, recurrence, and chemo-

therapy resistance have also been described.40–43

Several Smo inhibitors are in clinical development for 

the treatment of human cancers. Recently, emerging clini-

cal data have demonstrated the potential activity of these 

agents in several diseases, particularly medulloblastoma, 

basal cell carcinoma (BCC), pancreatic cancer, and hemato-

logic malignancies. Ongoing trials will evaluate the role for 

Smo inhibitors as single agents, as well as in combination 

with traditional chemotherapy. This review will discuss the 

mechanisms of Hh signaling in malignancy and the evidence 

for Hh signaling in CSCs. These preclinical studies provide 

the rationale for human trials of Hh inhibition in various 

malignancies, and we will review the progress and challenges 

of translating the laboratory investigations of Smo inhibitors 

into meaningful clinical results for patients.

The Hh pathway in cancer
Similar to its role in normal development, dysregulated Hh 

signaling results in the expression of a number of genes 

responsible for cell proliferation, survival, and self-renewal. 

PTCH1 SMO

FUCOS2

SUFUGLI1

HH

GLI1

Hh target genes

PTCH1 SMO

FUCOS2

SUFUGLI1

x

ONOFF

Figure 1 Hh signaling pathway. In the absence of Hh ligand, Ptch exerts an inhibitory effect on Smo, and no downstream signaling occurs. In the presence of Hh ligand 
binding to Ptch, the suppression of Smo is released. Smo interacts with Suppressor of fused (SUFU), which promotes the activation and nuclear translocation of Gli1.  
Gli1 translocation results in the transcription of Hh target genes.
Abbreviations: Hh, Hedgehog; Ptch, Patched; Smo, Smoothened, COS, Ccoastal-2; FU, Fused.
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Aberrant Hh signaling is associated with the development 

of cancer, as demonstrated by the Gorlin syndrome, caused 

by an autosomal dominant germline mutation in the 

PTCH1 gene.4,44 This resultant mutated Ptch is unable to 

exert its tonic inhibition of Smo, resulting in hyperactiva-

tion of the pathway. Patients with Gorlin syndrome are 

predisposed to various malignancies, most commonly BCC 

and medulloblastoma.45 These observations led to the dis-

covery of Hh activation in the majority of the more common 

sporadic form of BCC, with mutations in the PTCH1 allele 

occurring in up to 30% of cases3 and SMO mutations in 

approximately 10%.46 In addition, mutations in Hh pathway 

genes have been implicated in the pathogenesis of up to 30% 

of sporadic medulloblastoma.47

Mechanisms of Hh signaling in cancer
Although Hh pathway gene mutations lead to i nappropriate 

Hh signaling in BCC and medulloblastoma, a greater number 

of cancers are driven by Hh signaling through other mecha-

nisms, either in the bulk population of cells or specifically 

within the CSC population. We will briefly discuss the 

different mechanisms of Hh signaling, and for a complete 

review, the reader is referred to Reference 8.26 In both BCC 

and medulloblastoma, Hh pathway activation results from 

specific gene mutations and is independent of the presence 

of Hh ligand binding to Ptch. This mechanism of Hh activa-

tion, which is ligand-independent and driven by specific Hh 

gene mutations within the tumor cells, is termed Type I Hh 

signaling (Figure 2A).26 Hh inhibitors which are antagonists 

to Hh ligand will not be effective in overcoming this mecha-

nism of aberrant signaling because it occurs downstream 

and independent of ligand due to the mutation. The other 

mechanisms of Hh signaling observed in cancer rely upon 

Hh ligand initiation of the signaling, and vary by source and 

recipient cells of ligand secretion.

In Type II signaling, activation of the pathway is ligand-

dependent and autocrine, meaning it originates and is 

received by the tumor cells (or neighboring cells). Most data 

for Type II Hh signaling comes from in vitro studies in vari-

ous cancers including lung,48,49 prostate,50 glioblastoma,51,52 

gastrointestinal,11,53 breast,54 and leukemia.13,15 These studies 

observed Hh expression in tumor cells and growth inhibi-

tion with Hh blockade by cyclopamine in models absent of 

tumor stroma. This data supports the premise that Hh ligand 
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Figure 2 Modes of Hh pathway signaling. (A) Type I Hh signaling is activated by specific mutations within pathway genes within tumor cells, resulting in ligand-independent 
constitutive activation. (B) Type II Hh signaling results from autocrine signaling from tumor cell to tumor cell. (C) Type IIIa activation results from secretion of Hh ligand by 
tumor cells, resulting in pathway activation in surrounding tumor stroma. (D) Type IIIb Hh signaling results from Hh ligand secretion by tumor stroma, resulting in activation 
of the pathway within tumor cells themselves.
Abbreviation: Hh, Hedgehog.
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originates within the tumor cells and that pathway activation 

