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Abstract: The objective of this study was to investigate the use of cationized Pleurotus 

eryngii polysaccharide (CPEPS) as a nonviral gene delivery vehicle to transfer plasmid DNA 

 encoding transforming growth factor beta-1 (pTGF-β1) into mesenchymal stem cells (MSCs) 

in vitro. Crude P. eryngii polysaccharide was purified, and then cationized by grafting sper-

mine onto the backbone of the polysaccharide. Agarose gel electrophoresis, transmission 

electron microscopy, and a Nano Sense Zetasizer (Malvern Instruments, Malvern, UK) were 

used to characterize the CPEPS-pTGF-β1 nanoparticles. The findings of cytotoxicity analysis 

showed that when the nanoparticles were formulated with a CPEPS/pTGF-β1 weight ratio 

$ 10:1, a greater gel retardation effect was observed during agarose gel electrophoresis. The 

CPEPS-pTGF-β1 nanoparticles with a weight ratio of 20:1, respectively, possessed an average 

particle size of 80.8 nm in diameter and a zeta potential of +17.4 ± 0.1 mV. Significantly, these 

CPEPS-pTGF-β1 nanoparticles showed lower cytotoxicity and higher transfection efficiency 

than both polyethylenimine (25 kDa) (P = 0.006, Student’s t-test) and LipofectamineTM 2000 

(P = 0.002, Student’s t-test). Additionally, the messenger RNA expression level of TGF-β1 in 

MSCs transfected with CPEPS-pTGF-β1 nanoparticles was significantly higher than that of 

free plasmid DNA-transfected MSCs and slightly elevated compared with that of Lipofectamine 

2000-transfected MSCs. Flow cytometry analysis demonstrated that 92.38% of MSCs were 

arrested in the G1 phase after being transfected with CPEPS-pTGF-β1 nanoparticles, indicat-

ing a tendency toward differentiation. In summary, the findings of this study suggest that the 

CPEPS-pTGF-β1 nanoparticles prepared in this work exhibited excellent transfection efficiency 

and low toxicity. Therefore, they could be developed into a promising nonviral vector for gene 

delivery in vitro.
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Introduction
Gene therapy has been well defined as a strategy for transferring nucleic acids, such 

as therapeutic DNA, antisense oligonucleotides, and small interfering RNA, to the 

target tissues or cells to correct or supplement the defective genes that are responsible 

for disease development.1–4 The ideal gene delivery system must be able to protect the 

nucleic acid from many types of degrading systems such as DNA-degrading enzymes 

and lysosomes,5 in order to penetrate the cell membrane and gain entry into the target 

cells, and to promote efficient gene expression. The system must also possess specific 

properties including biocompatibility, biodegradability, nontoxicity, nonimmunogenic-

ity, and stability, during storage and treatment.1,6 However, the lack of safe and efficient 

vectors for DNA delivery is currently a major hurdle for the success of gene therapy. 
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Gene delivery systems can be classified into viral and non-

viral systems.7 Despite the fact that viral gene carriers are 

widely employed in clinical treatments due to their high trans-

fection efficiency and long-term gene expression,8,9 there are 

several limitations that impede their applications, including 

immunogenic properties and the potential to cause mutational 

infection and toxic side effects.10 Nonviral gene vectors have 

emerged as a promising alternative to viral vectors because 

they offer such advantages as low immunogenicity, increased 

biological safety, the ability to deliver large genes, excellent 

flexibility in their building block structures, and the possibil-

ity of large-scale production at a reasonable cost.11,12

As the leading nonviral gene vectors, cationic polymers 

can form complexes with the negatively charged nucleic acids 

so that large pieces of these nucleic acids can be condensed 

to nanometer-sized particles. This promotes the interac-

tion of cationic polymers with the negatively charged cell 

membrane, which protects the incorporated nucleic acids 

in the complex from many types of degrading systems.13,14 

A large number of cationic polymers have been designed 

as gene carriers, such as cationized gelatin,15 poly(l-lysine) 

(PLL) polymers,16–18 polyethylenimine (PEI),19–21 and so on. 

However, these polymers suffer several inherent disadvan-

tages including high toxicity, poor biodegradability, and low 

transfection efficiency.

In recent years, cationic polysaccharide, a type of natural, 

water-soluble, nontoxic, biocompatible and biodegradable 

cationic polymer, has been receiving increasing scientific 

attention and is considered to be the most attractive candidate 

for gene transfer.22 Compared with other cationic polymers, 

cationic polysaccharide presents such advantages as the pres-

ence of groups that can be easily modified to improve the 

physicochemical properties and cellular uptake, which can be 

facilitated by a sugar-recognition receptor on the cell surface.23 

Chitosan, a naturally occurring linear amino polysaccharide, 

has been reported as a vector for gene delivery.24 Researchers 

have found that apart from its biocompatibility, biodegrad-

ability, and low toxicity, chitosan and its derivatives showed 

excellent ability to transfer genes into cells.25–27  However, 

chitosan has demonstrated lower transfection efficiency 

compared with conventional nonviral gene carriers such as 

liposomes,28 PEI,29 and LipofectamineTM 2000 (Invitrogen, 

Carlsbad, CA).30 Other leading cationic  polysaccharides that 

have been investigated as gene vectors include dextran,7,31–33 

pullulan,34,35 pectin,36 and schizophyllan.22,37

The cationization of polysaccharide is a promising 

strategy to develop nonviral gene vectors for use in gene 

therapy.38,39 Polysaccharides represent a structurally diverse 

class of macromolecules of widespread occurrence in 

nature and offer a high capacity for carrying biological 

information because they have great potential for structural 

variability.40 In support of the above findings, the aim of 

this study was to develop a nonviral gene vector by graft-

ing spermine residues onto a polysaccharide extracted 

from Pleurotus eryngii. P. eryngii is an edible mushroom 

which is very common in China. Mushrooms are known 

for their nutritional and medicinal values as well as for 

the diversity of their bioactive components such as nucle-

ases,41 proteases,42 and polysaccharides.43,44 They also con-

tain polysaccharide–peptide and polysaccharide–protein 

 complexes.45 So far, most of the research regarding P. eryngii 

has focused on its enzymes.46–48 One of the major compo-

nents of P. eryngii, the polysaccharide of P. eryngii (PEPS), 

has been studied because of its positive health effects, which 

include cholesterol-lowering, antioxidant, and anticancer 

activities; however, little investigation into its application 

as a gene vector has been carried out.49 Previous stud-

ies have indicated that the polysaccharides isolated from 

P. eryngii were mostly β-glucans, which exhibited potential 

prebiotic activities.50 Therefore, to construct a cationic 

polysaccharide for use as a gene carrier, this study chemi-

cally modified PEPS by the reductive amination method. 

