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Abstract: Osteosarcoma is the predominant primary malignant bone tumor that poses a significant global health challenge. 
MicroRNAs (miRNAs) that regulate gene expression are associated with osteosarcoma pathogenesis. Thus, miRNAs are potential 
therapeutic targets for osteosarcoma. Nanoparticles, widely used for targeted drug delivery, facilitate miRNA-based osteosarcoma 
treatment. Numerous studies have focused on miRNA delivery using nanoparticles to inhibit the progress of osteosarcoma. Polymer- 
based, lipid-based, inorganic-based nanoparticles and extracellular vesicles were used to deliver miRNAs for the treatment of 
osteosarcoma. They can be modified to enhance drug loading and delivery capabilities. Also, miRNA delivery was combined with 
traditional therapies, for example chemotherapy, to treat osteosarcoma. Consequently, miRNA delivery offers promising therapeutic 
avenues for osteosarcoma, providing renewed hope for patients. This review emphasizes the studies utilizing nanoparticles for miRNA 
delivery in osteosarcoma treatment, then introduced and summarized the nanoparticles in detail. And it also discusses the prospects for 
clinical applications. 
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Introduction
Osteosarcoma originates from primitive mesenchymal cells and is the predominant malignant primary bone tumor in 
children and adolescents aged 0–24 years.1 Most osteosarcoma cases manifest in the lower long bones.2 Osteosarcoma 
can be classified into the osteoblastic, chondroblastic, and fibroblastic subtypes.3 A defining feature of osteosarcoma is 
the osteoid extracellular matrix, which is predominantly composed of collagen I.4 Osteosarcoma is characterized by 
notable inter- and intra-tumoral heterogeneity.5 The development of osteosarcoma is linked to intricate genetic mutations, 
notably chromothripsis, chromoplexies, and kataegis mutations.6 The most frequently mutated genes involved in 
osteosarcoma pathogenesis are tumor suppressor p53 (TP53) and the retinoblastoma susceptibility gene (RB1). 
Additionally, approximately 90% of osteosarcomas exhibit mutations in breast cancer (BRCA)-related genes.6 The 
recurrence and metastasis of osteosarcoma significantly affect patients’ survival.7 Consequently, novel osteosarcoma 
treatments with substantial research potential are urgently needed to target mutated genes.

Currently, the standard treatment for osteosarcoma is neoadjuvant chemotherapy supplemented by a combination of 
surgical and adjuvant therapies.8 Osteosarcoma metastasis, influenced by the bone microenvironment, poses considerable 
challenges for both surgical and chemotherapeutic interventions.9 Immunotherapy and targeted chemotherapy are 
emerging strategies for osteosarcoma treatment, encompassing the innovation of novel drug delivery systems.10

MiRNAs are single-stranded endogenous RNA, approximately 22 nucleotides in length.11 Lee et al12 first identified miRNAs 
in Caenorhabditis elegans in 1993. Within the nucleus, RNA polymerase II transcribes miRNA genes into pri-miRNAs, which 
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are subsequently cleaved into pre-miRNAs by Drosha and its cofactor DGCR8/Pasha.13 Subsequently, Exportin 5 transports pre- 
miRNAs to the cytoplasm, where Dicer cleaves them into small double-stranded RNAs termed miRNA duplexes.14 The miRNA 
duplex is incorporated into the guide strand channel of an argonaute protein, resulting in the formation of an RNA-induced 
silencing complex (RISC).15 The RISC complex then facilitates the recognition of the targeted mRNA, leading to either mRNA 
destabilization or translational repression (Figure 1).16

MiRNAs, functioning in association with argonaute and the 182 kDa glycine-tryptophan protein, engage with the 
mRNA 3′-untranslated region (UTR). This interaction leads to translational repression, deadenylation, and degradation, 
culminating in specific biological effects.17 MiRNAs play pivotal roles in modulating diverse physiological processes, 
including proliferation, differentiation, and immunity.18 Concurrently, miRNAs participate in the orchestration of cancer- 
associated pathological processes, including cell cycle regulation, proliferation, apoptosis, invasion, migration, and 
angiogenesis.19,20 Therapies based on the gene-regulating functions of miRNAs have been used for tumor treatment.21

MiRNA delivery involves safeguarding and stabilizing endogenous or exogenous miRNA structures via diverse 
techniques. This process ensures targeted delivery to disease sites, facilitates gene regulation, and aids in disease 
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treatment.22 These miRNAs include tumor suppressors (TS miRNAs), oncogenes (oncomiRs), miRNA mimics, and 
molecules specifically targeting miRNAs (anti-miRs).23 TS miRNAs, which are typically downregulated in cancer, and 
oncomiRs, which are often overexpressed in cancer, are endogenous.24 Utilizing exogenous miRNAs to modulate the 
expression of endogenous miRNAs offers a therapeutic approach for cancer.