also occurs within tumor cells (either the same cells or neigh-

boring cells). Several authors remain unconvinced that Type II 

signaling actually exists in vivo because much of this data 

is based on studies with higher doses of cyclopamine which 

exhibit some non-specific cytotoxicity.25,26,46,55 However, in 

our group’s report of Hh signaling in acute lymphocytic 

leukemia (ALL), we demonstrated findings of increased Hh 

pathway expression in human ALL cell lines and clinical 

samples. Using a luceriferase reporter assay, we observed 

decreased Gli1 expression in ALL cell lines following 

treatment with 5E1, antagonist to Hh ligand, cyclopamine, 

or IPI-926 (Infinity Pharmaceuticals, Cambridge, MA), 

a semi-synthetic Smo inhibitor at doses which did not result 

in apoptosis or growth inhibition. Treatment with these Hh 

inhibitors resulted in decreased self-renewal when cells were 

treated alone without the presence of stromal cells both in 

in vitro clonogenic assays, as well as in serial transplantation 

models in mice. Although there is likely a contributory effect 

of stromally-mediated Hh signaling in ALL, we believe that 

our data also supports a role for autocrine, Type II Hh sig-

naling in ALL.15 Tumors characterized by Type II signaling 

may be susceptible to Hh inhibition at either the level of Hh 

ligand binding or further downstream.

A growing body of data confirms the importance of Type 

III Hh signaling which is ligand dependent and paracrine; 

that is, ligand is secreted by one type of cell (either tumor or 

stroma) and Hh pathway activation occurs in another (tumor 

or stroma). Ligand secretion by tumor cells resulting in Hh 

signaling in supportive stromal cells is termed Type IIIa sig-

naling, whereas ligand secretion by stromal cells resulting in 

Hh signaling in the tumor cells is termed reverse paracrine 

signaling or Type IIIb. Tumor types in which paracrine sig-

naling has been described include prostate,9 pancreas, and 

metastatic colon.25 Human prostate cancer cell lines showed 

enhanced growth in vivo with addition of Hh ligand while no 

differences were seen when cells were grown alone in vitro 

in absence of stroma, suggesting a role for stromally medi-

ated Hh signaling in promoting tumor growth. RT-PCR and 

in situ hybridization confirmed that increased tumor ligand 

expression correlated with increased mouse Gli1, Gli2, and 

Ptch1 from stromal cells.9 Yauch et al demonstrated similar 

findings of increased mouse Gli1 expression in response to 

human Hh ligand expression in pancreatic cancer and meta-

static colon cancer in xenografts from human cell lines and 

primary tumors.25 Importantly, these findings from mouse 

models were also seen upon examination of human clinical 

samples comprised of tumor cells and infiltrating stromal 

cells in  prostate, pancreatic, and metastatic colon cancer.9,56,57 

Type IIIb signaling has only been described in B-cell 

malignancies, including leukemia, MM, and non-Hodgkin’s 

 lymphoma.16 Hh ligands secreted by supportive stroma in 

lymph nodes, spleen, and bone marrow activated Hh signaling 

in tumor cells. Hh inhibition resulted in increased apoptosis 

associated with down regulated Bcl2 expression.

Hh inhibition as a CSC-targeted strategy
CSC theory states that tumors are comprised of two distinct 

populations of cells: a majority population of differentiated 

tumor cells which phenotypically characterize the disease; 