Cationized PEPS (CPEPS) enjoys the merits of both the 

positive charge of amine compounds and the bioactivity of 

PEPS. This advantage is favorable for delivering plasmid 

DNA into cells in vitro.

Nanoparticles are a desirable vehicle for gene delivery 

because of their nanoscale particle size, good stability, and 

excellent diffusion properties, which may facilitate cellular 

uptake.51,52 The plasmid encoding transforming growth 

factor beta-1 (TGF-β1) was used in the study. TGF-β1 is a 

widely used cytokine which can participate in and regulate 

many kinds of biochemical processes, including cell growth 

and differentiation, the formation of extracellular matrices, 

cytoadherence, immunoregulation, embryonic development, 

and wound healing.53,54 It has been reported that TGF-β1 

was able to induce mesenchymal stem cells (MSCs) to dif-

ferentiate into chondrocytes in three-dimensional scaffolds, 

and this study is exactly aimed at this direction. Therefore, 

plasmid TGF-β1 (pTGF-β1)was combined with CPEPS, 

resulting in CPEPS-p TGF-β1 nanoparticles that would have 

the ability to condense large plasmid DNA into nanoscaled 

supermolecular assemblies. The driving force for the compl-

exation comes from the attraction between the two oppositely 

charged ions of each polyelectrolyte. Such properties as 

particle size distribution, zeta potential, and gel retardation 
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effect were rigorously tested to characterize the CPEPS. 

Most importantly, the in vitro transfection efficiency of the 

CPEPS/plasmid DNA nanoparticles was investigated, and 

cytotoxicity was also tested by the 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.55 

It is expected that CPEPS could be developed into a promis-

ing nonviral gene vector for gene therapy.

Materials and methods
Materials
P. eryngii were kindly provided by the Zhenjiang edible 

mushroom growth base (Zhenjiang, China). Spermine and 

branched PEI (molecular weight 25 kDa) were purchased 

from Sigma-Aldrich (St Louis, MO). Dulbecco’s modified 

Eagle’s medium (DMEM), penicillin–streptomycin, trypsin, 

MTT, fetal bovine serum (FBS), and Lipofectamine 2000 

were obtained from Invitrogen (Carlsbad, CA). All other 

chemicals and reagents were of analytical or even higher 

grade and were used without further purification. All solu-

tions were prepared with double distilled water (DDW). 

The experimental protocol was approved by the University 

Ethics Committee for the use of experimental animals and 

conformed to the Guide for the Care and Use of Laboratory 

Animals.56

Polysaccharide extraction and purification
The polysaccharide was extracted from the fruiting bodies of 

P. eryngii by purification, as illustrated in Figure 1. The milled 

fruiting bodies of P. eryngii (2000 g) were extracted with 2 L of 

distilled water at 90°C for 3 hours (repeated three times). The 

aqueous extracts were concentrated under reduced pressure at 

50°C and precipitated with absolute ethanol (with a final etha-

nol concentration of 75% (v/v)). The precipitate was washed 

twice with absolute ethyl alcohol, and further dissolved in 

distilled water. This was dialyzed for 48 hours against dis-

tilled water (molecular weight cutoff [MWCO] 8000–14,400, 

Biosharp).39 The retentate portion was centrifuged to remove 

insoluble material. The supernatant was lyophilized, and then 

primrose-yellow crude PEPS was obtained.

The crude PEPS was purified by anion–exchange chro-

matography on a column (D 2.6 cm × 40 cm, Shanghai Huxi 

Analysis Instrument Factory Co, Ltd, China) filled with 

DEAE-52 cellulose resin (Whatman, UK). Then, the fractions 

that were collected from the DEAE-52 cellulose resin chro-

matographic column were loaded onto the SephadexG-100 

(Shanghai Richu Bioscience Co, Ltd, China) gel chromato-

graphic column (D 2.6 cm × 40 cm, Shanghai Huxi Analysis 

Instrument Factory). Fractions were collected and monitored 
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Figure 1 The process of polysaccharide of Pleurotus eryngii extraction and purification.

for the presence of carbohydrate with a phenol–sulfuric acid 

assay.57 A single peak was observed with an ultraviolet (UV) 

absorption photometry instrument (UV2401PC, Shimadzu, 

Tokyo, Japan). The target fractions were combined and 

dialyzed against distilled water (MWCO 3500, Biosharp).39 

After lyophilization, purified PEPS was obtained.
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Preparation of CPEPS
The CPEPS was prepared by the reductive amination method 

(Figure 2) according to a previous study,32 with slight 

 modifications. The process is shown in Figure 3. The PEPS 

(0.5 g, 3.125 mmol of glucose units) was dissolved in 50 mL 

of DDW which was followed by the addition of potassium 

periodate (0.716 g, with an IO
4
−/saccharide molar ratio of 1:1). 

The mixture was quickly placed in a darkroom to allow it to 

react at room temperature with vigorous magnetic stirring for 

72 hours. The resulting polyaldehyde derivative was dialyzed 

(MWCO 3500, Biosharp)39 for another 48 hours against DDW. 

After freeze-drying, oxidized PEPS was obtained.

The aldehyde content was determined according to 

 Jun-ichiro et al.58 Oxidized PEPS (0.3 g) was dissolved in 

20 mL of freshly prepared hydroxylamine hydrochloride water 

solution (0.25 M, pH 4). The resulting mixture was then gently 

stirred overnight at room temperature, followed by titration 

with standardized sodium hydroxide solution (0.1 M) till the 

end point as recorded on a digital pH meter (model PHS-3TC, 

Shanghai Tainda, Shanghai, China) was reached.