Encapsulation of miRNAs into nanocarriers can improve delivery efficiency and become a promising strategy for 
targeting therapy of cancer.25 Currently, many types of vectors are used for delivery of miRNAs.26 Polymer-based 
carriers are capable of adsorbing or encapsulating miRNAs and can also be modified with groups or molecules to 
increase performance.27,28 Liposomes are highly biocompatible and have been widely used to deliver miRNAs.29 

Exosomes, secreted by cells, are capable of carrying various secretions and have homing properties to target lesions.30 
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Figure 1 MiRNA Biogenesis: Typically, RNA polymerase II (Pol II) transcribes a miRNA gene into the primary miRNA (pri-miRNA). In the nucleus, the RNase III 
endonuclease Drosha, along with the double-stranded RNA-binding domain (dsRBD) protein DGCR8/Pasha, processes the pri-miRNA. This results in a 2-nt 3′overhang that 
encompasses the ~70-nt precursor miRNA (pre-miRNA). Exportin-5 transports the pre-miRNA into the cytoplasm. Here, another RNase III endonuclease, Dicer, in 
conjunction with the dsRBD protein TRBP/Loquacious, cleaves it. This action yields a 2-nt 3′ overhang that holds a ~21-nt miRNA:miRNA* duplex. The miRNA strand 
integrates into an Argonaute-containing RNA-induced silencing complex (RISC), through which it modulates mRNA translation.
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Inorganic nanoparticle can be used in conjunction with a variety of methods, such as magnetic fields and photothermal 
therapy, to enhance the effect of miRNA delivery.31

Strategies centered on miRNA-targeted delivery for tumor treatment have demonstrated efficacy and have been 
transitioned into clinical trials, revealing significant application potential.32 This advancement also kindles optimism for 
miRNA-based gene-targeted therapies for osteosarcoma. In this context, our study delves into the recent discoveries 
related to osteosarcoma treatment via miRNA delivery, summarizes the vectors used and explores the potentials for 
clinical applications.

Roles of miRNAs in Tumors
In 2002, Carlin et al33 discovered that both miR-15 and miR-16 were either deleted or downregulated in 68% of patients 
with chronic lymphocytic leukemia, marking the inaugural identification of the association between miRNAs and tumors. 
Subsequently, researchers have progressively delved deeper into the relationship between miRNAs and tumors.34,35 The 
dysregulation of expression of miRNAs in cancer is intricately linked to tumor pathogenesis.36 Therefore, targeting and 
modulating miRNA expression may be a novel therapeutic approach for cancer treatment.37 Deregulated miRNAs in 
pathological conditions can be addressed through miRNA replacement therapies using miRNA mimics or by inhibiting 
the function of miRNAs using anti-miRs, both of which hold therapeutic promise.23 In 2013, MRX34, a synthetic 
double-stranded miR-34a mimic, was introduced clinically for the first time in tumor treatment.38 A deeper exploration of 
the role of miRNAs in tumorigenic mechanisms could expedite their therapeutic application in tumor treatments.39

Multiple miRNAs play pivotal roles in the evolution and progression of breast and prostate cancers.40 Xu et al41 

identified that miRNA-135 curbed the onset of epithelial-mesenchymal transition (EMT) in breast cancer. This was 
achieved by targeting and downregulating zinc finger protein 217 (ZNF217) and subsequently preventing Nanog 
homeobox (NANOG) upregulation by reducing N6-methyladenosine levels via methyltransferase-like 13 (METTL13). 
Gan et al42 observed that elevated levels of miR-375 in patients with castration-resistant PCa could expedite prostate 
cancer progression and resistance to enzalutamide. This was achieved by disrupting the expression of phosphatase non- 
receptor type 4, which subsequently stabilized phosphorylated signal transducer and activator of transcription 3 (STAT3). 
Khan et al43 determined that miR-1 directly targeted the 3’-UTR of CXC chemokine receptor type 4 (CXCR4), which 
hindered Forkhead box M1 (FOXM1) from binding to the Ribonucleotide reductase M2 (RRM2) promoter, thereby 
inhibiting the growth and metastasis of small cell lung cancer. Additionally, researches indicated that tumor-derived 
exosomes significantly influenced cancer development by promoting cancer proliferation, invasion, metastasis, EMT, and 
immune evasion.44–46 Qiu et al47 discovered that exo-miR-519a-3p derived from gastric cancer triggered M2 polarization 
in intrahepatic macrophages, leading to the establishment of premetastatic niches rich in angiogenesis. Zeng et al48 

discovered that exosomal miR-25-3p, originating from colorectal cancer cells, elevated the expression of vascular 
endothelial growth factor receptor-2 (VEGFR2), zonula occludens-1 (ZO-1), occludin, and Claudin5 in endothelial 
cells by targeting Krüppel-like factor 2 (KLF2) and Krüppel-like factor 4 (KLF4). This action enhanced vascular 
permeability and angiogenesis, thereby promoting colorectal cancer metastasis. Consequently, miRNAs are intricately 
linked to the biological behaviors of tumors and are promising targets for tumor therapy.49

Effects of miRNAs in the Occurrence and Development of Osteosarcoma
Numerous studies have explored the role of miRNAs in promoting osteosarcoma development, highlighting their 
potential therapeutic targets (Table 1).