and a second population of rare, CSC or tumor-initiating 

cells, with properties of self-renewal and differentiation, 

responsible for disease maintenance and relapse.58,59 CSC 

theory attempts to explain the common clinical scenario 

of complete response to initial chemotherapy followed by 

relapsed disease propagated by a small population of residual 

cancer cells which were undetectable following initial 

therapy. For many cancers, conventional chemotherapy is 

effective against the bulk, differentiated tumor cells. Novel 

strategies targeting the residual CSCs responsible for disease 

recurrence are needed to prolong remissions, eradicate the 

tumor-initiating cells, and result in long-term cure. Hh sig-

naling has been identified as a potential CSC-specific target 

in various cancers.6,13,15,20,51,60–77

Techniques used to isolate and characterize CSC in vitro 

include aldehyde dehydrogenase expression, phenotypic 

markers, side population by Hoechst dye exclusion, and 

colony-forming assays. To date, the “gold standard” for 

CSC identification has been the ability of this rare popula-

tion of cells to regenerate tumor consisting of both pheno-

typic  populations, differentiated cells, and CSC in animal 

models.78 A detailed discussion of the in vitro and in vivo 

methods used to characterize CSC in various tumor types 

is beyond the scope of this review. The reader is referred 

to Reference 78 for further details of these techniques, as 

well to the publications cited below concerning Hh signal-

ing and CSC. CSC theory remains controversial due to the 

varying techniques for identification and the discrepancies 

in CSC numbers identified in primary samples and required 

to recreate tumors in mice by different researchers with 

varying techniques. Also, the inherent heterogeneity among 

different tumor types as well as within specific cancer types 

themselves. Regardless of the exact criteria for identifying 

CSC or properties of “stem-ness” or whether the CSC is a 

primitive progenitor or a de-differentiated cell, the clinical 

observation holds that rare populations of cancer cells persist 
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following initial therapy and cause disease recurrence, and 

novel strategies to target these resistant, persistent cells are 

needed. In fact, CSC from different cancers may share similar 

targets, even more so than the CSC and differentiated cell 

of the same cancer type. Hh signaling has been implicated 

in the bulk, differentiated cell populations of many human 

cancers, and here we review the preclinical evidence for Hh 

signaling in the CSC or self-renewing cells.

Our group demonstrated a role for Hh signaling in the 

self-renewing cells of MM and ALL. Flow cytometric 

analysis of MM cell lines following treatment with the Smo 

inhibitor cyclopamine resulted in decreases in the CD138-

negative cell fraction (the CSC population) as well as in side 

population (SP) cells. To assess the effects of Hh inhibition 

on self-renewal potential, an in vitro clonogenic assay was 

performed. In this assay, cells were treated with an anti-Shh 

antibody 5E1 to block ligand-dependent Hh signaling or the 

Smo inhibitor cyclopamine and then assayed for the ability 

to form tumor colonies in semi-solid media. Compared to a 

vehicle control, both 5E1 or cyclopamine significantly inhib-

ited colony-formation by MM cell lines and primarily clinical 

samples.20 Furthermore, this inhibitory effect was maintained 

during serial replating indicative of self-renewal potential. 

