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Abstract: Biliary tract cancer (BTC) represents a challenging malignancy characterized by aggressive behavior, high relapse rates, 
and poor prognosis. In recent years, immunotherapy has revolutionized the treatment landscape for various cancers, but its efficacy in 
BTC remains limited. This article provides a comprehensive overview of the advances in preclinical and clinical studies of 
immunotherapy for BTC. We explore the potential of immune checkpoint inhibitors in reshaping the management of BTC. Despite 
disappointing results thus far, ongoing clinical trials are investigating the combination of immunotherapy with other treatment 
modalities. Furthermore, research on the tumor microenvironment has unveiled novel targets for immunotherapeutic interventions. 
By understanding the current state of immunotherapy in BTC and highlighting future directions, this article aims to fuel further 
exploration and ultimately improve patient outcomes in this challenging disease. 
Keywords: biliary tract cancer, cancer immunotherapy, tumor microenvironment, immune checkpoint inhibitors, clinical trials

Introduction
Biliary tract cancers (BTCs) encompass a diverse group of adenocarcinomas characterized by genetic variability and a grim 
prognosis. They are categorized based on their anatomical origin into intrahepatic cholangiocarcinoma (iCCA), extrahepatic 
cholangiocarcinoma (eCCA, including perihilar CCA (pCCA) and distal CCA), and gallbladder cancer (GBC).1 The global 
incidence of BTC varies, with higher rates observed in Asian countries like Korea, Thailand, and China.2 This disparity may 
arise from multifaceted risk factors such as liver disease, lifestyle choices, age, gender, and hereditary factors. Additionally, 
although BTC was previously considered a rare tumor, accounting for approximately 3% of all gastrointestinal tumors,3 these 
years have witnessed a rising trend of its incidence,4 especially among younger adults.5,6

Surgical resection remains the sole potentially curative treatment option for BTC.7 Unfortunately, due to its 
asymptomatic clinical course, most patients are diagnosed only after the disease has metastasized extensively.8 

Consequently, merely 20–30% of patients qualify for surgical intervention.9,10 Moreover, despite initial eligibility for 
surgery, 40–85% of patients experience disease recurrence either during or after radical resection,11,12 resulting in a high 
case–fatality ratio and a median overall survival (OS) of less than 12 months.13 Limited data exist regarding the impact of 
adjuvant therapy on biliary tract cancer (BTC); however, certain clinical trials have demonstrated the potential of this 
treatment to offer long-term benefits to BTC patients.14 Despite a recent meta-analysis of the French PRODIGE-12 and 
Japanese BCAT Phase III studies showing no significant enhancement in relapse-free survival (RFS) or overall survival 
(OS) with adjuvant therapy,15–17 the UK BILCAP phase III trial, which randomly assigns patients with BTC after 
resection to receive oral capecitabine or observation, reports a clinical meaningful prolonged median OS for capecitabine 
group.18 In a French single-center study, patients with locally advanced iCCA who receive surgery following adjuvant 
chemotherapy have similar short- and long-term results to patients with initially resectable iCCA treated by surgery 
alone, indicating that this therapeutic option may facilitate patients with initially unresectable disease.19 Of note, recent 
Phase II trials also indicate promise for Teysuno in resected BTC patients.20,21

For advanced BTC, the cisplatin-gemcitabine (GemCis) combination stands as the internationally accepted first-line 
treatment regimen, endorsed by studies like UK ABC-02 and Japanese BT22.22,23 Further refinement includes the GCS 
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triplet (cisplatin, gemcitabine, and S1) tested in the KHBO1401 trial.24 However, the addition of albumin-bound 
paclitaxel to GemCis in the SWOG 1815 trial did not significantly enhance median OS.25

Advancements in understanding BTC’s genetic diversity have identified potential therapeutic targets. For instance, 
ivosidenib targeting Isocitrate dehydrogenase 1 (IDH1) and pemigatinib against the Fibroblast Growth Factor Receptor 
(FGFR) pathway represent notable breakthroughs.26–28 HER2 overexpression, amplification, or mutation can occur in 
GBC (19%), eCCA (17.4%), and is rarer in iCCA (4.8%).29 The HERIZON-BTC-1 phase II trial investigates the 
application of zanidatamab, a bispecific antibody targeting two distinct HER2 epitopes, in patients with HER2-amplified 
BTC. The trial reports an impressive objective response rate (ORR) of 41.3% and observes grade 3 treatment-related 
adverse events in 16% of patients.30 These findings support the potential of zanidatamab as a future treatment option for 
HER2-positive biliary tract cancer.

In addition to the emerging therapeutic options mentioned above, immunotherapy, which includes immune checkpoint 
inhibitors (ICI), adoptive cell therapy (ACT), cancer vaccines, and chimeric antigen receptor T cell (CAR-T cell) therapy, 
has revolutionized cancer treatment by enhancing the immune system’s ability to recognize and attack cancer cells.31 The 
TOPAZ-1 trial, which randomly assigns advanced BTC patients to receive durvalumab or placebo in combination with 
GemCis, followed by durvalumab or placebo monotherapy, demonstrates superior OS in favor of the durvalumab and 
GemCis triplet,32 This combination has thus become a first-line treatment option for advanced BTC. Despite these 
advancements, only a minority of BTC patients currently benefit from immunotherapy.33,34 In conclusion, while 
significant progress has been made in understanding and treating BTC, challenges remain in improving early detection, 
expanding treatment options, and personalizing therapies based on molecular profiles. Ongoing research and clinical 
trials continue to explore new avenues, offering hope for further advancements in BTC management. Herein, we will 
describe recent results and future directions of immunotherapy in BTC.

Immune Cells in Tumor Microenvironment (TME) of BTC
BTCs are characterized by desmoplastic tumors with a dense TME. This TME comprises various components, including 
nonmalignant cells, lymphoid tissue, blood vessels, nerves, intercellular components, and metabolites. It develops within 
the tumor lesion and the internal environment of tumor cells, influenced by the recruitment and adaptation of normal cells 
surrounding the mutated ones. Cancer cells actively shape the TME to promote tumor development, contributing to its 
dynamic heterogeneity.35,36 Within the TME, immune cells play a crucial dual role in tumor biology, affecting initiation, 
progression, and metastasis. For instance, CD4+ and CD8+ T cells exhibit potent antitumor activity through distinct 
mechanisms, such as direct cytotoxicity and cytokine release. Conversely, immunosuppressive cells like regulatory 
T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) are also present, dampening immune responses and 
facilitating tumor immune evasion.37 The intricate interplay between these immune cell subsets within the TME presents 
both challenges and opportunities for immunotherapy. Immune cells respond dynamically to intrinsic and extrinsic 
stimuli, influencing tumor behavior and response to treatment. Harnessing these interactions holds promise for develop-
ing novel immunotherapeutic strategies tailored to combat BTC effectively.

Adaptive Immune Cells
CD8+ T Cell
CD8+ T cells, originating in the red bone marrow, possess a remarkable ability to selectively recognize tumor antigens 
and induce apoptosis in target cells by releasing cytotoxic substances like perforin and granzyme. This mechanism is 
pivotal in antitumor responses and forms the cornerstone of immunotherapy.