Cell Proliferation
Cell proliferation is a defining characteristic of the cancer cells. Many studies explored the mechanisms by which 
miRNAs promote the proliferation of osteosarcoma cells.69 The phosphatase and tensin homolog (PTEN) can curtail 
osteosarcoma proliferation by negatively modulating the phosphatidylinositol 3-kinase/protein kinase B/mammalian 
target of rapamycin (PI3K/AKT/mTOR) pathway.70 A research indicated that miR-93 could target PTEN, leading to 
the inhibition of osteosarcoma proliferation.50 In osteosarcoma cells, while miR-let-7a expression diminished, its target 
gene E2F Transcription Factor 2 (E2F2) was upregulated. Overexpression of let-7a in these cells markedly reduced tumor 
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growth in vivo.51 Additionally, Zhang et al53 discovered that overexpression of miR-221 in osteosarcoma cells bolstered 
osteosarcoma proliferation and induced apoptosis. This effect was attributed to the downregulation of F-box and WD 
repeat domain containing 11 (FBXW11), which amplified Wnt signaling activity.

Cell Apoptosis
Apoptosis, a structured and coordinated cell death process, is prevalent in both physiological and pathological states but 
is notably reduced in cancer.71 Endoplasmic reticulum stress (ERS) arises from the accumulation of misfolded proteins 
within the ER, culminating in apoptosis of osteosarcoma cells.72 Jiang et al54 observed that during ERS, p53 upregulates 
miR-1281, which subsequently targeted and suppressed ubiquitin-specific protease 39 (USP39), thereby inducing 
apoptosis in osteosarcoma cells. Zhang et al55 identified that in osteosarcoma cells subjected to tunicamycin or 
thapsigargin-induced ERS, miR-663a directly bound to ZBTB7A 3′-UTR, reducing its expression. This action negated 
ZBTB7A transcriptional repression of lncRNA GAS5, amplifying ERS-induced apoptosis.

Cell Metastasis
Metastasis involves the proliferation of cancer cells at sites distant from their origin and encompasses processes such as 
dissemination, dormancy, and colonization.73 MiRNAs interact with multiple signaling pathways that regulate 

Table 1 MiRNAs in Osteosarcoma

MiRNA Effect on osteosarcoma In vivo/in vitro trial Proposed mechanism References

MiR-93 Proliferation↑ In vivo and in vitro PTEN↓ [50]

Let-7a Proliferation↓ In vivo and in vitro E2F2↑ [51]

Metastasis↑ In vivo and in vitro C15orf41↓ [52]

MiR-221 Proliferation↑ In vitro FBXW11↓ [53]

Apoptosis↓

MiR-1281 Apoptosis↑ In vivo and in vitro USP39↓ [54]

MiR-663a Apoptosis↑ In vivo and in vitro ZBTB7A↓ [55]

MiR-382 Metastasis↓ In vivo and in vitro YB-1↓ [56]

MiR-101 Metastasis↓ In vivo and in vitro BCL6↓ [57]

MiR-487b-3p Metastasis↓ In vivo and in vitro ALDH1A3↓ [58]

MiR-199a-5p Angiogenesis↓ In vivo and in vitro VEGFA↓ [59]

MiR-134 Angiogenesis↓ In vivo and in vitro VEGFA↓, VEGFR1↓ [60]

MiR-381 Angiogenesis↓ In vivo and in vitro VEGFA↓ [61]

MiR-CT3 Angiogenesis↓ In vitro VEGFA↓ [62]

MiR-424-5p Angiogenesis↓ In vitro VEGFA↓ [63]

MiR-17/20a Immune regulation 

(macrophages↓)

In vivo and in vitro Csf1↓ [64]

MiR-499a Drug resistance↓ In vivo and in vitro SHKBP1↓ [65]

MiR-29b-1 Drug resistance↓ In vitro (uncertified) [66]

MiR-140 Drug resistance↑ In vitro (uncertified) [67]

MiR-215 Drug resistance↑ In vitro DTL↓ [84]
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osteosarcoma metastasis, presenting potential targets for metastasis inhibition and osteosarcoma treatment.74 

Osteosarcoma cells can lose polarity and initiate invasion and migration via EMT, a process modulated by miRNAs.75 

Xu et al56 observed the downregulation of miR-382 in osteosarcoma cells. However, elevating miR-382 levels curtailed 
EMT and osteosarcoma cell metastasis by targeting Y box-binding protein 1. Zhang et al57 observed that miR-101 
expression was markedly reduced in metastatic osteosarcoma cells compared with non-metastatic cells. However, 
amplifying miR-101 expression hindered osteosarcoma cell invasion and migration by suppressing the expression of 
B-cell lymphoma 6 (BCL6), an osteosarcoma tumor suppressor. Cheng et al58 discovered that elevated miR-487b-3p 
levels suppressed osteosarcoma cell migration by targeting aldehyde dehydrogenase family 1 member 3 (ALDH1A3).

Angiogenesis
Angiogenesis is the process through which new capillaries emerge from an existing vascular network.76 The vascular 
endothelial growth factor (VEGF) plays a pivotal role in regulating angiogenesis.77 VEGF facilitates the detachment of 
pericytes from the basement membrane, weakens the extracellular matrix via proteolytic degradation, and subsequently 
drives the migration and proliferation of the endothelial cells lining the inner walls of blood vessels.78 VEGF promotes 
the proliferation and survival of endothelial cells and contributes to tumor angiogenesis.79 Thus, targeting VEGF could 
be a strategy for curtailing tumor growth.