Similarly, in ALL, treatment of human ALL cell lines 

with the Smo inhibitors cyclopamine or IPI-926 resulted in 

decreased ALDH+ cells, decreased in vitro colony-formation, 

and decreased serial transplantation in mice, all reflective 

of effects on the self-renewing cell population.15 In chronic 

myeloid leukemia (CML) mouse models, Smo -/- mice had 

longer latency to develop CML when mouse bone marrow 

transduced with BCR-ABL was transplanted. A decrease in the 

number of phenotypically primitive cells (Lin- Sca-1- c-Kit+), 

a  surrogate for CSC, was also observed in the Smo -/- mice as 

compared to Smo +/+ mice.67 Similarly, Dierks et al transduced 

Smo -/- fetal liver cells with BCR-ABL and observed more 

rapid development of CML in transplanted mice. Secondary 

recipients of Smo -/- cells had no development of CML at 9+ 

months of observation. CML stem cells were isolated by flow 

cytometry and treated with the Smo inhibitor cyclopamine or 

Hh ligand blocking antibody 5E1. Decreased colony-formation 

in vitro was observed with both treatments, demonstrating 

a role for ligand-dependent Hh signaling in mediating self-

renewal in CML. Mice transplanted with BCR-ABL infected 

hematopoietic stem cells were treated with cyclopamine. All 

untreated animals rapidly developed CML and died within 

4 weeks, but cyclopamine-treated mice had a 60% survival 

at 7 weeks. In addition, CML from cyclopamine treated mice 

was unable to be serially transplanted, consistent with an 

observed decrease in the number of CML stem cells persisting 

after treatment.13

In glioblastoma multiforme, elevated Gli1 expression was 

seen in five of 19 primary samples and four of seven cell lines 

tested. Treatment with cyclopamine depleted the putative 

CSC population as identified by increased ALDH expression 

and SP. In vitro, glioblastoma multiforme neurospheres were 

unable to produce new neurospheres after exposure to cyclo-

pamine, and in vivo injection of cyclopamine treated glioblas-

toma multiforme cells did not result in tumor formation versus 

untreated cells, demonstrating that Hh inhibition with cyclo-

pamine eliminated the self-renewal capacity of these cells.52 

Tanaka et al demonstrated in human breast cancer cells that 

the CSC population, marked by either markers CD44+ CD24-/

low or SP had increased Hh expression and that proliferation 

was limited following treatment with siRNA against Gli1.79 

Similarly, Liu and colleagues isolated human breast tumor 

CSC by flow sorting for cells with markers CD44+ CD24-/low 

Lin-. Cyclopamine or siRNA against Gli1 or Gli2 inhibited 

Hh signaling, resulting in diminished self-renewal capacity, 

mediated by BMI-1, a known regulator of normal stem cell 

self-renewal.65 Tian et al looked at the effects of Hh inhibi-

tion with the synthetic Smo inhibitor GDC-0449 (Genentech, 

South San Francisco, CA; Curis, Lexington, MA; Roche, 

Basel, Switzerland) in lung cancer cell lines and used SP tech-

nique to isolate and enrich for CSC. They observed expres-

sion of Smo in the SP fraction, clonogenicity restricted to the 

SP fraction, and that treatment with GDC-0449 reduced the 

number of SP cells.73 Pancreatic CSCs as characterized by 

ALDH expression were preferentially reduced in number 

as compared to differentiated tumor cells when treated with 

cyclopamine.62 Similarly, Singh et al showed that Hh inhibition 

with GDC-0449 resulted in increased apoptosis of pancreatic 

cell line CSC as well as decreased transcription of Hh target 

genes.70 Other groups have described Hh signaling in the CSC 

of cancers of the prostate,60 stomach,71 colon,63 and ovary.80

Targeting Hh signaling in cancer
The identification of a naturally-occurring Hh pathway 

antagonist, cyclopamine, led to the subsequent development 

of synthetic and semi-synthetic derivatives of cyclopamine 

with increased potency and bioavailability. In addition, 

a commonly used anti-fungal agent, itraconazole, has also 

been found to have Hh inhibitory activity. These agents are 

now moving from the laboratory into clinical trials. Similar to 

challenges encountered in translating other targeted therapies, 

questions remain including the optimal way to integrate them 

into regimens of conventional chemotherapy. In addition, 
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our growing understanding of mechanisms of Hh signaling 

in different malignancies raises the issue of whether there 

should be different approaches to using these agents which 

vary by the mechanism of Hh signaling in each disease. 

Currently, all of the Hh inhibitors in clinical development are 

at the level of Smo, but other agents with distinct mechanisms 

of action have been identified and it is possible that these may 

be more or less effective depending on the mode of signaling. 

Below, we will discuss cyclopamine, itraconazole, and Smo 

inhibitors in clinical trials.

Cyclopamine
In the 1960s, teratogenic effects of ingestion of the corn lily 

Veratrum californicum were observed, resulting in one-eyed 

offspring (cyclopia) in lambs.81 It was subsequently discovered 

that the active agent, cyclopamine, exerted its effects through 

Hh pathway inhibition,82 specifically acting at the level of 

Smo.83 Cyclopamine displayed anti-tumor activity in vitro and 

in vivo, but poor oral bioavailability and acid sensitivity has 

prevented further clinical development. One clinical report of 

four patients with BCC, one of whom had Gorlin syndrome, 

described dramatic, rapid clinical regression of the lesions in 

response to topical cyclopamine application versus placebo. 

In addition, histological and immunohistochemical analysis 

showed apoptosis and increased markers of differentiation 

in response to Hh inhibition.84 Although no longer in clinical 

development due to increased potency and bioavailability of 

cyclopamine derivatives, cyclopamine remains an important 

agent in preclinical models of Hh inhibition.

Itraconazole
Interestingly, the anti-fungal agent itraconazole was found 

to have Hh inhibitory properties on a drug screen of known  

compounds. Kim et al showed that commonly used doses of 

itraconazole suppressed Hh pathway activity and inhibited 

growth of medulloblastoma in vivo. It appears to act on 

Smo, as does cyclopamine and its synthetic derivatives, but 

its mechanism of Smo antagonism is distinct from that of 

cyclopamine and appears to limit the ciliary accumulation 

of Smo.85 Itraconazole is currently in studies of patients with 

BCC, metastatic prostate cancer, and recurrent non-small cell 

lung cancer (see Table 1).