When CD8+ T cells become overactivated, several immune-checkpoint molecules including programmed cell death 
protein 1 (PD-1), cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and T cell immunoglobulin and ITIM domain 
(TIGIT) can dampen immune responses. These mechanisms can also contribute to creating an immunosuppressive 
TME.38 Research by Qiao et al demonstrate that downregulating PD-1, TIGIT, T cell immunoglobulin mucin domain- 
containing protein 3 (Tim-3), and certain immunosuppressive cytokine receptors within CAR-T cells significantly 
enhances their efficacy in suppressing BTC.39 Additionally, the PD-1-CD28 switch receptor (SR) has shown the ability 
to convert the immunosuppressive signals from PD-1/PD-L1 interactions into stimulatory signals via CD28. CAR-T cells 
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engineered to include SR exhibit enhanced cytotoxicity against targeted tumor cells.40 The mechanism of CAR-T cells 
with reduced immune-checkpoints and immunosuppressive cytokine receptors is shown in Figure 1.39

Several gene mutations that influence the activity and recruitment of CD8+ T cells are highlighted as promising 
therapeutic targets for treating BTC. For instance, IDH1 mutations, which generate (R)-2-hydroxyglutarate [(R)-2HG], 
can hinder the accumulation of CD8+ T cells.41 (R)-2HG also restricts glycolysis and mitochondrial function in CD8+ 
T cells, thereby impairing cytokine production in cholangiocarcinoma (CCA). IDH1 inhibitors can counteract this 
mechanism and promote the recruitment and activation of CD8+ T cells. However, these inhibitors may also enhance 
the recruitment of regulatory T cells (Tregs) and the expression of CTLA-4. Therefore, combination therapy involving 
IDH1 and CTLA-4 inhibitors is utilized to achieve nearly complete tumor regression and sustained immunological 
memory.42 Furthermore, the endoplasmic reticulum stress (ER) response gene, X-box binding protein 1 (XBP1), is found 
to be upregulated in CD8+ T cells within the TME of BTC, particularly in those with low levels of PD-1 expression. In 
contrast, the rest of the CD8+ T cells exhibit the opposite pattern. Via using the specific inhibitors of XBP1 (4μ8C), 
researchers report a downregulation of TIGIT in tumor tissue, suggesting the potential benefits 4μ8C have on BTC 
patients who are refractory to PD-1 blockers.43 In addition, Liu et al report a negative correlation between the expression 
of B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) and CD8 in CCA samples. Subsequent 
investigations validate the effectiveness of BMI1 inhibitors in inducing the transcription of CD8+ T cell-recruiting 

Figure 1 Lentiviral vectors carrying EGFR or B7H3 specific CAR moiety, together with shRNAs targeting immune checkpoints and cytokine receptors, are designed to 
transduce primary human CD8+ T cells into CAR-T cells with decreased expression of PD-1, Tim-3, TIGIT and cytokine receptors. These CAR-T cells revealed an enhanced 
cytotoxicity.39 

Note: By Figdraw. 
Abbreviations: EGFR, Epidermal growth factor receptor; B7H3, B7 homolog 3 protein; shRNAs, Small hairpin RNAs; CAR T cell, Chimeric Antigen Receptor T Cell; 
TIGIT, T cell immunoglobulin and ITIM domain; Tim-3, T cell immunoglobulin and mucin domain-containing protein 3; PD-1, programmed cell death protein; TGF-β, 
transforming growth factor-β; Gal-9, galectin-9; TCR, T cell receptor; MHC-1, major histocompatibility complex-1.
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chemokines such as C-C motif ligand 5 (CCL5) and C-X-C motif ligand 9 (CXCL9).44 Through investigating tumor 
tissues from patients treated by Gemcitabine, Oxaliplatin, Lenvatinib, and anti-PD1 antibody (GOLP) therapy, Lu et al 
report that GZMB+ CD8+ T cell, GZMK+ CD8+ T cell and proliferating CD8+ T cell are the three most active CD8+ 
subtypes in response to GOLP treatment. Intriguingly, these three clusters share high clonal similarities, suggesting 
common origins. Further cell trajectory analysis reveals that proliferating CD8+ T cell is at a naive stage with a relatively 
high exhausted score and low cytotoxic score, while GZMK+ CD8+ T cell is terminally differentiated with the highest 
cytotoxic score and lowest exhausted score. GZMB+ CD8+ T cell fall in an intermediate stage. CD5L+ macrophage can 
promote macrophage M2 polarization.45 The interaction of CD5L+ macrophages with GZMB+ CD8+ T cells may 
contribute to their exhausted status, potentially leading to resistance to GOLP therapy in iCCA patients.46 According to 
the study carried out by Li et al, about 45.6% of their iCCA patients have been infected by hepatitis b virus (HBV). They 
report an upregulation of the expression of CD3, CD4, and CD8 in HBV infected iCCA patients, showing that their 
immune system is activated. Meanwhile, TNFSF9, which suppress the expression of IL-12 and subsequently attenuates 
the cytotoxicity of CD8+ T cells,47 is higher in HBV-negative iCCA patients. After inhibiting the expression of TNFSF9, 
there is a significant decrease in cell viability in HBV-negative iCCA organoids. The altered TME observed in HBV- 
positive iCCA patients may explain their better overall survival compared to HBV-negative patients.48

It is well established that CD8+ T cells confer significant prognostic value in BTC. A high density of CD8+ T cells, 
especially those in the tumor margin,49 correlates with improved OS in BTC patients.50 Moreover, the infiltration of PD-1 
−eomesodermin (EOMES)−CD8+ and Granzyme-B+CD8+ T cells is associated with a favorable clinical outcome in 
BTC patients. Notably, the prognostic impact of PD-1-EOMES-CD8+ T cells is predominantly observed within tumor 
areas rather than peripheries.51 As a marker of activated CD8+ T cells in ovarian cancer,52 a high level of CXCL13 
expression are found to be an indicator of “hot” TME, thus leading to a better prognosis in GBC patients receiving 
immunotherapy.53 Tissue-resident CD103+CD8+ T cells exhibit persistent antitumor effects within tumor tissues and 
may serve as prognostic predictors. Patients with higher infiltration of these T cells tend to benefit more from ICI 
therapies. This unique activity may be attributed to interactions between E-cadherin produced by cancer cells and 
CD103.54 C-reactive protein (CRP), produced by the liver in response to inflammation, negatively correlates with the 
prognosis of iCCA patients.55 The lymphocyte-to-CRP ratio (LCR), which combines lymphocyte count and CRP level, is 
validated as a prognostic marker across various cancers.56–59 Similarly, iCCA patients with unresectable tumors often 
exhibit lower LCR values along with reduced CD8+ T cell densities.60

Helper T Cell (Th Cell)
The interaction between MHC-antigen-peptide complex and T cell receptor (TCR), alongside co-stimulatory signals and 
specific cytokine milieu, drives the differentiation of naive CD4+ T cells into distinct functional subsets through 
activation of multiple signaling pathways. Once activated, Th1 cells exert cytotoxic effects on CD8+ T cells and directly 
target tumor cells by secreting interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-2. In line with their 
antitumor activity, low expression of CD4 in both the tumor center and the margin is correlated with reduced OS.61,62 

Various strategies aimed at enhancing the expression of costimulatory molecules or suppressing immune checkpoints on 
CD4+ T cells are proven effective as supplements to traditional ICIs. Listeria monocytogenes (Lm) serves as an antigen 
provider for MHC class I or II-dependent presentation, contingent on whether Lm undergoes lysosomal degradation. This 
process stimulates cytotoxic lymphocytes and promotes cell-mediated immunity.63 By deleting virulence factors inter-
nalin B and actA, the double-deficient strain L. monocytogenes ∆actA/∆inlB (LmAI) exhibits reduced off-target toxicity 
while maintaining comparable antitumor responses to wild-type Lm.64 Building upon this research, LmAIO, a derivative 
of LmAI delivering the model antigen Ovalbumin (Ova), is shown to induce significant Th1 responses, reduce the 
expression of immune checkpoint molecules on CD4+ and CD8+ T cells, and prolong survival in mice with CCA and 
Hepatocellular carcinoma (HCC) expressing Ova.65 Additionally, the CD40 agonist and mitogen-activated protein 
kinase/ERK kinase (MEK) inhibitor can also enhance the activation of CD4+ and CD8+ T cells via various 
mechanisms.66,67
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Regulatory T Cell (Treg)
The Forkhead box protein P3 (FoxP3) expressing Tregs dampen overactivated immune responses, while the crosstalk 
between Tregs and several other cells in TME can impede antitumor immune responses and further induce the 
accumulation of Tregs. Recombinant Human Signal-Regulatory Protein gamma (SIRPG) and CD200, known suppressors 
of immune responses,68,69 are upregulated in the intratumoral Tregs.70 Meanwhile, the interaction between Inducible 
T cell CO-Stimulator (ICOS) and ICOSL, pivotal in Treg accumulation,71 is notably strengthened in tumoral tissues.70 