A solution of oxidized PEPS (containing 6.77 mmol 

of aldehyde groups) in 50 mL of DDW was slowly added 

(using a Sage Metering pump model 365 [Sage Metering, 

Fruiting bodies of Pleurotus
eryngii (2000 g)

H2O, at 90ºC, for 3 h (×3, 2L each time)

Residue
(discard)

Aqueous extracts

Ethanol precipitate

Lyophilized

DEAE-52 cellulose resin

Fraction without saccharide
(discard)

Fraction containing saccharide

Sephadex G-100

Fraction without
saccharide (discard)

Dialyzed, lyophilized

Purified Pleurotus eryngii
polysaccharide (PEPS)

Fraction containing
saccharide

EtOH (final concentration 75% [V/V])

Figure 2 The process of spermine grafting to the polysaccharide (dextran is used 
as an example). 
Notes: The reductive amination method is used to produce the cationized 
polysaccharide: the polysaccharide is first oxidized by KIO4; after the addition of 
spermine, NaBH4 is used to reduce the reactants.

PEPS (0.5 g)

Potassium periodate (0.716 g);
reacting for 72 h in a dark room

Reaction product solution

Dialyze, freeze-dry

Oxidized PEPS (0.3 g)

Dissolve in distilled water 20 mL;
add 8.46 mmol spermine

Reaction product solution

Dialyze, freeze-dry

CPEPS

Figure 3 The process of cationized Pleurotus eryngii polysaccharide (CPEPS) 
preparation.

Monterey, CA]) over 2 hours to a basic solution containing a 

1.25 equimolar amount of spermine (8.46 mmol) dissolved in 

30 mL of borate buffer (0.1 M, pH 11). The mixture was then 

gently stirred at room temperature for 24 hours. Then, NaBH
4
 

(0.3 g) was added to the mixture to react for 48 hours and the 

process was repeated with an additional portion of NaBH
4
 

(0.3 g) for another 24 hours under the same conditions. The 

resulting light-yellow solution was dialyzed (MWCO 3500, 

Biosharp) for 48 hours against DDW. After freeze-drying, 

cationized PEPS (CPEPS) was obtained.

Characterization of PEPS and CPEPS
Based on the literature and the limited experimental condi-

tions in our laboratory, in this study, the average molecular 

weights of PEPS and CPEPS were analyzed with a Shimadzu 

gel permeation chromatography (GPC) system-equipped 

Shimadzu RID-10A refractive index detector (RID) 

(LC-10 AVP, Shimadzu). Analysis of the monosaccharide 

composition of PEPS was preliminarily determined by thin 

layer chromatography. After the spermine modification, 

the quantity of spermine residues that were grafted onto 

the PEPS was reflected by the amount of primary amino 

groups determined by the trinitrobenzene sulfonic acid 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1300

Deng et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

method. The quantity of total nitrogen per unit weight of 

polymer was determined with a Euro EA elemental analyzer. 

A Fourier transform infrared spectrometer (KBr) (Nicolet 

170SX, Thermo Fisher Scientific, Waltham, MA) was used 

to characterize the PEPS and CPEPS and to retrieve their 

structural information.

Preparation of plasmid DNA
The TGF-β1 was amplified in Escherichia coli host strain 

DH5α and purified by column chromatography with the 

PureYield™ Plasmid Maxiprep Start-Up Kit (Promega, 

 Madison, WI) according to the manufacturer’s protocol. 

Ampicilin was used to select for the pTGF-β1-transformed 

cells. The DNA concentration was quantified by measuring 

the UV absorbance at 260 nm with a UV spectrophotometer 

(DU 530 Life Science UV/Vis spectrophotometer; Beckman 

Coulter, Fullerton, CA).

Preparation of CPEPS-pTGF-β1 
nanoparticles
The CPEPS-pTGF-β1 nanoparticles were prepared by 

complex coacervation. A number of CPEPS-pTGF-β1 

nanoparticle samples that differed in their CPEPS/pTGF-β1 

weight ratios were prepared. The CPEPS stock solution 

(8 mg/mL) was made by dissolving 8 mg CPEPS in 1 mL 

distilled water, which was then sterilized by heating at 

80°C for 4 hours. The required solutions for the different 

CPEPS concentrations and that of the pTGF-β1 concen-

tration (400 µg/mL) were prepared with sterilized DDW. 

Meanwhile, aliquots (100 µL) of each of the CPEPS and 

pTGF-β1 working solutions were heated separately at 55°C 

for 30–45 minutes. Equal volumes of each solution were 

then quickly mixed and vortexed for 60 seconds to obtain 

the CPEPS-pTGF-β1 nanoparticles.

Analysis of gel retardation effect  
of CPEPS-pTGF-β1 nanoparticles
The CPEPS-pTGF-β1 retention effect was analyzed using 

gel electrophoresis. CPEPS-pTGF-β1 nanoparticle solutions 

(10 µL) with different weight ratios were mixed with 1 µL 

loading buffer (0.1% sodium dodecyl sulfate, 5% glycerol, 

and 0.005% bromophenol blue) and put into 1% agarose 

gel in tris-borate-ethylenediaminetetraacetic acid buffer 

 solution (pH 8.0) containing 1 µg/mL ethidium bromide. 

The diluted free pTGF-β1 solution (10 µL) was used as a 

control.  Electrophoretic evaluation of the complex was car-

ried out in tris-borate-ethylenediaminetetraacetic acid buffer 

solution at 80 V for 90 minutes. A photograph of the gel was 

taken with a UV transilluminator (Gel Doc 2000, Bio-Rad, 

Hercules, CA).

Zeta potential
The zeta potentials of the nanoparticle suspensions, which 

had different weight ratios of CPEPS to pTGF-β1 (10:1, 

20:1, and 30:1), were measured with a ZEN3600 Nano 

Series Zetasizer (Malvern Instruments, Malvern, UK). The 

zeta potentials of the free plasmid and original CPEPS were 

determined under the same conditions. This measurement 

would reflect the degree of cationization.

Determination of the nanoparticle size 
distribution
The nanoparticle size distribution was determined by a 

dynamic light scattering (DLS) technique, performed at 

25°C with a Brookhaven BI-90plus instrument (Brookhaven 

Instruments Corporation, Holtsville, NY). The measured 

scattering intensities were then analyzed by the software 

provided by Brookhaven. The determination limits of the 

size distribution generally ranged from 1 nm to 6 µm, with 

high sensitivity and reproducibility.

Transmission electron microscopy (TEM)
TEM (JEM-2100; JEOL, Tokyo, Japan) was used to detect 

the size and shape of the nanoparticles. Samples were pre-

pared by placing 1 µL nanoparticle suspension onto a  copper 

screen and allowing them to air-dry. Then, the air-dried 

samples were observed directly under TEM without the need 

to coat the samples with a conducting layer as is required for 

conventional scanning electron microscopy.