Emerging evidence indicates that miRNAs play a pivotal role in regulating tumor angiogenesis.80 Numerous studies 
have demonstrated that miRNAs modulate osteosarcoma angiogenesis by targeting VEGF-A. Zhang et al59 discovered that 
exosomal miR-199a-5p derived from osteosarcoma cells translocated to human umbilical vein endothelial cells (HUVECs), 
targeting and suppressing VEGFA expression, thereby inhibiting osteosarcoma growth and angiogenesis. Zhang et al60 

observed that miR-134 expression was reduced in osteosarcoma cells. However, when overexpressed, miR-134 targeted 
and suppressed VEGFA and VEGFR1, thereby inhibiting osteosarcoma angiogenesis and proliferation. Tsai et al61 

discovered that Wnt-induced signaling protein 1 (WISP-1) enhanced VEGFA expression and angiogenesis by diminishing 
miR-381 expression, thereby advancing osteosarcoma progression. Raimondi et al62 identified that miR-CT3 curtailed 
tumor angiogenesis by targeting VEGFA. Moreover, anti-angiogenic medications can suppress VEGFA synthesis through 
miRNAs, consequently inhibiting angiogenesis in osteosarcoma. Vimalraj et al63 revealed that melatonin elevated miR- 
424-5p expression in osteosarcoma, leading to VEGFA inhibition.

Immune Regulation
The tumor microenvironment (TME) comprises a network of immune cells that secrete numerous cytokines, regulating 
immune responses and influencing tumor behavior.81 Macrophages are pivotal components of the TME. Nirala et al64 

determined that hyperactivation of myelocytomatosis oncogene (MYC) resulted in macrophage colony-stimulating factor 1 
(CSF1) downregulation due to elevated miR-17/20a expression, leading to reduced macrophage presence in the osteosar-
coma TME. Yan et al52 observed the upregulation of let-7a levels in exosomes derived from tumor-associated macrophages 
(TAMs). This upregulation targeted the 3’-UTR of C15orf41, leading to increased invasion and migration in osteosarcoma.

Drug Resistance
Chemotherapy resistance poses a significant challenge to the treatment of osteosarcoma. However, strategies targeting the 
genes responsible for this resistance are promising.82 MiRNAs can target signaling pathways associated with chemoresistance 
genes in osteosarcoma, thereby enhancing the sensitivity of cells to chemotherapy.83 Wang et al65 discovered that transforming 
growth factor-β (TGFβ)-induced EMT reduced miR-499a expression via Snail1/Zeb1 binding directly to the miR-499a 
promoter. This subsequently elevated SH3KBP1-binding protein 1 (SHKBP1) expression, a target of miR-499a, thereby 
increasing erlotinib resistance in osteosarcoma cells. Di Fiore et al66 observed the downregulation of miR-29b-1 in human 
osteosarcoma cells. However, miR-29b-1 upregulation suppressed stemness and increased chemosensitivity in the 3AB- 
osteosarcoma cancer stem cell (CSC) human osteosarcoma cell line. Song et al67 revealed that miR-140 enhanced chemore-
sistance in osteosarcoma cells by targeting histone deacetylase 4. Song et al84 determined that miR-215 induced G2 phase 
blockade by targeting and suppressing denticleless E3 ubiquitin protein ligase homolog (DTL) expression, thereby reducing 
cell proliferation. This resulted in the increased resistance of osteosarcoma cells to methotrexate and Tomudex.
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MiRNA Delivery
MiRNAs that are intricately linked to the signaling pathways involved in the onset and progression of osteosarcoma can be 
modulated to hinder osteosarcoma progression.68 While miRNA-based therapies hold significant promise for tumor 
treatment, the direct introduction of miRNAs as drugs into the body can substantially reduce their efficacy.85 The direct 
introduction of exogenous miRNA mimics and anti-miRs into the body poses challenges, including degradation by RNases, 
potential absorption by tissues and organs, and possible harm to the organism.86 Consequently, drug delivery systems that 
safeguard miRNAs, ensure targeted delivery, enhance their efficacy, and accelerate their clinical application, are needed.

Currently, vectors for miRNA delivery for tumor treatment are categorized into viral and nonviral types.87,88 While 
viral vectors have a high delivery efficiency, they pose significant safety concerns. In contrast, nonviral vectors, despite 
their lower delivery efficiency, offer greater safety and hold substantial promise for clinical use.89 Consequently, recent 
clinical studies on miRNA delivery vectors have predominantly focused on nonviral vectors.90

Treatment of Osteosarcoma by miRNA Delivery
Using nanoparticles to deliver miRNAs for cancer treatment has proven to be feasible.91 Moreover, miRNA delivery can 
be used to treat osteosarcomas. In this section, we discuss studies on the use of nanomaterials for miRNA delivery in 
osteosarcoma treatment (Figure 2 and Table 2).
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MiRNA Delivery via Polymer-Based Nanoparticles
Dextran is a water-soluble, biocompatible, and biodegradable substance that is non-toxic and non-immunogenic. Its 
properties can be enhanced by structural modifications, making it a popular drug delivery system.106 Zhang et al92 used 
lipid-modified dextran-based polymeric nanoparticles to introduce miR-199a-3p and let-7a into osteosarcoma cells, 

Table 2 Nanoparticles for miRNA Delivery

Nanoparticle 
type

Composition MiRNA element Drug co- 
delivery

In vivo/in vitro trial Size [nm] Reference

Polymer-based Dextran MiR-199a-3p, let-7a – In vitro 351.6±2.5 [92]