Several other interplay between Tregs and TME is shown in Figure 2.70,72,73

Upon infiltration into the TME of BTC, Tregs demonstrate heightened expression of several transcription factors 
(TFs). Forkhead box M1 (FoxM1), a member of the Forkhead box O (FOXO) family, binds to the FoxP3 promoter, 
thereby enhancing its transcription in CCA.74 Similarly, IKZF2 increases the expression of FoxP3 and effector cytokines 
by upregulating the IL-2Rα-STAT5B pathway.75 NVP-DKY709, a selective molecular glue degrader of IKZF2, 
diminishes Treg immunosuppressive activity and restores cytokine production in exhausted T-effector cells.76 

Interferon regulatory factor 4 (IRF4) modulates genes critical for Treg differentiation and chemokine receptors expres-
sion and is more abundant in patients with advanced cancer.77 Signal transducers and activators of transcription 5A 
(STAT5A), activated by IL-2, binds to promoter and enhancer elements to induce FoxP3 expression.78 SMAD-1, 
a component of the TGF-β1 signaling pathway, facilitates Treg induction.79 Enhancer of zeste homolog2 (EZH2) 
activity, inhibitable to disrupt Treg transcriptome, is also elevated in intratumoral Tregs.80 Meanwhile, mesenchyme 
homeobox 1 (MEOX1) transduction leads to increased accessibility of multiple genes involved in immunosuppression in 
Tregs. The upregulation of the aforementioned TFs provides insights into the transcriptional and epigenetic landscape of 
tumor-infiltrating Tregs.70 The TFs upregulated in the intra-tumoral Tregs and the pathways in which they are involved 
are shown in Figure 3.74,75,78,79

Figure 2 The crosstalk between Tregs and other components of TME which is found enhanced in biliary tract cancer. The interaction between CD80/86 and CTLA-4 is 
important for the Treg-mediated inhibition of immune responses.70 Through combining to their ligands, MUC1, TGF-β1 (secreted by cancer cell) and CCL4 (secreted by 
macrophage) can lead to the accumulation of Tregs.72,73 

Note: By Figdraw. 
Abbreviations: Treg, regulatory T cell; TME, tumor microenvironment; APC, Antigen-presenting cells; CCR8, Chemokine receptor 8; EGFR, Epidermal growth factor 
receptor; TGF-β1, Transforming growth factor-β1; ICOS, Inducible T cell CO-Stimulator; MUC1, Mucin1; CTLA-4, Cytotoxic T lymphocyte-associated antigen-4; SIRPG, 
Recombinant Human Signal-Regulatory Protein gamma.
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Intra-tumoral tertiary lymphoid structures (TLSs) serve as specialized sites for T cell activation and antigen 
presentation, correlating with improved prognosis in various solid tumors.81 Conversely, peri-tumoral TLSs negatively 
impact overall survival in iCCA patients, potentially due to higher CD4+Bcl6+ follicular helper T cell (Tfh) and CD4 
+Foxp3+ Treg cell densities. Intriguingly, Treg cell frequencies within intra-tumoral TLSs escalate with increased peri- 
tumoral TLS density, suggesting a mechanism for inducing an immunosuppressive intratumoral environment.82 Deemed 
as a blocker of leukocyte associated immunoglobulin like receptor 1 (LAIR-1),83 LAIR-2 demonstrates efficacy in 
restoring exhausted CD8+ T cells in lung cancer.84 Nevertheless, LAIR-2 is predominantly expressed by Tregs and CD8 
+GZMB+ T cells in CCA, highly associated with various immune inhibitory and stimulatory markers, thereby serving as 
a marker for T cell exhaustion.85 Although Tregs accumulating at the tumor center typically signal poor prognosis in 
BTC patients,86 TregIII, one of the three Treg subtypes,87 exhibits a significant negative correlation with iCCA 
recurrence post-surgery. Higher TregIII infiltration is also linked to reduced perineural invasion.88

B Cell
B cells, activated by the stimulatory signals from antigens and co-stimulatory signals from the interaction between CD40 
and CD40L, play a crucial role in augmenting innate and adaptive immune responses through antibody production, 

Figure 3 TFs upregulated in the intra-tumoral Tregs and the pathways in which they are involved. Upon binding of IL-2 and IL-2R, Jak1 coupled to the IL-2Rβ and Jak3 on the 
IL-2Rγ will phosphorylate and activate each other. The activated Jak1 and Jak3 can in turn phosphorylate the tyrosine on the IL-2Rβ, introducing a binding site for the 
STAT5A protein. The bound STAT5A protein is activated, generating dimers or tetramers and transferring to the nucleus, increasing FoxP3 transcription.78 IKZF2 can induce 
the expression of IL-2Rα and enhance the activity of IL-2Rα–STAT5B pathway.75 TGF-β dimers can interact with TGF-βRI and TGF-βRII, inducing TGF-βRII to phosphorylate 
TGF-βRI and activating it. The activated TGF-βRI is able to phosphorylate SMAD1, which has a strong affinity for SMAD4. The phosphorylated SMAD1/SMAD4 complex 
enters the nucleus and binds to transcription promoters to induce DNA transcription, leading to the Treg accumulation.79 In addition, FOXM1 can play a similar role to 
STAT5A and SMAD1.74 

Note: By Figdraw. 
Abbreviations: TF, Transcription factor; Jak1, Janus kinase 1; STAT5A, Signal transducers and activators of transcription 5A; FoxM1, Forkhead box M1; TGF-β, Transforming 
growth factor-β; FOXM1, forkhead box protein M1.
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antigen delivery, and the release of cytokines and cytotoxic effector molecules. Early B cell Factor 1 (EBF1), involved in 
B cell differentiation, has emerged as a potential tumor suppressor in various cancers,89–92 including CCA. Oxidative 
stress is reported to decrease the expression of EBF1, possibly facilitating CCA development.93 This downregulation is 
likely mediated by DNA hypermethylation in the EBF1 promoter, with high methylation rates correlating with poorer 
prognosis.94 Elevated infiltration levels of B cells in CCA are associated with improved prognosis, and the expression of 
propronociceptin (PNOC) by B cells holds similar prognostic significance.85 Unlike T cells, the specific pathogenic role 
of B cells in BTC remains unclear. Further exploration of B cell functions and their interactions with other immune cells 
within the BTC tumor TME holds promise for extending the efficacy and durability of immunotherapy strategies.