Isolation and culture of MSCs
The method of isolation and culture of MSCs was as 

described by Alhadlaq and Mao.59 The MSCs were isolated 

from 1-month-old rats by flushing the femurs and tibias with 

phosphate-buffered solution (PBS, pH 7.4). This was followed 

by the collection of 5 mL bone marrow suspensions into 

centrifuge tubes. Lymphocyte cell separation buffer (5 mL) 

was gently added into each tube along the walls of the tube. 

After centrifugation, a mist-like layer containing most of the 

MSCs had formed. The mist-like layer was then carefully 

collected into new tubes and washed twice with PBS. After 

centrifugation, the precipitate was suspended in cell culture 

medium containing DMEM, 10% FBS, low glucose (1%), 

100 U/mL penicillin, and 100 µg/mL streptomycin. The 

resulting suspension was transferred into cell culture flasks. 

The cells were incubated at 37°C in a humidified atmosphere 

of 5% CO
2
.
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Cytotoxicity assay
The in vitro cytotoxicity of the different CPEPS-pTGF-β1 

nanoparticles (weight ratios 10:1; 20:1; 30:1) was examined 

by MTT dye reduction assay. The second-passage MSCs were 

seeded in a 96-well plate at a cell density of 2.5 × 104 cells/well 

and incubated at 37°C for 24 hours in 100 µL of DMEM 

containing 10% FBS. After that, the medium was removed 

and replaced with a 100 µL suspension of CPEPS-pTGF-β1 

nanoparticles (pTGF-β1 200 ng/well) which had been diluted 

in a serum-free medium.  Lipofectamine 2000/pTGF-β1 and 

branched PEI (25 kDa)/pTGF-β1 were employed as control 

groups according to each manufacturer’s protocol, under the 

same conditions. This was to ensure that the optimal ratios 

for transfection were used. The concentration of pTGF-β1 in 

each group was 2 ng/µL. The same concentration of pTGF-β1 

was used in the subsequent experiments.

Cell viability was tested after the addition of the CPEPS-

pTGF-β1 complexes for 48 hours at 37°C in 5% CO
2
. After 

that, 10 µL of MTT solution (5 mg/mL) was added to each 

well for an additional 4-hour incubation under the same con-

ditions. The MTT-containing medium was then removed, and 

100 µL dimethyl sulfoxide was added. Dimethyl sulfoxide 

was used to dissolve the formazan crystals that were formed 

by the living cells. The absorbance was measured at 570 nm 

using a microplate reader (SpectraMax 190; Molecular 

Devices, Sunnyvale, CA). The measured absorbance was nor-

malized with the absorbance of nontreated control cells.

In vitro transfection experiments
In the transfection experiment, second-passage MSCs were 

seeded in 96-well plates at a density of 2.5 × 104 cells/well 

in 100 µL complete culture medium (DMEM, containing 

10% FBS) and incubated for a period of 24 to 48 hours to 

obtain a confluence of 80% before transfection. The medium 

was then removed and replaced with a 100 µL suspension of 

CPEPS-pTGF-β1 nanoparticles (pTGF-β1 200 ng/well) in a 

serum-free medium, which contained DMEM, 100 U/mL, and 

100 µg/mL streptomycin glutamate. In the positive control 

groups, Lipofectamine 2000/pTGF-β1 and branched PEI 

(25 kDa)/pTGF-β1 were handled rigorously according to the 

protocols provided by the manufacturers and naked pTGF-β1 

(200 ng/well) in serum-free medium was used for the negative 

control group. Four hours later, the medium was replaced with 

100 µL fresh complete medium and the cells were incubated 

for 72 hours. A rat TGF-β1 enzyme-linked immunosorbent 

assay kit (Yantai Addcare Biotech,  Shandong, China) was 

used to detect cell transfection efficiency, according to the 

protocol.

RNA isolation and reverse transcriptase 
polymerase chain reaction
Similar to the enzyme-linked immunosorbent assay test, 

second-passage MSCs were seeded in six-well plastic culture 

plates at a density of 2 × 106 cells/well in 2 mL complete cul-

ture medium (DMEM, containing 10% FBS) and incubated 

for 24–48 hours to obtain a confluence of 80%. This was 

followed by transfection as described above. After 24 hours 

of transfection, total RNA was extracted using TRIzol® 

Reagent (Invitrogen), thus following the instructions provided 

by the manufacturer. RNA concentration and purity were 

measured by a spectrophotometer (NanoDrop Technologies, 

Wilmington, DE).

Reverse transcriptase polymerase chain reaction 

analysis was carried out to determine the messenger RNA 

(mRNA) expression level of TGF-β1. The reverse tran-

scriptase reaction was conducted with 1.0 ug total RNA 

using a RevertAid™ cDNA First Strand Synthesis Kit 

(K1622; Thermo Fisher Scientific, Shenzhen, China). The 

following polymerase chain reaction (PCR) amplification 

reaction utilized the Taq polymerase and specific  primers. 

The specif ic sequences of the primers for PCR were 

5′-TGGTGGACCGCAACAACGCA-3′ (forward primer) 

and 5′-TGCACGGGACAGCAATGGGG-3′ (reverse 

primer) (GenBank Accession No NM 021578.2). In this 

study, glyceraldehyde 3-phosphate dehydrogenase was used 

as an internal standard. The PCR was run in an iCycler 

(Bio-Rad) using a Brilliant II SYBR® Green QPCR Master 

Mix (Stratagene, La Jolla, CA). The PCR conditions were as 

follows: 95°C for 10 minutes (for initial denaturation), fol-

lowed by 26 cycles of denaturation at 95°C for 30 seconds, 

annealing for 30 seconds at 57°C for TGF-β1 and at 58°C 

for glyceraldehyde 3-phosphate dehydrogenase, extension at 

72°C for 30 seconds. The PCR products were visualized on a 

2% (w/v) agarose gel containing 1 µg/mL ethidium bromide 

with a UV transilluminator (Gel Doc 2000, Bio-Rad).