Dendritic polyglycerolamine 
(dPG-NH2)

miR-34a Mimics, miR-93 
mimics, miR-200c 
mimics

– In vivo and in vitro 80.32±23.79 [93]

Poly-beta-amino-esters (pBAE) MiR-29b mimics Doxorubicin In vivo and in vitro 151±2 [94]

Pluronic® L64- 
polyethyleneimine (L64-PEI)

MiR-145 – In vitro ≈100-250 [95]

TGIC-CA (TC) MiR-22 Volasertib In vivo and in vitro ≈200 [96]

Ethanolamine (EA)-modified 
poly (glycidyl methacrylate) 
(PGEA)

MiR-223 – In vivo and in vitro ≈180 [97]

Lipid-based PEGylated Staramine 
nanoparticles

Anti-miR-20a 
oligonucleotides

– In vivo and in vitro – [98]

Extracellular 
vesicles

BMSCs-derived exosomes MiR-206 mimic – In vivo and in vitro ≈100 [99]

AD-MSCs-derived exosomes The lentiviral particles 
encoding miR-101

– In vivo and in vitro – [57]

MSCs-derived exosomes MiR-22 mimics – In vitro – [100]

BMSCs-derived exosomes MiR-143 – In vitro 60–180 [101]

H143B-derived exosomes The lentiviral particles 
encoding miR-144-3p

– In vivo and in vitro 131.8 [102]

Inorganic-based Poly(ethylenimine)-dextran- 
iron oxide nanoparticles (PDIs)

MiR-302b plasmids – In vivo and in vitro 148.67 ± 1.52 [103]

Polydopamine (PDA) -coated, 
folate (FA) -modified iron 
oxide (Fe2O3@PDA-FA)

NH2-miR-520a-3p – In vivo and in vitro 89 ± 2.08 [104]

FePS3 and poly-L-lysine-PEG- 
folic acid (FePS@PPF)

Anti-miR-19a – In vivo and in vitro 206.1 [196]

Abbreviations: miRNAs, microRNAs; TP53, tumor suppressor p53; RB1, retinoblastoma susceptibility gene; BRCA, breast cancer; RISC, RNA-induced silencing complex; 
UTR, untranslated region; TS, tumor suppressors; EMT, epithelial-mesenchymal transition; ZNF217, zinc finger protein 217; NANOG, Nanog homeobox; METTL13, 
methyltransferase-like 13; STAT3, signal transducer and activator of transcription 3; CXCR4, CXC chemokine receptor type 4; FOXM1, Forkhead box M1; RRM2, 
Ribonucleotide reductase M2; VEGFR2, vascular endothelial growth factor receptor-2; ZO-1, zonula occludens-1; KLF2, Krüppel-like factor 2; KLF4, Krüppel-like factor 4; 
PTEN, phosphatase and tensin homolog; PI3K/AKT/mTOR, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin; E2F2, E2F Transcription Factor 2; 
FBXW11, F-box and WD repeat domain containing 11; ERS, endoplasmic reticulum stress; USP39, ubiquitin-specific protease 39; BCL6, B-cell lymphoma 6; ALDH1A3, 
aldehyde dehydrogenase family 1 member 3; VEGF, vascular endothelial growth factor; HUVECs, human umbilical vein endothelial cells; WISP-1, Wnt-induced signaling 
protein 1; TME, tumor microenvironment; MYC, myelocytomatosis oncogene; CSF1, colony-stimulating factor 1; TAMs, tumor-associated macrophages; TGFβ, transforming 
growth factor-β; SHKBP1, SH3KBP1-binding protein 1; CSC, cancer stem cell; DTL, denticleless E3 ubiquitin protein ligase homolog; PEG, polyethylene glycol; dPG-NH2, 
dendritic polyglycerolamine; pBAE, poly-beta-amino esters; HA, hyaluronic acid; CD44, cluster of differentiation-44; Dox, doxorubicin; PEI, polyethyleneimine; TGIC, 
1,3,5-triglycidyl isocyanurate; CA, cystamine; PGEA, ethanolamine-modified poly (glycidyl methacrylate); MPS, mononuclear phagocyte system; MSCs, mesenchymal stem 
cells; EVs, extracellular vesicles; MSC-EVs, mesenchymal stem cell-extracellular vesicles; hBMSC, human bone marrow-derived mesenchymal stem cell; TRA2B, transformer 
2 protein homolog beta; AD-MSC, adipose-derived mesenchymal stem cell; MNPs, magnetic nanoparticles; PDIs, poly (ethylenimine), dextran, and iron oxide nanoparticles; 
YOD1, YOD1 deubiquitinase; Chi-xPEI, chitosan-PEI crosslinked polymer; PTT, photothermal therapy; PDA, polydopamine; Fe2O3@PDA-FA, polydopamine-coated, folate- 
modified iron oxide; PPF, poly-L-lysine-PEG-folic acid; FePS@PPF, a multifunctional nanoplatform crafted from FePS3 and poly-L-lysine-PEG-folic acid; NIR, near-infrared.
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inhibiting proliferation and growth of osteosarcoma cells. The lipid-modified dextran is amphiphilic dextran copolymers, 
which can self-assemble in an aqueous environment by hydrophobic interactions, forming spherical nanoparticles known 
as micelles.107 The drug can then be encapsulated in a hydrophobic environment inside the carrier, increasing stability of 
the drug.108 Also, the polyethylene glycol (PEG) on its surface reduces the clearance of the carrier by the reticuloen-
dothelial system, thereby increasing the retention time of the drug in the circulation.109 Zhang et al was the first to use 
polymers to encapsulate miRNAs to inhibit osteosarcoma. The effectivity and targetability of lipid-modified dextran- 
based polymeric nanoparticles to the osteosarcoma within organisms are uncertain because Zhang et al did not conduct 
vivo experiments in osteosarcoma. In addition, the safety of the lipid-modified dextran-based polymeric nanoparticles on 
organisms is still needed to verify by more experiments.