Innate Immune Cells
Dendritic Cell (DC)
Dendritic cells (DCs), functioning as antigen-presenting cells capable of producing various cytokines and fostering 
different T cell responses against diverse pathogens, wield significant influence over both anti- and pro-tumor activities, 
profoundly impacting clinical outcomes. DCs incubated with lysates of cancer cells are capable of generating a broad 
spectrum of tumor-associated antigens (TAAs), thereby enhancing their cytotoxic potential.95 Investigations into this 
mechanism reveal promising therapeutic avenue. Honokiol, a pleiotropic compound isolated from magnolia species 
known for inducing apoptosis in cancer cells, shows potential in this context.96 DCs loaded with tumor cell lysates from 
honokiol-treated CCA cells exhibit enhanced IL-12 secretion, facilitating heightened activation of CD8+ T cells and Th 
cells.97 Furthermore, DCs pulsed with tumor lysates and transduced with adenoviruses encoding human CD40L (Ad- 
hCD40L) exhibit elevated expression of both soluble (s)CD40L and membrane-bound (m)CD40L. These engineered 
DCs also show increased levels of costimulatory markers and cytokines. Co-culturing these DCs with cytokine-induced 
killer (CIK) cells results in augmented proliferation and cytotoxicity. Interestingly, soluble CD40L appears to induce 
predominantly Th2 cytokines, whereas membrane-bound CD40L predominantly induces Th1 cytokines.98 Neoantigens 
derived from common mutations like TP53, KRAS, and RNF43 in CCA can also stimulate DCs during differentiation, 
enhancing their ability to selectively target cancer cells and activate T cells.99 Conversely, interactions between tumor 
associated macrophages (TAMs), CCA cells, and DCs via IL-10 and Transforming Growth Factor Beta receptor (TGF- 
βR) signaling contribute to reduced expression of MHC class II molecules, chemokine receptors, co-stimulatory 
molecules, and cytokines on DCs.100 Subsequent studies employing lentiviral short-hairpin RNAs to knock down 
TGF-βRII and IL-10RA mRNA in DCs have demonstrated improved enhancement of effector T cell cytotoxicity.101

Consistent with its activity in inducing an immunosuppressive TME in various tumors,102 the accumulation of 
peritumoral Plasmacytoid Dendritic Cells (pDCs) is reported as a predictor of poor prognosis in iCCA patients and 
are positively correlated with peritumoral Treg abundance.103 Moreover, the high expression of four m6A-related 
mRNAs (AIP, CEBPB, SDC1, and VPS25), associated with adverse outcomes in CCA patients, correlates with increased 
infiltration of resting DCs, suggesting a possible contribution to poor prognosis in the high m6A-related mRNA risk 
group.104 In addition, CD1a, a transmembrane glycoprotein expressed by immature DCs,105 has been linked to improved 
survival in GBC patients following surgery.106

Natural Killer (NK) Cell
NK cells are cytotoxic lymphocytes of the innate immune system with potent activity against virally infected and/or 
transformed cells via direct cell killing and production of pro-inflammatory cytokines.107 A plethora of methods to 
augment the cytotoxicity and longevity of NK cells are currently under clinical investigation. For instance, natural 
compounds are capable of sensitizing cancer cells to be susceptible to NK cells and display less side effects compared to 
traditional chemotherapy. Cordycepin, a bioactive compound from Cordyceps militaris extract, possesses anti-tumor 
properties. Suthida et al demonstrated that cordycepin upregulates mRNA expression of DR4 and DR5 on intrahepatic 
cholangiocarcinoma (iCCA) cells, enhancing the antitumor immune response and inducing NK cell cytotoxicity.108,109 

Genistein, an isoflavone derived from soybean products, is well documented for its anti-tumor effect, similarly 
upregulating DR4 and DR5 expression on iCCA cells.110
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NK cell activity can also be modulated through alternative mechanisms. MHC class I polypeptide-related sequence 
A (MICA) and MHC class I polypeptide-related sequence B (MICB) are expressed in iCCA tissues under cellular stress 
and serve as ligands for NK group 2 member D (NKG2D), pivotal for NK cell activation and subsequent cancer cell 
elimination. However, endoplasmic reticulum protein 5 (ERp5) can bind to the MICA/B α-3 domain and facilitate their 
cleavage. The monoclonal antibody 7C6 competes for binding to the MICA/B α-3 domain, thereby preventing the loss of 
cell surface MICA/B and enhancing NK cell cytotoxicity in peripheral and tumor-infiltrating NK cells from iCCA 
patients.111,112 Globo H ceramide (GHCer), a tumor-associated carbohydrate antigen, promotes tumor angiogenesis and 
immune evasion.113 Existing research demonstrate that high Globo H expression is correlated with poor clinical 
outcomes in rats bearing iCCA. After the administration of anti-Globo H VK9, boosted cytotoxicity of NK cells and 
suppressed tumor growth are witnessed.114 High mesenchymal–epithelial transition (MET) expression is discovered in 
53.1% (135 of 254) of resected samples from CCA patients in a Chinese cohort study. High MET expression is also 
found to be correlated with short OS in CCA patients.115 Therefore, CAR-NK cells containing humanized single-chain 
antibody fragment (scFv) targeting MET are designed and has revealed its potent activity to kill specific cancer cells.116 

In addition, Fukuda et al’s immunohistochemical analysis reveals that high endogenous expression of CXCL9, 
a chemoattractant for activated NK cells, is associated with favorable postoperative survival in iCCA patients.117

Neutrophil
Neutrophils, as versatile phagocytes involved in both tumor-promoting and tumor-suppressing roles, play complex and 
evolving roles in cancer biology. Zhou et al utilize whole-exome sequencing to identify SLIT2 mutations specifically in 
relapsed intrahepatic iCCA, where SLIT2 inactivation enhances neutrophil chemotaxis and contributes to metastasis.118 

In early GBC, upregulation of proteins associated with neutrophil degranulation (MPO, PRTN3, S100A8) is observed, 
while proteins involved in extracellular matrix (ECM) organization (COL14A1, COL1A2, COL6A1) are downregulated. 
This suggests that neutrophil infiltration is promoted in early GBC stages, with neutrophil degranulation facilitating ECM 
degradation and cancer cell invasion.119 Interaction between GBC cells and neutrophils increases the expression of 
OLR1, a gene mediating oxidized low-density lipoprotein (oxLDL) uptake in neutrophils. This uptake leads to lipid 
peroxidation and ferroptosis in neutrophils, enhancing their pro-metastatic effects.120,121 Multiplex immunofluorescent 
staining of iCCA tissues reveals co-distribution and strong correlation in local densities between tumor-associated 
neutrophils (TANs) and TAMs. Co-cultured TANs and TAMs secrete Oncostatin M (OSM) and IL-11, which promote 
iCCA tumor growth and metastasis. TANs express TAM chemoattractants (CCL2, CCL5, CSF1), while TAMs express 
chemokines (CXCL8, CSF3) that induce TAN infiltration, suggesting reciprocal crosstalk between these cell types.122

Sciellin (SCEL), a precursor of the cornified envelope, is demonstrated to be overexpressed in GBC tissues and to 
enhance carcinogenesis both in vitro and in vivo by stabilizing EGFR expression. Improved EGFR expression also 
induce the generation of IL-8, leading to the release of chromatin and granular proteins from polymorphonuclear 
neutrophils (PMN) and the formation of neutrophil extracellular traps (NETs), an extracellular fibrillar matrix that 
promotes the motility and migration ability of GBC cells.123,124 Meanwhile, it is found that the binding of platelets to 
cancer cells can also increase the NET formation in iCCA,125 which may consequently lead to adverse prognostic effects 
in CCA patients.126 Through its interplay with αV integrin, NET can increase the activity of NFκB, and consequently 
enhance the expression of vascular endothelial growth factor (VEGF), inducing the proliferation, angiogenesis, and 
metastasis in CCA. Interestingly, It is NET-DNA, rather than NET protein, that can induce tumor growth.127