Flow cytometry analysis
Cell cycling signals were analyzed using a GalliosTM Flow 

Cytometer (Beckman Coulter, Miami, FL). In this study, clas-

sic procedures were followed to evaluate propidium iodide 

(Beyotime Institute of Biotechnology, Shanghai, China), 

staining of DNA content. After 72 hours of transfection, cells 

were washed twice with PBS (pH 7.4) and detached from 

the wells with trypsin. The suspended cells were placed in 

sterilized centrifuge tubes and centrifuged at 1500 rpm for 

5 minutes using an Eppendorf centrifuge (Eppendorf GA, 

Hamburg, Germany), removing the supernatant. The cell 
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pellet was then washed with PBS and resuspended with 

0.5 mL of PBS (pH 7.4). The cell suspension was added into 

5 mL of 75% ethanol with precooling at −20°C (very slowly, 

drop by drop) and then fixed at 4°C overnight, followed by 

centrifuge at 1000 rpm for 5 minutes at 4°C to remove the 

ethanol. The cell pellet was washed twice with PBS + 1% 

bovine serum albumin and resuspended in 400 µL PBS + 1% 

bovine serum albumin. After that, 50 µL of 500 µg/mL pro-

pidium iodide was added into the cell suspension, followed 

by incubation at 37°C for 30 minutes before analysis by 

flow cytometer.

The cells were divided into four groups: group 1, treated 

with free pTGF-β1; group 2, treated with Lipofectamine 

2000/pTGF-β1; group 3, treated with CPEPS-pTGF-β1 

nanoparticles, and group 4, treated with medium containing 

pTGF-β1 protein.

Statistical analysis
The data were analyzed with both one-factor and two-

factor analyses of variance. Student’s t-test and the Fisher’s 

protected least significance difference post hoc test were 

used to determine the significance (significance accepted at 

P , 0.01) of the difference between selected groups with 

SPSS statistics software (v15.0; SPSS Inc, Chicago, IL). 

The data were presented as the mean ± standard error of 

the mean.

Results
Characteristics of the CPEPS
The GPC findings showed that the average molecular 

weights of the PEPS and CPEPS were 549 kDa and 333 kDa, 

respectively. The amount of primary and secondary amino 

groups derived from spermine and the percentage of cross-

linked spermine were as shown in Table 1. The findings 

showed that CPEPS was not cross-linked.

Qualitative functional group analysis of the CPEPS by 

Fourier transform infrared spectroscopy (KBr) yielded peaks 

at 3410, 1650, 1460, 1270, and 1030 cm−1 (see Figure 4). 

 Comparatively, the spectrum of the CPEPS revealed an obvious 

change at 3410 cm−1 (the presence of amine and −OH groups), 

and peaks at 1650 cm−1 (indicating the existence of −NH
2
),32 

1270 cm−1 (indicating the C–O group in an ester bond),39 and 

1030 cm−1 (−OH stretching) as against the spectrum of PEPS. 

This demonstrated that the amino groups were successfully 

grafted onto the backbone of the polysaccharide.

Thin layer chromatography revealed that the monosac-

charides in the PEPS mainly consisted of glucose, galactose, 

and mannose.

Gel retardation effect  
of the CPEPS-pTGF-β1 nanoparticles
Figure 5 shows the electrophoretic pattern of the tested CPEPS-

pTGF-β1 nanoparticles with different CPEPS/pTGF-β1 weight 

ratios. The nanoparticles with the lowest CPEPS/pTGF-β1 

weight ratio (1:5; well 2 of Figure 5) showed that a portion of 

the TGF-β1 plasmids had detached itself from the nanoparticles 

and migrated into the gel, as demonstrated by a faint band 

corresponding to the location of the naked TGF-β1 plasmid 

(well 1 of Figure 5). When the CPEPS/pTGF-β1 weight ratio 

was increased to 10:1 (well 3 of Figure 5), there was no sign of 

plasmid migration across the agarose gel. This indicated that 

the complexation of pTGF-β1 and CPEPS was strong enough 

to completely retard DNA migration. Accordingly, the CPEPS-

pTGF-β1 complexes with weight ratios of 10:1, 20:1, and 30:1 

were used in the subsequent transfection study.
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Figure 4 Fourier transform infrared spectra of polysaccharide of Pleurotus eryngii 
(PEPS) and cationized P. eryngii polysaccharide (CPEPS).

Table 1 Amino group content and cross-linking of CPEPS

Polycation Nitrogena 
(μmol/mg)

Primary aminesb 
(μmol/mg)

Sperminec 
(μmol/mg)

Secondary aminesd 
(μmol/mg)

Secondary to primary 
amine ratio

Cross-linked 
sperminee (%)

CPEPS 3.92 ± 0.23 1.24 ± 0.09 0.98 ± 0.06 2.94 ± 0.18 2.40 ± 0.30 0

Notes: aDetermined by elemental analysis (n = 3); bdetermined by the trinitrobenzene sulfonic acid method (n = 3); ccalculated from elemental analysis (total nitrogen divided 
by 4); dtheoretical secondary amine content (in case no cross-linking occurred: spermine content multiplied by 3); ecalculated for secondary to primary amine ratio $ 3. 
Abbreviation: CPEPS, cationized Pleurotus eryngii polysaccharide.
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Zeta potential
The zeta potential of the original CPEPS was +19.4 ± 0.2 mV 

(mean ± standard error for 15 runs of the same sample; 

see Figure 6). In contrast, the zeta potential of the naked 

pTGF-β1 was −42.1 ± 0.3 mV (Figure 6). At the three dif-

ferent ratios of CPEPS/pTGF-β1 (10:1, 20:1 and 30:1), the 

zeta potential changed from a negative value to a positive 

1 2 3 4 5 6 7

Figure 5 Agarose gel electrophoresis of the CPEPS-pTGF-β1 nanoparticles. 
Notes: Well 1, free pTGF-β1; wells 2–7, CPEPS-pTGF-β1 nanoparticles with 
various weight ratios of CPEPS/pTGF-β1 (from left to right: 5:1, 10:1, 20:1, 30:1, 
60:1, and 80:1).
Abbreviations: CPEPS, cationized Pleurotus eryngii polysaccharide; pTGF-β1, 
plasmid encoding transforming growth factor beta-1.
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Figure 6 The zeta potentials of free pTGF-β1, CPEPS, and CPEPS combined with different amounts of pTGF-β1 to yield the following CPEPS/pTGF-β1 weight ratios: 10:1, 
20:1, and 30:1. 
Note: The values are the means ± standard error of the mean of three experiments.
Abbreviations: TGF-β1, transforming growth factor beta-1; pTGF-β1, plasmid encoding TGF-β1; CPEPS, cationized P. eryngii polysaccharide.

value and increased to +17.0 ± 0.2 mV, +17.4 ± 0.1 mV, 

and +19.2 ± 0.2 mV, respectively.