Dendritic polyglycerolamine (dPG-NH2) is a nanocarrier derived from polyglycerol. dPG-NH2 possesses 175 amines 
per mole of polymer, enabling it to bind negatively charged miRNAs.93 Tiram et al93 successfully delivered miR-93,50 

miR-200c,110 and miR-34a111 into human osteosarcoma cells both in vitro and in vivo by dPG-NH2. These miRNAs 
induced tumor dormancy which extending time window of treatment.93 Therefore, miRNA delivery not only inhibits 
osteosarcoma growth, but also brings hopes for the applications of other treatments of osteosarcoma. And it inspires the 
idea that we could combine other treatments, such as chemotherapy and surgery, with miRNA delivery to increase the 
therapeutic effect. Additionally, the enhanced permeability and retention effect allows nanoparticles to penetrate and 
accumulate more effectively in tumor cells, thus enhancing the therapeutic impact of drugs encapsulated within the 
nanoparticles.112,113 Tiram et al93 demonstrated the accumulation of miRNAs in tumor cells through in vivo experiments, 
which suggested that dPG-NH2 successfully delivered miRNAs into the tumor tissue. But we do not know the 
distribution of miRNAs in other tissues and organs in the body compared to tumor tissues, which is related to the 
vector’s tropism to tumors. One study highlighted that cationic nanoparticles disrupted cell membrane integrity more 
significantly than anionic nanoparticles, posing a potential biological risk.114 Hence, experiments are also needed to 
explore the biotoxicity of dPG-NH2.

Poly-beta-amino esters (pBAE) are cationic polymers synthesized through the Michael addition of acrylates to 
amines.115 pBAE has been extensively used in drug delivery research because of its biocompatibility, 
biodegradability.116 Freeman et al94 used pBAE combined with hyaluronic acid (HA) to deliver miR-29b for osteosar-
coma treatment. As the HA underwent swelling and degradation, it gradually released pBAE to deliver miRNAs 
progressively,94 which contributed to reduce the number of administrations and increase patient compliance in clinical 
therapy. In addition, the receptor for HA, cluster of differentiation-44 (CD44), which is upregulated in OS cell lines,117 is 
overexpressed in various cancers and is used for CD44-mediated tumor targeting.118 Therefore, the aggregation of 
nanoparticles and miRNAs within osteosarcoma cells under HA targeted delivery in vivo can be further investigated in 
the future. Additionally, Freeman et al94 combined systemic doxorubicin (Dox) administration with the targeted delivery 
of miR-29b. They demonstrated that miR-29b offered benefits in terms of reduced osteolysis which resulted from Dox.94 

Thus, delivery of miRNAs not only increases the efficacy of chemotherapeutic drugs, but also alleviates the suffering of 
body caused by chemotherapy. Furthermore, the above studies demonstrated that miRNA-targeted delivery combined 
with chemotherapeutic agents was effective and feasible.

Magalhães et al95 employed a micellar nanosystem composed of the amphiphilic copolymer Pluronic® L64 and the 
cationic polymer polyethyleneimine (PEI) for the delivery of therapeutic miRNA-145 to osteosarcoma cells. PEI is 
a cationic polymer with several positive charges.119 Conversely, RNA is a biomolecule with a prominent negative 
charge.120 It can bind to PEI, facilitating its passage through negatively charged cell membranes.121 Pluronic® L64, 
a neutral amphiphilic triblock copolymer, has a hydrophobic core and a hydrophilic shell, which can interact with 
phospholipid pairs in cell membranes and alter the membrane structure and function.122 Chen et al122 discovered that in 
a cellular internalization assay of PEI/pDNA, L64 enhanced the permeability of endosomal/lysosomal membranes, 
facilitating the escape of PEI/pDNA from endosomal/lysosomal catabolism. So Pluronic® L64 serves as a guardian, 
increasing the retention time of miRNAs in the circulation to serve as an effective vector for miRNA delivery. miR-145, 
which is diminished in osteosarcoma tissues and cell lines, inhibits osteosarcoma cell proliferation and invasion by 
targeting and silencing Rho-associated protein kinase 1.123 It also targets VEGF to inhibit osteosarcoma cell invasion and 
angiogenesis.124 Additionally, miR-145 suppresses EMT in osteosarcoma by targeting Snail, a potent repressor of 
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E-cadherin transcription.125 In an in vitro study using the osteosarcoma cell line MG-63, Magalhães et al95 demonstrated 
that the L64-PEI/miR-145 drug formulation effectively transported and released miR-145 into the cell cytoplasm which 
led to apoptosis and hindered cell migration. But PEI, due to its numerous amine groups, has evident cytotoxicity to 
cells.126,127 However, as mentioned earlier, PEI readily binds to RNA and serves to act as a transporter or bridge to other 
substances and it is an excellent carrier for RNA delivery. Therefore, we can modify PEI to reduce its toxicity.128,129 

Pluronic® L64 has been studied for the use of intramuscular delivery of genes.130,131 But the study on Pluronic® L64 in 
tumor therapy is not sufficient. Thus, its toxicity in living organisms still needs to be further investigated.