Synthetic and semi-synthetic cyclopamine 
derivatives
All of the Hh inhibitors in clinical trials currently act at the 

level of Smo (see Table 1 for a list of currently open clinical 

trials and Table 2 for a summary of findings of Smo inhibitors 

in clinical trials). Due to the decreased oral bioavailability 

and acid sensitivity of cyclopamine, semi-synthetic and 

synthetic derivatives have been developed. These derivatives 

appear to have increased potency and all are oral agents. Smo 

inhibitors currently under investigation appear to inhibit Smo 

through binding at the same portion of the transmembrane 

segment 6.86,87 Here, we will review the published or presented 

data regarding Smo inhibitors in clinical trials for cancer.

vismodegib
Early results from patients with medulloblastoma and BCC 

on the initial Phase I study of GDC-0449 were published in 

the New England Journal of Medicine in 2009 demonstrat-

ing a role for Smo inhibitors in cancers known to be driven 

by Hh pathway mutations.88,89 In the first report, one patient 

with heavily pre-treated medulloblastoma had clinical and 

radiographic regression of widespread systemic metastases 

on vismodegib. These results were short-lived, however, with 

Table 1 Smoothened inhibitors currently in clinical trials for cancer

Drug Sponsor Indications Phases

GDC-0449 Genentech, Curis,  
Roche

Advanced solid tumors, BCC, breast, chondrosarcoma, colorectal, gastric,  
Glioblastoma multiforme, medulloblastoma, multiple myeloma, ovarian,  
Pancreatic, prostate sarcoma, small cell lung

Phase II

LDE-225 Novartis Advanced solid tumors, BCC, chronic myeloid leukemia, pancreatic Phase I, II
BMS-833923 
(XL139)

Bristol-Myers Squibb,  
Exelixis

Advanced solid tumors, BCC, chronic myeloid leukemia, esophageal,  
gastric, multiple myeloma, small cell lung

Phase I, II

IPI-926 Infinity Advanced solid tumors, chondrosarcoma, head and neck, myelofibrosis,  
pancreatic

Phase I, II

PF-04449913 Pfizer Advanced solid tumors, hematologic malignancies Phase I
LEQ-506 Novartis Advanced solid tumors Phase I
TAK-441 Millenium Advanced solid tumors Phase I
Itraconazole BCC, metastatic prostate cancer, 

non-small cell lung cancer
Phase II

Note: As listed on clinicaltrials.gov on November 9, 2011.
Abbreviation: BCC, basal cell carcinoma.
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measurable increases in tumor size at 3 months of therapy and 

subsequent identification of a single amino acid substitution 

conferring resistance.89 A recent update of the entire Phase I 

cohort demonstrated that patients with BCC on vismodegib 

had a response rate of 58%. Twelve of 33 advanced BCC 

subjects had been on therapy from 8.5 months to 26.5 months, 

with median duration of response of 12.8 months (as of 

 January 2010, with several patients remaining on therapy and 

with continued response).90 Responses were only observed in 

the patients with medulloblastoma or BCC. At the American 

Society of Clinical Oncology (ASCO) Annual Meeting in 

2010, preliminary data was presented from eleven patients 

enrolled in a Phase I study of vismodegib in medulloblastoma 

coordinated through the Pediatric Brain Tumor Consortium. 