Particle size distribution and morphology
DLS demonstrated the various sizes of the nanoparticles with 

CPEPS/pTGF-β1 weight ratios of 10:1, 20:1, and 30:1. The 

size distribution of the nanoparticles with a CPEPS/pTGF-β1 

weight ratio of 20:1 ranged from 29.2 nm to 168.5 nm, with an 

average diameter of 80.8 nm (Figure 7A), whereas the aver-

age sizes of the other two nanoparticle groups were 248.3 nm 

(10:1) and 151.1 nm (30:1), respectively (Table 2).

The TEM measurement showed that the monodispersed 

nanoparticles (CPEPS/pTGF-β1 weight ratio of 20:1) had 

a spherical shape and a size distribution within a relatively 

narrow range (30–50 nm) (Figure 7B).

Cytotoxicity of the CPEPS-pTGF-β1 
nanoparticles
As shown in Figure 8, the result demonstrated that the 

CPEPS-pTGF-β1 nanoparticles yielded comparative or even 

higher cell viability than that of Lipofectamine 2000 and 

branched PEI (25 kDa), indicating that the CPEPS-pTGF-β1 

nanoparticles were safe for MSCs.

In vitro gene transfection
The TEM images of MSCs before and after transfection are 

shown in Figure 9.
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Among the three groups of different CPEPS/pTGF-β1 

weight ratios (10:1, 20:1, and 30:1), the optimal TGF-β1 

expression was recorded for a CPEPS/pTGF-β1 weight 

ratio of 20:1 (Figure 10A). Statistically, the CPEPS-

pTGF-β1 nanoparticles with a CPEPS/pTGF-β1 weight 

ratio of 20:1 revealed a significantly higher transfection 

effect than that of PEI (25 kDa) (P = 0.002, Student’s t-test) 

and  Lipofectamine 2000 (P = 0.006, Student’s t-test), the 

Table 2 The size distribution of nanoparticles with CPEPS/pTGF-
β1 weight ratios of 10:1, 20:1, and 30:1

CPEPS/pTGF-β1  
weight ratios

10:1 20:1 30:1

Particle size 
(means ± SEM, nm)

248.3 ± 7.4 80.8 ± 6.8 151.1 ± 7.2

Abbreviations: CPEPS, cationized Pleurotus eryngii polysaccharide; pTGF-β1, 
plasmid encoding transforming growth factor beta-1; SEM, standard error of the 
mean.

100A

B

75

50

25

0
5.0

100 nm

50.0

Diameter (nm)

N
u

m
b

er
5000.0

Figure 7 Particle size distribution and morphology. (A) The particle size distribution of the CPEPS/pTGF-β1 nanoparticles with a weight ratio of 20:1; (B) transmission 
electron microscopy image of the CPEPS/pTGF-β1 nanoparticles with a  weight ratio of 20:1.
Abbreviations: CPEPS, cationized Pleurotus eryngii polysaccharide; pTGF-β1, plasmid encoding transforming growth factor beta-1.

current gold standard of commercial transfection reagents 

(Figure 10B).

mRNA expression level of TGF-β1
As shown in Figure 11, the mRNA expression level of 

TGF-β1 in CPEPS-pTGF-β1 nanoparticle-transfected 

MSCs (well 1 in Figure 11) was notably higher than that of 

MSCs transfected with free pTGF-β1 (well 2 in Figure 11) 

and also slightly higher than that of MSCs transfected with 

Lipofectamine 2000 (well 3 in Figure 11).

Flow cytometry analysis
As shown in Figure 12, the results of the flow cytometry of pro-

pidium iodide-stained cells demonstrated that the percentage 

of cells in the G1 phase for group 1 (85.20%, Figure 12A) was 

the lowest with the highest percentage being that of group 3 

(92.38%, Figure 12C). However, the percentage of cells in the 
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Figure 8 Cytotoxicity assay. From left to right: Lipofectamine™ 2000; polyethylenimine (25 kDa); free plasmid; CPEPS-pTGF-β1 nanoparticles with CPEPS/pTGF-β1 weight 
ratios of 10:1, 20:1, and 30:1. 
Note: The values are the means ± standard error of the mean of three experiments.
Abbreviations: CPEPS, cationized Pleurotus eryngii polysaccharide; PEI, polyethylenimine; pTGF-β1, plasmid encoding transforming growth factor beta-1.

S phase for group 1 (12.35%) was higher than that of the other 

three groups (group 2 [Figure 12B]: 7.55%; group 3: 7.62%, 

and group 4: 8.4% [Figure 12D]).  Interestingly, there were 

no cells in the G2 phase for group 3.

Figure 9 Transmission electron microscopy (TEM) images of MSCs before and 
after transfection. (A) TEM image of mesenchymal stem cells before transfection; 
(B–D) TEM images of mesenchymal stem cells after transfection by CPEPS-
pTGF-β1 nanoparticles with CPEPS/pTGF-β1 weight ratios of 10:1, 20:1, and 30:1, 
respectively.
Abbreviations: CPEPS, cationized Pleurotus eryngii polysaccharide; pTGF-β1, 
plasmid encoding transforming growth factor beta-1.

Discussion
In this study, PEPS was used as a gene delivery material 

for the first time. PEPS was a promising candidate for gene 

delivery after proper modification due to its advantages, 

including biocompatibility, biodegradability, nontoxicity, 

and ease of chemical modification.

Generally, the molecular weights of polymers are 

determined by GPC, which is also known as size-exclusion 

chromatography, equipped with either an RID32,60 or a light-

scattering detector.20,24 Despite the increasingly widespread 

application of DLS, GPC equipped with RID has equally 

also been used to measure the molecular weights of poly-

mers in many recent studies.32,60 Based on other studies and 

the limited experimental conditions in the laboratory, a RID 

(Shimadzu GPC system-equipped Shimadzu RID-10 A) was 

used to determine the molecular weights of PEPS and CPEPS. 