Chen et al96 employed TGIC-CA (TC), a hydroxyl-rich, reduction-responsive cationic polymeric nanoparticle. It was 
synthesized via a one-step epoxy ring-opening reaction between 1,3,5-triglycidyl isocyanurate (TGIC) and cystamine 
(CA) to deliver miRNA-22 for osteosarcoma treatment.96 Owing to its abundant hydroxyl groups, this polyhydroxy 
cationic polymer, synthesized using reagents with multiple amino or epoxy groups through a direct ring-opening reaction, 
exhibited higher transfection efficiency and lower cytotoxicity than PEI.126 Additionally, Volasertib, a potent cell cycle 
kinase inhibitor, was delivered using TC along with miR-22.96 Research has indicated that both miR-22 and Volasertib 
inhibit the PI3K/Akt pathway.132,133 The combined therapeutic effect of TC/miR-22 and Volasertib was proved to be 
better than that of TC/miR-22 alone.96 Hence, combining miRNA-targeted delivery of polymer with chemotherapeutic 
agents holds significant promise for osteosarcoma treatment.

Ethanolamine-modified poly (glycidyl methacrylate) (PGEA) is a cation carrier enriched with hydroxyl groups. It 
has low toxicity and high transfection efficiency, making it a popular choice in recent gene therapy studies.134,135 

Research has indicated that miR-223 plays a role in hindering the progression of osteosarcoma.136,137 Chen et al97 used 
PGEA to deliver miR-223 in vivo, which effectively inhibited the proliferation, invasion, and migration of osteosarcoma 
cells without causing notable toxicity. Additionally, the adjacent nonionic hydrophilic hydroxyl groups boost the affinity 
of the cationic polymer for the anionic gene, enhancing transfection efficiency and also shielding the potentially harmful 
cationic charge of the carrier.138,139 The presence of hydroxyl groups diminishes the interaction between PGEA and 
serum proteins, thereby promoting its stability in the bloodstream.140–143 Hence, the introduction of hydroxyl group 
modifications significantly enhances cationic polymer carriers’ affinity for miRNAs and reduces the probability of being 
disturbed by substances in the blood circulation.

The in vivo metabolism, accumulation, and side effects of polymer vectors also need to be considered if polymer 
vectors are to be used in the clinic for delivery of miRNAs for the treatment of osteosarcoma.144–146

MiRNA Delivery via Lipid-Based Nanoparticles
Liposomes have been widely studied for in vivo drug delivery.147 PEGylation shields nanocapsules from plasma protein 
adsorption and mononuclear phagocyte system (MPS) detection, thereby facilitating their circulation in the bloodstream 
and subsequent drug release.148 Liposomes with a particle size of 20–100 nm were reported to exhibit uniform drug 
encapsulation, stable drug release, and longer circulation times.149 And the particle size of PEGylated Staramine was 
about 80–100 nm according to a previous research.150 Yang et al98 used PEGylated Staramine to deliver anti-miR-20a 
oligonucleotides targeting Fas to suppress lung metastatic osteosarcoma by intravenous injection. Therefore, to address 
the early metastatic nature of osteosarcoma, systemic administration, for example, intravenous injection, may plays 
a more effective role in inhibiting potential osteosarcoma metastases.151 However, research has indicated that PEGylated 
lipid nanocarriers possess immunogenic properties, potentially diminishing carrier absorption and posing safety 
concerns.152 However, subsequent research showed that polyethylene glycosylation did not increase cell death rates.153 

And perhaps the formulation of different kinds of lipids affects the cytotoxicity of lipid nanoparticles.153,154 In addition, 
application of liposomes with excessive diameter should be avoided as it may lead to fat embolization.155,156 And 
whether the immune evasion of liposomes for a long period of time will have adverse effects on the organism still needs 
to be further investigated.

MiRNA Delivery via Extracellular Vesicles
Mesenchymal stem cells (MSCs) are pluripotent cells with the ability to differentiate into diverse cell types and exhibit 
immunomodulatory and tumor-homing properties.157 Given their low immunogenicity and tumor-homing capabilities, 
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MSCs can be engineered to produce antitumorigenic miRNAs.158 Exosomes are extracellular vesicles (EVs) measuring 
40–160 nm in diameter that carry substances from their originating cells. They are secreted and play a role in intercellular 
signaling.159 Mesenchymal stem cell-extracellular vesicles (MSC-EVs) exhibit low immunogenicity and possess tumor- 
targeting capabilities, making them suitable for the delivery of miRNAs in tumor treatment.160 Numerous studies have 
explored miRNA delivery using MSC-EVs.161

MSC-EVs significantly influence the onset, progression, and treatment of osteosarcoma.162 However, exosomes from 
original MSCs may facilitate progression of cancer.163 That is because primitive MSCs are able to secrete exosomes 
carrying miRNAs which can promote proliferation of osteosarcoma.164–166 Thus, engineered exosomes from MSCs are 
ideal miRNA carriers for targeted tumor therapy.167 Given that certain MSC-EVs can enhance tumor growth, employing 
exosomes from MSCs with tumor-suppressive traits can be an effective strategy for cancer therapy.168