Neutrophil infiltration levels in tumor regions negatively correlate with OS in patients with GBC post- 
cholecystectomy.128 The neutrophil-to-lymphocyte ratio (NLR), reflecting circulating blood neutrophil/lymphocyte 
counts, emerges as a promising prognostic factor for tumor metastasis and surgical infectious complications in BTC 
patients.129–132 Low albumin levels are also associated with significantly shortened survival, suggesting albumin as 
a potential prognostic biomarker for BTC patients.133 To further optimize NLR’s efficiency as a biomarker, the cachexia 
index (CXI), incorporating skeletal muscle index (SMI), albumin levels, and NLR, has been developed and shown to 
independently predict OS.134 Meanwhile, multiple NLR-based models have been devised to predict long-term outcomes 
in BTC patients.135–138
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Macrophage
Macrophages, as pivotal phagocytic innate immune cells, exhibit distinct polarization states into pro-inflammatory M1 
macrophages or anti-inflammatory M2 macrophages. During cancer progression, M1 TAMs initially dominate but are 
gradually supplanted by M2 TAMs.139 Therapeutic strategies aimed at reducing M2 TAM polarization have thus emerged 
as promising anti-cancer approaches. Increased expression of secreted midkine (MDK) in GBC with epidermal growth 
factor receptor (ErbB) mutations promotes M2 TAM polarization via crosstalk with Low-Density Lipoprotein Receptor- 
Related Protein 1 (LRP1), highlighting MDK as a potential immunotherapy target.140 Yes-associated protein (YAP) is 
a transcriptional regulator which can activate various oncogenic pathways/target genes.141 Targeting at YAP, verteporfin 
is identified to induce a higher percentage of M1 TAMs.142 Meanwhile, IGF2BP3 and leptin, involved in the GBC cells- 
derived exosomes, are also found to increase the proportion of M2-polarized TAMs.143,144 Furthermore, the TME of 
KRAS-mutated BTC is characterized by a higher M1 macrophage activation and interferon-γ expression.145 The 
metabolic pathways of M1 and M2 macrophages are different. M1 macrophages prefer glycolytic metabolism, while 
M2 macrophages are in fond of mitochondrial respiration.146 Immune responsive gene 1 (IRG1), encoding itaconate, can 
break the TCA cycle and restrain M2 macrophage polarization.147

Interactions between TAMs and the TME critically influence tumor progression. Yang et al demonstrate that TGFβ1 
derived from M2 macrophages upregulates the expression of aPKCι, which consequently activates NF-κB signaling 
pathway, leading to epithelial–mesenchymal transition (EMT) and immunosuppression in CCA. Reciprocally, macro-
phages are recruited by CCA cells via the secretion of CCL5.148 It is revealed that the Macrophage migration inhibitory 
factor (MIF) can promote cancer metastasis and progression.149 After the application of ICIs, MIF-CD74 signaling 
between cancer cells and TAMs is found to be enhanced. In addition, M1 gene signatures are found to be enriched in ICIs 
treatment-naïve TAMs, whereas M2 gene signatures and SPP1+ TAMs, which is reported to be correlated with poor 
prognosis, are enriched in TAMs after ICIs treatment.150,151 These findings may help explain the limited efficacy of 
immune checkpoint inhibitors (ICIs) in iCCA. High-throughput RNA-sequencing by Luo et al identifies elevated miR- 
183-5p in exosomes from iCCA cells, inhibiting phosphatase and tensin homolog (PTEN) to increase PD-L1 expression 
on macrophages.152 Involved in the exosomes from TAMs, Circ_0020256 is also reported to promote the proliferation, 
migration and invasion of cancer cells by interacting with its intra-cellular microRNA target, miR-432-5p.153

As a main cause of malignant biliary diseases, Pancreaticobiliary reflux (PBR) is featured by a high-amylase bile.154 

To figure out how high-amylase bile promotes CCA progression, Wu et al measured the concentration of inflammatory 
factor in the tumor tissue after treatment of high-amylase bile and report an upregulation of IL-8 derived from 
macrophage.155 IL-8 has been demonstrated to induce metastasis and tumor growth in iCCA via activating PI3K/AKT 
signaling pathway.156 From chronic cholecystitis to GBC, the expression of Olfactomedin 4 (OLFM4) is gradually 
upregulated in the tumor tissue and is negatively correlated with survival in GBC patients. OLFM4 depletion can 
sensitize GBC cells to cis in vivo.157 Via ligand-receptor pairs such as ICAM1-integrin, CCL15-CCR1 and AREG- 
MMP9, OLFM4+epithelium can interact with TAM intensively. Furthermore, OLFM4 is demonstrated to induce the 
expression of PD-L1, thus impairing the function of T cells.158 Dermatopontin (DPT) is an extracellular matrix (ECM) 
protein rich in tyrosine. It is established that the expression of DPT is positively associated with the immune infiltration 
and the survival of CCA patients. The further study reveals DPT’s activity to stimulate macrophages to release CCL19, 
which may increase the immune infiltration in CCA TME.159

Myeloid-Derived Suppressor Cell (MDSC)
As stated by their name, MDSCs are immature myeloid cells with immunosuppressive activities. Guided by cytokines 
such as IL-6 and GM-CSF, MDSCs presence in resectable tumor regions is correlated with the aggressiveness of BTCs. It 
is reported that Anti-CSF-1R, a TAM blockade, fails to delay CCA progression, likely due to the compensatory 
upregulation of the expression of granulocytic MDSC (G-MDSC) chemoattractant CXCL2 by cancer associated 
fibroblasts (CAFs). Combined inhibition of MDSCs and TAMs has proven significantly more effective than monotherapy 
in subsequent studies.160 Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), expressed predominantly on 
immune cells, can induce cell death by correlating with its receptor such as DR4 and DR5.108 It is reported that TRAIL 
reduces the abundance of MDSCs by promoting MDSCs apoptosis in breast cancer.161 However, MDSCs in CCA are 
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resistant to TRAIL-mediated apoptosis due to increased expression of cellular FLICE inhibitory protein, an inhibitor of 
proapoptotic TRAIL signaling. Moreover, TRAIL can enhance the activation of NF-κB, thus promoting proliferation of 
MDSCs in CCA.162 MDSC recruitment by CCL2 from CAFs is another mechanism identified. Both the knockdown of 
fibroblast activation protein (FAP) and high tumor clostridia abundance are able to impair this mechanism.163,164 

Additionally, CAFs are demonstrated to promote the activity of MDSCs through the secretion of IL-6 and IL-33. 
Hyperactivated 5-lipoxygenase (5-LO) metabolism is mediated by these two cytokines in MDSCs. 5-LO consequently 
induces the synthesis of leukotriene B4 (LTB4), which interacts with leukotriene B4 receptor type 2 (BLT2) to facilitate 
the iCCA tumor progression, emphasizing this pathway as a potential target for immunotherapy.165

Cancer Associated Fibroblast (CAF)
Mainly originating from hepatic stellate cells (HSCs) and portal fibroblasts (PFs) in BTC,166,167 cancer associated 
fibroblasts (CAFs) are a very heterogeneous group of cells. The myofibroblastic CAFs (myCAFs) and the inflammatory 
CAFs (iCAFs), the two most abundant CAF subtypes in the CCA TME, are demonstrated to promote the progression of 
iCCA through distinct mediator. An upregulation of hyaluronan synthase 2 (Has2) are witnessed in myCAFs, while iCAFs 
can modulate the growth of carcinoma via the interplay between hepatocyte growth factor (HGF) and mesenchymal to 
epithelial transition factor.168 Intriguingly, according to the transcriptional similarity between myCAFs and iCAFs, iCAFs 
might represent an inflamed immunologically activated population of myCAFs rather than an independent subtype.169