The findings revealed a drastic decease in the molecular 

weight of CPEPS (549 kDa) as compared to that of PEPS 

(333 kDa). This could possibly be due to the extensive amin-

olysis of PEPS during the conjugation reaction.38,58

In previous studies,38,58 nuclear magnetic resonance 

(NMR) was employed to further characterize the structure 

of the polysaccharide. In this work, 1H NMR spectra were 

recorded on a 400 MHz Bruker AV-400 NMR spectrometer 

(Bruker, Madison, WI) to characterize the structure of PEPS 

and CPEPS. Unfortunately, no valuable information could be 

obtained (data not shown). In some published reports58,61,62 the 
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samples had molecular weights less than 100 kDa as against 

the results of this study (.100 kDa). It is possible that the 

molecular weights of the samples were beyond the sensitivity 

of the NMR spectrometer. The exact reason is still unknown, 

and it will be explored in our future study. According to 

some researchers,39,60 it was acceptable to combine the use 

of trinitrobenzene sulfonic acid, total nitrogen determination, 

and Fourier transform infrared spectroscopy to characterize 

the CPEPS.

Spermine, an amino compound with two primary amino 

groups and two secondary amino groups on each molecule, was 

chemically grafted onto PEPS to obtain CPEPS.58 The quantity 

of the total amount of nitrogen per microgram of CPEPS indi-

cated the amount of spermine grafted on the backbone of PEPS. 

As spermine was conjugated to the polysaccharide via one of 

its primary amino groups, the conjugated primary amino group 

became a secondary amine after conjugation.38 Cross-linking 

was possible via the remaining primary amine of spermine. In 

this study, no cross-linking was observed (Table 1), indicating 

good control of the reaction conditions. Significantly, a low 

degree of cross-linking was desirable in this application.

The study investigated the monosaccharide content 

of the PEPS via preliminary thin layer chromatography 

analysis and found that D-glucose was the major monosac-

charide component; the other components were galactose 

and  mannose. The results were in agreement with previous 

studies.50 It was speculated that because D-glucose was the 

major monosaccharide in PEPS, the monomer was more 

likely to be grafted with spermine. It was also likely that the 

spermine might be linked to the other monosaccharide com-

ponents. In a related study, various polysaccharides (pullulan, 

dextran, and mannan) with different cationization degrees 

were used to transfect MSCs in order to examine the factors 

affecting transfection.63 The findings showed that the gene 

expression level was closely related to the type of cationized 

 polysaccharide. The exact composition of PEPS monosac-

charides, which are the major contributors of cationization, 

will be addressed in future works.

Gel electrophoresis showed that the cationized polysac-

charide could successfully incorporate TGF-β1 plasmid. The 

complexation of CPEPS and TGF-β1 plasmid was CPEPS-

content dependent, with a greater CPEPS/pTGF-β1 weight 

ratio resulting in better plasmid incorporation.
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Figure 10 TGF-β1 protein released into the medium from mesenchymal stem cells 
72 hours after treatment with CPEPS-pTGF-β1 nanoparticles. (A) TGF-β1 protein 
concentrations in the medium with various weight ratios of CPEPS to pTGF-β1: 
10:1 (first bar), 20:1 (second bar), and 30:1 (third bar), as well as in free plasmid 
DNA (fourth bar). (B) A comparison of TGF-β1 expression levels: free plasmid 
DNA (first bar); Lipofectamine™ 2000 (second bar); polyethylenimine (25 kDa, third 
bar); and CPEPS-pTGF-β1 nanoparticles with a CPEPS/pTGF-β1 weight ratio of 20:1  
(fourth bar).
Note: The values are the means ± standard error of the mean of three experiments.
Abbreviations: TGF-β1, transforming growth factor beta-1; pTGF-β1, plasmid 
encoding TGF-β1; CPEPS, cationized Pleurotus eryngii polysaccharide; PEI, 
polyethylenimine.

Figure 11 Messenger RNA expression of TGF-β1 in mesenchymal stem cells 
(MSCs).
Notes: Well 1, MSCs transfected with free pTGF-β1; well 2, MSCs transfected 
with Lipofectamine™ 2000/pTGF-β1; well 3, MSCs transfected with CPEPS-
pTGF-β1 nanoparticles.
Abbreviations: TGF-β1, transforming growth factor beta-1; CPEPS, cationized 
Pleurotus eryngii polysaccharide; pTGF-β1, plasmid encoding TGF-β1; GAPDH, 
glyceraldehyde 3-phosphate dehydrogenase.
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It is well known that DNA charge reversal is one 

of the basic requirements for the transfection of cells. 

Interestingly, the zeta potentials of the three different CPEPS-

pTGF-β1 nanoparticles were almost the same as that of the 

original polysaccharide (+19.4 ± 0.2 mV) and statistically 

insignificant (see Figure 6.) This implies that the negatively 

charged plasmids were successfully combined with the posi-

tively charged polysaccharide to form nanoparticles of more 

positive charges on its outer surface. Therefore, the value of 

the positive charges on the surface of the nanoparticles will 

be comparable to that of the original CPEPS. This point will 

be further investigated in future studies.

The particle size values provided by TEM (30–50 nm, 

Figure 7B) and DLS (29.2∼168.5 nm) were quite different 

(Table 2 and Figure 7A). A possible reason could be that 

the DLS and TEM had various determination conditions: 

samples measured by DLS were in suspended form, whereas 

dried particles were observed under TEM. In summary, the 

CPEPS-pTGF-β1 complex had a nanoscaled particle size. 

 Interestingly, these findings showed that the average  particle 

size of the formulated nanoparticles (CPEPS/pTGF-β1 

weight ratio of 20:1) was 80.8 nm in diameter, which was 

much smaller than the sizes reported in previous studies 

(cationized gelatin15 and chitosan25 nanoparticles with an 

average size of approximately 172 nm in diameter and 250 nm 

in diameter were produced, respectively). However, the aver-

age size of the nanoparticles with a CPEPS/pTGF-β1 weight 

ratio of 30:1 was 151.1 nm which is obviously larger than that 

of the 20:1 nanoparticles. This large particle size suggested 

that excess cationic polysaccharide might acquire a greater 

positive zeta potential, but it could also cause redundant 

CPEPS coacervation on the particle surface resulting in a par-

ticle size increase. This is unfavorable for cellular uptake.