The limited data presented suggested that the drug was 

well-tolerated as a single agent in patients ranging from age 

4–20 years. Magnetic resonance imaging scans of the knees 

will monitor for changes in bone development, as this was 

a significant side effect observed in mouse studies with Hh 

inhibition.91

More recently, encouraging Phase II results with vismo-

degib in 99 patients with locally advanced or metastatic BCC 

were presented during the European Multidisciplinary Cancer 

Congress in 2011. In patients with metastatic disease, disease 

stabilization occurred in 63% with an overall response rate of 

30%. In locally advanced BCC, the overall response rate was 

43% with stable disease in 40% of patients. Median duration 

of progression-free survival was 9.5 months.92 The plenary 

session at the American Association for Cancer Research 

Annual Meeting in 2011 featured results from 36 patients 

on a Phase II study of vismodegib in patients with Gorlin 

Syndrome/Basal Cell Nevus Syndrome. This randomized, 

double-blind, placebo-controlled trial was designed to evaluate 

the efficacy of vismodegib in preventing the development of 

new BCC. The data safety monitoring board discontinued the 

placebo arm due to statistically significant differences in the 

number of new BCC (0.07 new BCC/month in treated patients 

vs 1.74 new BCC/month for those on placebo) and the change 

in size of existing BCC (decrease of 24 cm in vismodegib arm 

vs -3 cm in placebo arm).93 The 2011 ASCO Annual Meet-

ing featured two reports on vismodegib in combination with 

chemotherapy. A Phase I trial examined the combination of 

vismodegib with erlotinib and gemcitabine for unresectable 

pancreatic cancer. Observed dose-limiting toxicities of the 

combination included rash, nausea, infection, visual dis-

turbances, and thrombocytopenia. Transient responses with 

stable disease were seen in two dose cohorts, and a dose was 

determined for Phase II testing.94 An NCI-sponsored, random-

ized, double-blind placebo-controlled trial of chemotherapy 

with 5-fluorouracil and oxaliplatin (FOLFOX) with or without 

vismodegib in previously untreated patients with advanced 

gastric or gastroesophageal junction cancer was reviewed 

at the Trials in Progress poster session at the meeting. The 

study plans to enroll 116 patients in order to detect a 69% 

increase in progression-free survival. Laboratory correlative 

studies to look at effects on the tumor microenvironment are 

also planned.95

Across these early studies, there were no dose-limiting 

toxicities, and common side effects were mild and included 

muscle spasms, dysgeusia (taste alteration), fatigue, alope-

cia, and nausea. Grade 3 adverse events included reversible 

hyponatremia, abdominal pain, fatigue, and muscle cramps. 

Mild to moderate side effects included dysgeusia, muscle 

cramps, and weight loss, with two grade 3–4 adverse events 

Table 2 Summary of clinical findings from Phase I trials of Smoothened inhibitors in cancer

Parameter GDC-0449 (vismodegib) 
Genentech

IPI-926 
Infinity

LDE225 
Novartis

BMS-833923 (XL139) 
BMS/Exelexis

PF-0449913 
Pfizer

N (Phase I) 68 104+ (ongoing) 35+ (ongoing) 27 39+ (ongoing)
Daily doses  
explored (mg)

150–270–540 20–210 mg 100–200–400– 
800–1500

30–60–120–240–360–540 5–10–20–40–80–120–
180–270

GLI1 inhibition Yes Yes Yes Yes
Single dose t½ .7d ∼4d (1–10)? ∼7d? 17–35 hours

MTD defined? No (PK futility) No No Yes No
Grade 3 toxicities ↓ Na, fatigue ↑ LFTs, fatigue Asthenia ↓ phos, ↑ lipase Hypoxia, pleural  

effusions, 
hemorrhagic  
gastritis

Most common  
toxicities

Muscle spasms 
Dysgeusia 
Fatigue

Nausea, fatigue Nausea 
Muscle spasms 
Fatigue

Muscle spasms 
Dysgeusia

Dysgeusia 
Arthralgias 
Alopecia 
Nausea 
vomiting
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in the treatment arm (muscle cramps and suicide attempt). 

In the trial of vismodegib in patients with basal cell nevus 

syndrome, the drug was discontinued in 20% of patients due 

to adverse effects.92 Therefore, it appears that vismodegib is 

well tolerated.

IPI-926
IPI-926 (Infinity Pharmaceuticals, Cambridge, MA) is the 

only Smo inhibitor in development which is a semi-synthetic 

derivative of cyclopamine. Early phase clinical trial results 

were presented at the ASCO Annual Meeting in 2011. In the 

Phase I study of patients with locally advanced or metastatic 

solid tumors, partial responses were seen in patients with 

BCC, and several patients continued on therapy for more 

than 1 year.96 Preliminary findings from a Phase Ib/II study 

of IPI-926 in combination with gemcitabine in patients with 

untreated metastatic pancreatic cancer were also  presented. 

Median progression free survival was approximately 

5.5 months with five of 16 patients demonstrating a partial 

response to the combination.97 In both studies, the drug was 

well-tolerated with mild effects of nausea, fatigue, muscle 

spasms, and dysgeusia observed. There was also asymptom-

atic and reversible elevation of liver function tests.