As a major cellular component of desmoplastic stroma of BTC, CAFs are activated myofibroblasts that express 
a wide range of factors, thus playing a pivotal role in BTC growth and progression.170 Alpha smooth muscle actin (α- 
SMA) is one of the specific markers of CAFs. Accordingly, patients with high α-SMA expression in the tumor stroma 
have shorten survival.171 Due to strong cell–cell interaction between CAFs and other cell types in TME, the number of 
CAFs and other cells can also help predict the prognosis of BTC patients.169 Expressed by CAFs, transgelin-2 (TAGLN2) 
is witnessed to be upregulated in the serum of CCA patients and can be used as a diagnostic marker for BTC. The 
silenced TAGLN2 expression sensitizes BTC cells to gemcitabine and other chemotherapeutic drugs.172 Furthermore, 
high expression of IL-33 in CAFs is correlated with better two-year survival of patients with BTC,173 while the 
matricellular protein periostin is a poor prognostic factor in post-resected BTC.174

Yan et al find that CAF-derived Platelet-derived growth factor (PDGF)-BB is a regulator of lymph node metastasis in 
CCA. Via correlating with its receptor PDGFR-β on lymphatic endothelial cells (LECs), PDGF-BB can upregulate 
lymphangiogenesis. Anti-PDGF-BB antibodies and PDGFR inhibitor STI571 significantly inhibit the activation of 
GSK3β and P65, leading to the suppression of tumor growth, revealing PDGF-BB/PDGFR-β-GSK3β/P65 axis as 
a potential therapeutic target in CCA.175 CXCR4 is increased tremendously in CAFs, and this overexpression is reported 
to contribute to the resistance to bortezomib of CCA tissue. Moreover, the combination of CXCR4 and bortezomib 
sensitizes CCA to anti-PD-1 treatment in the further study.176 Polo-like kinase 1 (PLK1)’s ability to phosphorylate 
glucose-6-phosphate dehydrogenase (G6PD) and to transform hepatic stellate cell into CAFs phenotype allow it plays 
a dual role in the regulation of both tumor cells and CAFs. The sigma receptor, which is increased in tumor cells and 
CAFs, has high affinity with anisamide-derived ligands, making it an ideal target for targeted drug delivery system 
loaded with PLK1 inhibitor.177,178 Thrombospondin 4 (TSP-4) is highly expressed by CAFs in GBC. TSP-4 can bind to 
its receptor on cancer cells to induce the phosphorylation of heat shock factor 1 (HSF1), which in turn upregulate the 
expression of TGF-β1 to promote the transdifferentiation of Peritumoral fibroblasts (PTFs) into CAFs, thus forming 
a positive feedback loop. This discovery provides a potential therapeutic target for GBC patients.179

Via single-cell transcriptomes analysis, Lewinska et al discovered that iCAF are responsible for upregulated Lysyl 
oxidase (LOX) expression in CCA. LOX is copper-dependent ECM protein which promote collagen and elastin cross-
linking, leading to increased ECM stiffness.180 CCA cells exposed to LOX show a significantly decreased expression of 
apoptotic genes and an increased cell migration. The interaction between LOX and mitochondrial transcription factor 
TFAM contributes to the increase in mitochondrial fitness, which in turn promote the metastasis of CCA. Accordingly, 
LOX is correlated with poor survival in CCA patients. Moreover, LOX overexpression is also found in CCA early lesions 
and livers of patients with primary sclerosis cholangitis (PSC), indicating that LOX is involved in CCA initiation.181 

Although both cancer-promoting CAFs (pCAFs) and cancer-restraining CAFs (rCAFs) have been reported in several 
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cancers so far,182 only pCAFs have been found in CCA. Hu et al measure the CAFs’ effects on the tumor progression by 
transwell assays and demonstrate the existence of both subtypes of CAFs in CCA. Intriguingly, pCAFs and rCAFs 
regulate the protein stability of polycomb group ring finger 4 (PCGF4) in a reversed way to affect the migration of the 
CCA. pCAFs activate the IL-6/phosphorylated STAT3 pathway to increase the stability of PCGF4, while rCAFs trigger 
the proteasome-dependent degradation of PCGF4.183

ICI Combination Trials
In the Phase II, multi-cohort, non-randomized KEYNOTE-158 study, the efficacy of pembrolizumab, a PD-1 inhibitor, is 
assessed in 104 patients with previously treated BTC. The mOS is 7.4 months, and the mPFS is 2 months, with a poor 
objective response rate (ORR) of 5.8%. This study reported a patient with grade 5 renal failure and no patient with grade 
4 treatment-related adverse events (TRAE).184 The similar outcomes are shown in several other studies applying ICI 
monotherapy.34,185 Moreover, ICI monotherapy and immune-based combinations may lead to increased risk of all-grade 
and grade 3–4 hypertransaminasemia.186 These disappointing results prompt researchers to explore combination therapies 
involving ICIs and other drugs with lower TRAE incidence. Trials of ICI use in treatment to biliary tract cancers are 
shown in Table 1.

Table 1 Trials of Immune Checkpoint Inhibitor (ICI) Use in Treatment to Biliary Tract Cancers

Study Name Regimen Mechanism Phase Patient 
Number

PFS (m) OS (m) Report 
Year

Citation Line of 
Therapy

Immune checkpoint inhibitors monotherapy

KEYNOTE-158 Pembrolizumab PD-1 2 104 2 7.4 2020 [33] 2nd line

KEYNOTE-028 Pembrolizumab PD-1 1b 24 1.8 5.7 2020 [33] 2nd line

NCT02829918 Nivolumab PD-1 2 54 3.68 14.24 2020 [34] 2nd line

PD-1/PD-L1 plus CTLA-4

NCT03101566 Nivolumab PD-1/CTLA-4 2 33 3.9 8.2 2022 [187] 1st line

Ipilimumab

NCT01938612 Durvalumab PD-L1/CTLA-4 2 65 / 10.1 2022 [188] 2nd line

Tremelimumab

NCT03482102 Durvalumab PD-L1/CTLA-4 1 Ongoing / / / / 2nd line

Tremelimumab

Radiotherapy

PD-1/PD-L1 plus TGFβR

NCT02699514 Bintrafusp alfa PD-L1/TGFβRII 1 30 2.5 12.7 2020 [189] 2nd line

NCT03833661 Bintrafusp alfa PD-L1/TGFβRII 2 159 1.8 7.6 2023 [190] 2nd line

NCT04066491 Bintrafusp alfa PD-L1/TGFβRII 2 Terminated / / 2021 / 1st line

GemCis

PD-1/PD-L1 plus VEGFR

LEAP-005 Lenvatinib PD-L1/VEGFR 2 31 6.1 8.6 2021 [191] 2nd line

Pembrolizumab

NCT03895970 Lenvatinib PD-L1/VEGFR 2b 32 4.9 11 2020 [192] 2nd line

Pembrolizumab

IMbrave-151 Atezolizumab PD-L1/VEGFR 2b 79 8.3 / 2023 [193] 1st line

Bevacizumab

GemCis

NCT03892577 Toripalimab PD-1/VEGFR 2 20 13.7 10.8 2023 [194] 1st line

Lenvatinib

Radiotherapy

(Continued)
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Combination of PD-1/PD-L1 and CTLA-4 Blockade
Due to the joint effects PD-1/PD-L1 and CTLA have on Effector T cells, Tregs, NK cells and macrophages, combination 
of inhibitors of these two immune checkpoints is expected to improve the poor prognosis of BTC patients. The phase II 
study (NCT03101566) of nivolumab and ipilimumab combination demonstrates improved mOS and mPFS in patients 
with advanced BTC. Of interest, the likelihood of survival at 2 years in this trial is significantly higher than in patients 
receiving chemotherapy alone. Treatment is feasible with no grade 3 or higher hematologic TRAE reported and the most 
common nonhematologic TRAE are Elevated aspartate aminotransferase and alanine aminotransferase.187 The low 

Table 1 (Continued). 