Low cytotoxicity is one of the basic requirements for a 

safe and effective gene carrier. The outcome of the MTT test 

showed that the CPEPS-pTGF-β1 nanoparticles exhibited 
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Figure 12 Flow cytometry of propidium iodide-stained mesenchymal stem cells (MSCs). (A) MSCs treated with plasmid TGF-β1; (B) MSCs treated with Lipofectamine™ 
2000/pTGF-β1; (C) MSCs treated with CPEPS-pTGF-β1 nanoparticles; (D) MSCs treated with medium containing pTGF-β1 protein.
Abbreviations: TGF-β1, transforming growth factor beta-1; pTGF-β1, plasmid encoding TGF-β1; CPEPS, cationized Pleurotus eryngii polysaccharide.
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an exceptional safety profile (Figure 8). It is likely that the 

intracellular degradability of the polymer was responsible for 

the low cytotoxicity of CPEPS.49 Inside the cells, the CPEPS 

could be degraded to different kinds of monosaccharides 

and oligoamines, which were easily metabolized, hence 

nontoxic.64 Essentially, the CPEPS-pTGF-β1 nanoparticles 

prepared in this study were safe for MSCs.

Cell transfection efficiency is the key index in evaluating 

the properties of nonviral gene carriers. The results of the 

CPEPS-pTGF-β1 nanoparticles with a weight ratio of 20:1 

(80.8 nm on average) showed the highest transfection effi-

ciency (Figure 10A). This means that the smaller size of the 

nanoparticles facilitated the movement of the particles through 

membranes. In addition, when the CPEPS/pTGF-β1 weight 

ratio was lower than 20:1, it could possibly lead to an incom-

plete encapsulation of the negatively charged naked pTGF-β1, 

resulting in a relatively large particle size (248.3 nm) that 

probably hindered the process of cellular uptake. This assertion 

was also supported by the gel retardation assay (Figure 5). It 

was observed that there was less tendency for the plasmid to 

migrate as the CPEPS/pTGF-β1 weight ratio increased. The 

free plasmid DNA showed the greatest migration towards the 

positive pole. This implies that the complex with a weight ratio 

of 10:1 had an inadequate amount of cationic polysaccharide. 

In the case of the nanoparticles with a CPEPS/pTGF-β1 

weight ratio greater than 20:1, the reduced TGF-β1 expression 

could possibly be due to a larger particle size (151.1 nm), as 

well as to the strong bond of attraction between the CPEPS 

and pTGF-β1. This would have prevented the release of 

pTGF-β1 from the nanoparticles in a timely and complete 

manner once the nanoparticles entered the cells. Additionally, 

a high CPEPS/pTGF-β1 weight ratio might lead to the state 

of free CPEPS that could competitively inhibit the interaction 

between CPEPS-pTGF-β1 nanoparticles and cell membrane.39 

Further investigations would be needed to provide a deeper 

understanding of the MSC transfection mechanisms with 

respect to the CPEPS/pTGF-β1 weight ratio.

Interestingly, the CPEPS-pTGF-β1 nanoparticles (weight 

ratio of 20:1) showed a significantly enhanced transfection 

effect as compared to those of PEI (25 kDa), (P = 0.002, 

 Student’s t-test) and Lipofectamine 2000 (P = 0.006, 

Student’s t-test). This was possible because CPEPS could 

condense the TGF-β1 plasmid to a small size (80.8 nm on 

average), which facilitated the process of cellular uptake. 

At the same time, the positive charge on the surface of the 

nanoparticle (+17.4 ± 0.1 mV) promoted the interaction with 

the negatively charged cell membranes. It is a well-known 

fact that polysaccharides can readily be transported to cells by 

known biological processes, which might greatly contribute 

to the success of the transfection.38

In the study, long-term (72-hour) expression of TGF-β1 

by MSCs was also investigated. In a related study,64 immu-

nofluorescence staining was conducted to check if the stem 

cells had differentiated after transfection. The findings of 

that study showed that the transfection was transient. In 

this study, the results supported that, and after transfection 

stem cells still maintained mesenchymal lineage properties 

(data not shown). This could also be supported by the TEM 

images of MSCs before and after transfection, which exhib-

ited no obvious morphological changes after transfection. 

 Longer-term (more than 72-hour) transfection investigation 

will be addressed in future works.

Reverse transcriptase polymerase chain reaction was car-

ried out to reflect the transfection effect of CPEPS-pTGF-β1 

nanoparticles from the mRNA expression level of TGF-β1, 

and the result was in agreement with that revealed by enzyme-

linked immunosorbent assay, indicating the high transfection 

effect of CPEPS-pTGF-β1 nanoparticles and their superiority 

over Lipofectamine 2000.

It is well known that the S phase is the cell cycle phase 

for DNA synthesis which prepares the cells for mitosis, and 

the G1 phase is the cell stage after mitosis to the beginning 

of the S phase. So the cells moving from the S to the G1 

phase indicated a tendency of differentiation. Flow cytometry 

analysis revealed that cells transfected with CPEPS-pTGF-β1 

nanoparticles had low proliferation but showed a tendency 

of differentiation. This could possibly be due to the effect 

of TGF-β1 on MSCs, because TGF-β1 has the ability to 

induce chondrogenesis of MSCs.65 Further investigation of 

this aspect will be addressed in future studies.

Conclusion
In this study, a polysaccharide isolated from the edible mush-

room P. eryngii was chemically modified with spermine for 

the first time to obtain CPEPS, out of which CPEPS-pTGF-β1 

nanoparticles were then prepared. Gel retardation assay showed 

that CPEPS-pTGF-β1 nanoparticles possessed the ability to 

prevent the plasmid DNA from migrating when the CPEPS/

pTGF-β1 weight ratio increased to 10:1.  Varying the CPEPS 

to TGF-β1 plasmid weight ratio affected the TGF-β1 expres-

sion significantly, with the highest transfection efficiency 

noted at the CPEPS/pTGF-β1 weight ratio of 20:1. In addi-

tion, the CPEPS-pTGF-β1 nanoparticles (weight ratio of 

20:1) showed significantly enhanced transfection efficiency 

compared with that of Lipofectamine 2000.  Cytotoxicity 

assay revealed that the CPEPS/pTGF-β1 nanoparticles were 
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less toxic than both PEI (25 kDa) and Lipofectamine 2000. 

Furthermore, the mRNA expression level of TGF-β1 in MSCs 

transfected by CPEPS-pTGF-β1 nanoparticles was signifi-

cantly higher than that of free plasmid DNA- transfected MSCs 

and slightly elevated compared with that of Lipofectamine™ 

2000-transfected MSCs. Flow cytometry analysis revealed 

that 92.38% of MSCs were arrested in the G1 phase after 

transfection with CPEPS-pTGF-β1 nanoparticles, indicating 

a tendency of differentiation. All of these findings support 

the fact that the CPEPS-pTGF-β1 nanoparticles could be 

developed into a promising gene delivery system in the near 

future.
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