LDE225
Two recent reports comment on the clinical experience with 

LDE225 (Novartis, Basel, Switzerland). Preliminary findings 

from a Phase I dose escalation study of LDE225 were reported 

at the ASCO Annual Meeting in 2010. One patient with 

medulloblastoma maintained a partial response for 4 months 

and five additional patients with various malignancies includ-

ing lung cancer and BCC have tolerated therapy for more 

than 4 months.98 A topical formulation of LDE225 was also 

recently tested in patients with Gorlin syndrome and BCC. 

In this double-blind, randomized, vehicle-controlled intra-

individual study, 27 BCC in eight patients were treated with 

LDE225 cream or vehicle twice daily for 4 weeks. In twelve of 

13 BCC, there were three complete responses and nine partial 

responses compared to only one partial response in 14 vehicle 

treated BCC.99 Similar to other Smo inhibitors, the oral drug 

was well-tolerated with side effects of fatigue, nausea, muscle 

cramps, and dysgeusia being most common. The topical 

formulation was well-tolerated with no skin irritation.

BMS-833923 (XL139)
BMS-833923 (XL139) (Bristol Myers Squibb, New York, 

NY; Exelixis, South San Francisco, CA) is also being studied 

in early phase trials as a single agent in advanced and metastatic 

solid tumors. There are  ongoing clinical trials looking at this 

drug in combination with standard chemotherapy in MM, 

gastric and esophageal cancers, and small cell lung cancer. 

Data was presented at the American Association for Cancer 

Research-National Cancer Institute-European Organization 

for Research and Treatment of Cancer Annual Meeting in 

2009. One patient with medulloblastoma continues on study 

for more than 10 months with stable disease. A second subject 

with Gorlin syndrome had a partial response to therapy which 

was ongoing at the time of the report.100 At the 2011 American 

Society of Hematology meeting, Huff et al presented Phase 

I data on BMS-833293 in patients with MM. BMS-833923 

was given either as monotherapy, or in combination with 

lenalidomide plus dexamethasone, or with bortezomib in 

patients with relapsed or refractory MM. No clinical response 

data had been analyzed to date.101 In both trials, the drug was 

well-tolerated with the most common side effects being dys-

geusia, muscle spasms, and nausea. There was one episode 

of grade 2 lipase elevation and pancreatitis.

PF-04449913
Preliminary data was presented in abstract form with 

PF-04449913 (Pfizer, Manhattan, NY) at the 2011  American 

Society of Hematology Annual Meeting. The drug was 

administered as a single agent in escalating doses in a Phase 

Ia study of 32 patients with various hematologic malignancies 

including acute myeloid leukemia, CML in lymphoid blast 

crisis, myelodysplastic syndrome, myelofibrosis, and chronic 

myelomonocytic leukemia. Some evidence of response was 

seen in all disease subsets, and one patient with acute myeloid 

leukemia evolved from chronic myelomonocytic leukemia 

achieved a complete remission with incomplete blood count 

recovery. Five patients with acute myeloid leukemia had 

significant reduction in circulating blast counts, and one 

patient with T315I mutation CML in lymphoid blast crisis 

achieved a major cytogenetic response with loss of the T315I 

mutation. Other patients had hematologic improvement or 

disease stabilization. The drug was relatively well-tolerated 

with the most common side effects being dysgeusia, alopecia, 

nausea, and arthralgias.102 An expanded multicenter Phase 

Ib/II study is planned in combination with chemotherapy in 

hematologic malignancies as well.

Discussion
Preclinical in vitro and in vivo data with Hh signaling demon-

strate a role for the pathway in the pathogenesis, self-renewal, 

and chemotherapy resistance in a variety of human cancers. 

Years of laboratory investigations have led to Phase I trials 
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of several Smo inhibitors which appear to be relatively well-

tolerated either as single agents or in combination regimens 

with conventional chemotherapy. Modest side effects include 

nausea, dysgeusia, muscle cramps, and fatigue, with rare 

grade 3 adverse events observed. It is unclear, however, what 

side effects may occur in children, as permanent defects in 

bone growth have been seen in mouse models of Hh inhibi-

tors91 which may complicate their clinical development for 

pediatric tumors such as medulloblastoma. The known 

teratogenic effects of cyclopamine caution for the need to 

prevent pregnancy in treated subjects.  Encouraging prelimi-

nary results have led to ongoing clinical trials in adults in 

hematologic malignancies, pancreatic cancer, glioblastoma, 

gastrointestinal tumors, lung cancer, and other advanced solid 

tumors. These early trials may suggest how to incorporate 

Smo inhibitors into treatment regimens with conventional 

chemotherapy. Interestingly, many of these trials incorporate 

prolonged post-chemotherapy maintenance therapy with the 

Smo inhibitor, reflecting an understanding of the potential 

role of Hh signaling in maintaining the CSC population which 

persists after initial therapy.