Study Name Regimen Mechanism Phase Patient 
Number

PFS (m) OS (m) Report 
Year

Citation Line of 
Therapy

ICI plus chemotherapy

NCT03046862 Durvalumab PD-L1 2 30 13 15 2020 [195] 1st line

Tremelimumab

GemCis (BMC)

NCT03046862 Durvalumab PD-L1 2 45 11 18.1 2020 [195] 1st line

GemCis (3C)

NCT03046862 Durvalumab PD-L1 2 46 11.9 20.7 2020 [195] 1st line

Tremelimumab

GemCis (4C)

TOPAZ-1 Durvalumab PD-L1 3 341 7.2 12.8 2022 [32] 1st line

GemCis

KEYNOTE-966 Pembrolizumab PD-1 3 533 6.5 12.7 2023 [196] 1st line

GemCis

JS001-ZS-BC001 Toripalimab PD-1 2 48 7 16 2021 [197] 1st line

Gem

S-1

ChiCTR2000036652 Sintilimab PD-1 2 30 5.1 15.9 2023 [198] 1st line

GemCis

IMMUCHEC Durvalumab PD-1/CTLA-4 2 22 2.75 7.38 2022 [199] 1st line

Tremelimumab

Gem (armA)

IMMUCHEC Durvalumab PD-1/CTLA-4 2 22 5.98 12.32 2022 [199] 1st line

Tremelimumab

GemCis (arm B)

IMMUCHEC GemCis (arm C) / 2 35 8.7 16.93 2022 [199] 1st line

IMMUCHEC Durvalumab PD-1/CTLA-4 2 30 8.13 22.73 2022 [199] 1st line

Tremelimumab

GemCis (arm D)

IMMUCHEC Durvalumab PD-1 2 29 6.37 15.3 2022 [199] 1st line

GemCis (arm E)

Other Strategies

NCT02375880 DKN-01 DKK-1 1 47 8.7 / 2020 [200] 1st line

NCT04057365 Nivolumab PD-1/DKK-1 2 Ongoing / / / / 2nd line

DKN-01

NCT03937895 Allogeneic NK Cell PD-1/NK Cell 1/2a 40 4.1 / 2022 [201] 2nd line

Pembrolizumab

NCT05023109 Tislelizumab PD-1/TIGIT 2 Ongoing / / / / /

Ociperlimab

GemCis

Abbreviations: PD-1, programmed cell death protein-1; PD-L1, programmed cell death-ligand 1; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; VEGFR, vascular 
endothelial growth factor; TGFβ-RII, transforming growth factor β receptorII; DKK-1, dickkopf-related protein 1; TIGIT, T cell immunoglobulin and ITIM domains; GemCis, 
cisplatin-gemcitabine; NK Cell, natural killer cell; ICI, immune checkpoint inhibitor; OS, overall survival; PFS, progression-free survival.
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TRAE incidence of this combination is also confirmed in the Phase I trial (NCT01938612).188 Recently, a phase II study 
investigating the combination of Tremelimumab plus Durvalumab with Radiation (NCT03482102) is ongoing.

Combination of ICI and Transforming Growth Factor Beta Receptor (TGFβR)
Bintrafusp alfa, the first bifunctional fusion protein comprising the extracellular domain of TGF-βRII and a PD-L1 
blocker, is expected to revolutionize BTC treatment. A phase I study (NCT02699514) reports its promising antitumor 
activity in 30 previously treated patients. Importantly, five patients have responses lasting over 12.5 months, and 
responses are observed even in patients with immune-desert and immune-excluded TME, highlighting the significant 
value of bintrafusp alfa.189 These results are further verified In the following phase II study (NCT03833661) including 
159 patients.190 Unfortunately, the phase II/III study (NCT04066491) evaluating bintrafusp alfa in combination with 
GemCis as a first-line treatment is terminated.

Combination of ICI and Vascular endothelial growth factor receptor (VEGFR) 
Blockade
The combination of ICI and VEGFR inhibitors is highly anticipated in the treatment of advanced BTC due to their 
potential to reprogram the immunosuppressive TME into an immunostimulatory one.202 In the ongoing phase II LEAP- 
005 study, the durable efficacy of lenvatinib plus pembrolizumab is observed in 31 patients previously treated for BTC. 
Encouraged by the promising results, the study enrollment is expanded to include 100 patients.191 Patients receiving the 
same therapy report a much higher ORR in another phase IIb study (NCT03895970), probably due to a high percentage 
of patients who receive two or more anticancer treatments previously in this study.192 To investigate the combination of 
PD-L1 and VEGF inhibition with chemotherapy as a first-line treatment for BTC, the phase II double-blind, placebo- 
controlled IMbrave-151 trial randomly assigns 162 participants to receive bevacizumab plus atezolizumab and GemCis 
or placebo plus atezolizumab and GemCis. The bevacizumab group shows a superior mPFS.193 The feasibility of 
combining toripalimab and lenvatinib with radiotherapy (RT) is evaluated in the NCT03892577 clinical trials. This 
study randomizes BTC patients into the RT group or non-RT (NRT) group, demonstrating significant benefits for patients 
receiving RT. However, patients treated with RT have a higher incidence of Grade ≥3 treatment-related adverse events 
(TRAEs).194

Combination of ICI and Chemotherapy
Through immunogenic cell death (ICD) and directly reduction of immunosuppressive cells,203,204 chemotherapy is 
proven to be able to reach a better result in treatment to many malignancies, including lung cancer,205 breast 
cancer,206 nasopharyngeal cancer,207 gastric cancer208 and urothelial cancer.209 Via the application of GemCis combined 
with anti-PD-1 and anti-CTLA-4 in orthotopic murine models of iCCA, Chen et al discover that GemCis induce effector 
CD8+ T cell recruitment by the normalization of iCCA vasculature, which is caused by proangiogenic factors from 
cancer cells killed by GemCis, thus enhancing the antitumor effect of ICI.210

In a phase II study conducted in South Korea, 121 advanced BTC patients are randomly divided into three cohorts: in 
the biomarker cohort (BMC) to receive GemCis, followed by GemCis, durvalumab and tremelimumab; in the 3 combo 
cohort (3C) to receive GemCis and durvalumab; in the 4 combo cohort (4C) to receive GemCis, durvalumab, and 
tremelimumab. Amazing benefits are observed in all three cohorts. The most common Grade ≥3 TRAEs are neutropenia 
and anemia.195 This study lays the groundwork for subsequent phase III trials.

KEYNOTE-966, the second phase III study investigating ICI plus chemotherapy treatment for BTC following 
TOPAZ-1, enrolls 1069 patients at 175 medical centers worldwide. Among all the participants, 533 receive pembroli-
zumab plus GemCis and 536 receive placebo plus GemCis between 2019 and 2021. The efficacy boundary for 
a statistically significant overall survival benefit for the pembrolizumab group is met in this study. The most common 
TRAEs are decreased neutrophil count and anemia. Of note, an absence of the relationship between PD-L1 expression 
and outcomes is observed in both KEYNOTE-966 and TOPAZ-1,196 which is also reported in other studies.195,211
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The safety and efficacy of toripalimab in combination with gemcitabine plus S-1 are assessed in the single-arm, phase 
II JS001-ZS-BC001 study in patients with advanced BTCs. Of the 48 treatment naive patients with BTCs, ORR is 27.1%, 
the mPFS is 7.0 months and the mOS is 16.0 months. The activation of PI3K pathway may associate with shorter PFS in 
this research.197

In a single-arm, phase II trial (ChiCTR2000036652), 30 BTC patients receive sintilimab plus GemCis as a frontline 
treatment. The presence of gene alteration in homologous recombination repair (HRR) pathway might bring additional 
benefits to patients in this study, compared to the wild-type group. Differential expression gene enrichment between 
responders and non-responders is mainly concentrated in cytokine–cytokine receptor interaction and chemokine signaling 
pathways. High levels of TAMs are associated with significantly shorter survival outcomes,198 consistent with other 
studies.212

To determine the efficacy of the combination of durvalumab (D) and tremelimumab (T) in addition with Gem or 
GemCis, the IMMUCHEC study, which includes five arms, is conducted. The trial interventions: arm A (n=22): D, T and 
Gem; Arm B (n=22): D, T and GemCis (n=35); Arm C (n=35): GemCis; Arm D (n=30): D, T and GemCis; Arm 
E (n=29): D and GemCis. The omission of Cis results in inferior outcomes: the ORR is only 4.6% in arm A, while it is 
18.2% and 26.7% in arm B and D. Regimen B in arm D seems to have some benefits to patients, with higher mPFS and 
mOS compared with arm B. The incidence of Grade ≥3 TRAE in both arms is almost unanimous.199

Other Strategies
Dickkopf-1 (DKK1), a secreted WNT signaling modulator, can promote tumor growth by disabling antitumor cells. It is 
found that DKN-01, an inhibitor of DKK1, reduces tumor growth in mice with CCA.213 The feasibility and efficacy of 
DKN-01 is also demonstrated in several other tumors.214,215 In a phase I study, 47 BTC patients receive DKN-01 plus 
GemCis. This therapy is well tolerated by participants and is consistent with the toxicity profile of GemCis. It is 
noteworthy that improved outcomes are associated with biomarkers of angiogenesis inhibition and reduced inflammation. 
However, this combination fails to show an additional activity beyond historically reported efficacy of GemCis.200 To 
further explore the antiangiogenic and immunomodulatory activity of DKN-01, the phase II study (NCT04057365) 
investigating Nivolumab plus DKN-01 is currently ongoing.

Based on the previous finding that allogeneic NK cells (SMT-NK) show cytolytic activity against CCA in mice216 and 
clinical trial investigating SMT-NK in patients with lung cancer,217 The phase I and IIa study (NCT03937895) is carried 
out. In this study, SMT-NK plus pembrolizumab are given to 40 patients. Data from the 23 patients who can be obtained 
efficacy evaluation for highlight its therapeutic potential.201 Meanwhile, ociperlimab, a TIGIT inhibitor, in combination 
with tislelizumab and GemCis, are being tested in an ongoing phase II trial (NCT05023109).

Biomarkers for ICI Therapy
Based on the KEYNOTE-028 clinical trial, patients with high tumor mutation burden (TMB) and high PD-L1 expression 
may benefit more from ICI therapy.218 The first study exploring the correlation between genomic characteristics and 
immunotherapy response in BTC is carried out by Li et al. In their study, genetic mutations of LRP1B show higher TMB 
and predict for better immunotherapy response, which is in line with another multicenter analysis involving multiple- 
tumor types.219 Better PFS is also discovered in patients with ERBB2 and PKHD1 alterations. However, the functional 
significance of ERBB2 missense mutations remained unclear, and ERBB2 mutations are higher in patients with worse 
survival in another study.220 Furthermore, Chromosome arm-level somatic copy-number alterations (SCNAs) can also 
affect the response to immunotherapy. 19q amplification and 9p deletion are associated with poor prognosis in this 
research.221 KRAS, correlated with poor prognosis in patients treated with ICI, is one of the most common mutations in 
BTC.220 It is also found that patients with both KRAS mutation and PD-L1 positivity have longer PFS than patients with 
KRAS mutation and PD-L1 negativity. Interestingly, this finding is not discovered in patients without KRAS mutation.222 

Fatty acid-binding protein 1 (FABP1) is reported to induce the uptake of fatty acids to mediate lipid metabolism of cancer 
cells during metastasis.223 The expression of FABP1 is significantly higher in direct liver invasion tumor than in primary 
tumor of GBC and is associated with lymph node metastasis and OS.224 The stem cell marker octamer-binding 
transcription factor 4 (OCT4) maintains the pluripotent properties of embryonic stem cells and is demonstrated to induce 
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chemoresistance in CCA.225 Compared with patients with no circulating tumor cell (CTC) or patients with OCT4-CTC, 
patients with OCT4+CTC have a higher chance of developing lymph node metastases and a worse survival.226 Moreover, 
CD8+ T cell infiltration, NLR, cutaneous TRAEs, expression of immune checkpoint and DPT can also be used to predict 
the efficacy of ICI in BTC.159,220,227–230

Future Directions and Conclusion
BTCs are rare and devastating solid tumors characterized by a highly heterogeneous TME comprising adaptive and 
innate immune cells. Due to the typically asymptomatic nature of BTC, there is significant variability in patient responses 
to immunotherapy, highlighting the challenge of developing personalized treatment strategies. Researchers can use 
molecular biology, genetics, bioinformatics, and other technologies to explore tailored treatment approaches based on 
specific gene expressions or mutations. Although the roles of immune cells in tumor progression were previously 
believed to have fixed positive or negative impacts, it is increasingly evident that their exact functions within the 
tumor microenvironment are influenced by various factors, such as TME crosstalk and tumor stage. It is feasible to 
employ single-cell sequencing to explore the phenotype and functional characteristics of different immune cell types 
within BTC tissues. We can also collect and analyze clinical samples from BTC patients, such as tissue biopsies or blood 
samples. Analyzing immune cell types, functional states, and levels of immune suppression factors in these samples 
provides insights into the immune status of BTC patients and its relationship with disease progression and treatment 
responses. While BTC often exhibit resistance to immune ICI monotherapy, combination therapies, which combine 
immunotherapy with emerging treatment modalities such as targeted therapy or gene therapy to form comprehensive 
treatment strategies, could offer BTC patients more treatment options and opportunities. To find the optimal combination, 
we should conduct preclinical studies to elucidate tumor microenvironment changes and potential resistance mechanisms 
when combining therapies. Clinical trials are needed to help determine treatment sequences, dosing schedules, and 
potential synergistic effects in the following research. Furthermore, identifying biomarkers for prognosis and treatment 
response in BTC patients is a critical research direction. Biomarker discovery can help identify patient populations best 
suited for immunotherapy, thereby advancing personalized treatment strategies. In order to find powerful biomarkers, it is 
crucial to collect and analyze biological samples from clinical patients, such as tissue biopsies or serum samples. By 
comparing immune therapy treatment responses and biomarker expressions in different patient populations, potential 
biomarkers associated with treatment response can be identified. Meanwhile, combining big data and bioinformatics 
analysis will help us integrate information from different sources, discover new biomarker candidates, and validate their 
potential value in immunotherapy. However, Immunotherapy can induce immune-related adverse reactions such as 
immune-related hepatitis. As a result, focusing on optimizing treatment protocols to minimize adverse effects and 
identifying more effective management strategies is important. Currently, immunotherapy for BTC remains in the 
exploratory stage. Over the next five years, more clinical trials animal model studies will be necessary to verify its 
effectiveness and safety across different patient groups, particularly exploring its potential in advanced-stage BTC.

Overall, the future development of immunotherapy for BTC will depend on deeper understanding of immune 
mechanisms, which may inspire researchers to invent new combination therapies with minimized adverse effects. 
Patients can be treated by personalized treatment strategies targeting at specific gene expressions or mutations. Their 
response to immunotherapy will be predicted by measuring the expression of biomarkers. With advancements in 
technology and theory, we anticipate immunotherapy to play an increasingly important role in the treatment of the 
exquisitely heterogeneous BTC, providing new hope and choices for patients.
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