Despite early enthusiasm and preclinical successes, chal-

lenges remain in the development of Smo inhibitors. Drug 

resistance is an important concern. Preclinical models sug-

gest several potential mechanisms of resistance, but the most 

compelling data comes from one clinical example, the first 

patient treated with the Smo inhibitor vismodegib for refrac-

tory medulloblastoma. Despite an initial dramatic response to 

therapy, resistant disease emerged after 3 months with relapse 

at multiple sites.89 Tumor biopsies taken both before and after 

vismodegib provided important insights into the mechanisms 

of resistance to Smo inhibitors. Yauch and colleagues were 

able to identify a single amino acid substitution in a conserved 

aspartate acid residue of Smo. This mutation retained Smo 

activity but interfered with vismodegib binding, preventing 

the drug effect. Whether this mutation arose in the setting 

of vismodegib therapy or was present at levels too low to 

be detected pre-treatment remains unclear. In mouse models 

of medulloblastoma, the same mutation was identified in a 

tumor resistant to vismodegib as well.103 Similar to the devel-

opment of BCR-ABL tyrosine kinase inhibitors which retain 

activity against mutations conferring resistance to imatinib, 

studies are underway to develop second-generation Smo 

inhibitors which remain effective in the face of known Smo 

mutations conferring drug resistance.104 Other mechanisms 

of resistance that have been identified in preclinical models 

include amplification of Hh signaling molecules downstream 

of Smo (cf, Gli2),104 amplification of Hh target genes,105 and 

upregulation of signaling pathways which interact with Hh, 

such as PI3K.41 In addition, aberrant Hh signaling may result 

from pathway activation downstream of Smo. Hh inhibi-

tors which act at the level of the Gli transcription factors 

are also under investigation in the laboratory,106 and may 

prove effective in the setting of Smo inhibitor resistance or 

in combination. For example, arsenic trioxide, used in the 

treatment of acute promyelocytic leukemia, has been shown 

to inhibit Gli proteins.107,108

Preclinical testing of Smo inhibitors has identified tumor 

types which appear dependent on Hh signaling for their 

growth, self-renewal, and chemotherapy resistance. Hh 

signaling does not appear consistent throughout any tumor 

type, including those with specific activating mutations such 

as BCC and medulloblastoma, in which a majority of tumors 

may be dependent on the pathway. At this time, testing to 

know which particular patients and tumors are dependent 

on Hh signaling is not available. Efficacy results from early 

phase trials of these agents should be interpreted cautiously, 

as the effects may be more pronounced in only specific sub-

sets of patients, and we are currently unable to prospectively 

identify them. The potential to profile an individual’s own 

tumor for dependence on Hh or other signaling pathways 

would better direct patients into clinical trials and suggest 

potential synergistic combinations of inhibitors. However, 

current techniques do not permit this level of personalized 

medicine.

The development of Smo inhibitors represents an exciting 

advance in cancer therapy. Hh signaling is a cancer-specific 

target in adults, and likely a CSC-specific target in several 

diseases, with the potential to have efficacy as single agents 

and in order to sensitize tumors to chemotherapy. As these 

clinical trials provide tumor samples and outcomes suggest-

ing which patients may benefit, additional questions will 

need to be answered through laboratory correlative studies 

to better identify which patients and tumor types are most 

likely to be responsive to these interventions. Clinical trials 

of CSC-targeted therapies such as Hh inhibition may not 

produce early measurable clinical responses, but may instead 

prolong survival as the CSC are extinguished over time. 

In cancers where the role of Hh signaling may be due to a 

tumor-stromal interaction, Hh inhibition alone may result in 

a cytostatic effect with no measurable benefit radiographi-

cally but an improvement in survival. These factors must be 

considered as clinical trials incorporate Smo inhibitors with 

traditional chemotherapy, and overall survival represents 

the ideal endpoint to assess efficacy of a treatment such as 

this with potential CSC- or stroma-specific effects. A better 
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understanding of the role of Hh signaling in the response of 

tumors to traditional therapy, as well as the interactions of 

the Hh pathway with other signaling pathways, may suggest 

combinations of Smo inhibitors with other pathway inhibitors 

for further study.
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