Numerous studies have focused on engineered MSC exosomes carrying miRNAs targeting osteosarcoma and their 
specific mechanism. Zhang et al99 introduced miR-206 mimics into human bone marrow-derived mesenchymal stem cell 
(hBMSC). This miR-206 was then transferred to the human osteosarcoma cell line 143 B via hBMSC-derived exosomes, 
which subsequently inhibited osteosarcoma growth and spread by targeting transformer 2 protein homolog beta 
(TRA2B). Zhang et al57 employed a lentivirus to make adipose-derived mesenchymal stem cell (AD-MSC) express 
miR-101, using exosomes for targeted delivery, which inhibited the lung metastasis of osteosarcoma. MSC-EVs loaded 
with miR-22 also inhibited osteosarcoma by targeting the Twist1/CADM1 axis.100 Thus, engineering MSC-EVs can turn 
them into excellent carriers for miRNA delivery for the treatment of osteosarcoma.169,170 However, it remains to be 
explored whether the other contents of the exosomes may cause a negative effect on the body, and whether miRNAs 
within exosomes will pair spontaneously reducing efficacy.171,172 Preparation procedures of exosomes are cumbersome 
and can only be stored at low temperatures, resulting in high costs, which may limit their widespread use.173,174 

Therefore, more safety validation and clinical trials are needed in order to use engineered MSC exosomes for the 
clinical treatment of osteosarcoma.175,176

Exosomes derived from tumor cells preferentially target tumors because of their homotypic characteristics.177 In 
addition, exosomes derived from osteosarcoma cells can serve as miRNA delivery vectors. Shimbo et al101 introduced 
miR-143 into human osteosarcoma cell line 143 B. The resulting 143B-derived exosomes then conveyed miR-143 back 
to 143 B cells, inhibiting their migration. Recently, induction of ferroptosis in tumor cells has become a new direction in 
tumor therapy.178,179 Engineering exosomes to induce ferroptosis in tumor cells is a promising therapy strategy of 
tumor.180 Jiang et al102 enhanced the expression of miR-144-3p in the human osteosarcoma cell line, 143 B. miR-144-3p 
then promoted ferroptosis, curbing osteosarcoma growth and spread by modulating ZEB1 expression. However, 
exosomes originating from tumors contain elements that can promote cancer progression.44 Drug resistance of osteo-
sarcoma cells can be transmitted via miRNAs.181 Therefore, the use of tumor-derived exosomes as miRNA carriers in 
cancer therapy poses potential risks. Future research should explore the viability of tumor-derived exosomes as carriers 
for cancer treatment.

MiRNA Delivery via Inorganic-Based Nanoparticles
Magnetofection is an delivery strategy that combines magnetic drug targeting and gene delivery.182 The kinds of 
magnetic nanoparticles (MNPs), coating molecules on the surface that can affect their size and charge, external magnetic 
field, method of administration will influence their biodistribution.183,184 Surface functionalization of MNPs enhances 
their ability to adsorb miRNAs and prevents biodegradation.185 The use of ammonium terminal groups on the 
nanoparticle surface allows the electrostatic interactions between nanoparticles and miRNAs.186 So enhancing magnetic 
nanoparticles with specific substances, such as the cationic polymer PEI, can boost their transfection efficiencies.183 

While iron oxide nanoparticles show significant promise in biomedicine, they have a drawback in terms of their 
hydrophobic surfaces.187 The modification of iron oxide with dextran can counteract this limitation.106 Gong et al103 

used a magnetic gene carrier composed of PEI, dextran, and iron oxide nanoparticles (PDIs) to deliver miR-302b, 
targeting YOD1 deubiquitinase (YOD1) and suppressing osteosarcoma. In their cytotoxicity tests, the toxicity of PDI 
rose with increasing concentrations of low molecular weight (≤2000) PEI. However, at low concentrations, its toxicity 
was minimal, especially when compared to that of PEI with a molecular weight of 25 kDa.103 Lin et al188 created 
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a chitosan-PEI crosslinked polymer (Chi-xPEI) by crosslinking low-molecular-weight PEI with chitosan. This signifi-
cantly reduced the cytotoxicity of PEI. Additionally, NP-Chi-xPEI, produced by combining iron oxide nanoparticles with 
Chi-xPEI, demonstrated superior drug-loading capabilities that were reliant on PEI.188 Thus, modifying PEI cuts down 
requirement for miRNAs, offers lower cytotoxicity, and enhances the drug-loading efficiency of the inorganic nanopar-
ticles. This approach capitalizes on strengths while mitigating weaknesses. Gong et al103 highlighted the limitations in 
drug release and intratumoral distribution of PDI. Studies have suggested that surface functionalization can address these 
issues.189,190

Photothermal therapy (PTT) involves irradiation of a photosensitizer with a near-infrared laser to produce high 
temperatures that kill cancer cells. This method has been extensively studied for the treatment of bone cancer.191 Li et al104 

combined miR-520a-3p with polydopamine (PDA)-coated, folate-modified iron oxide (Fe2O3@PDA-FA) for osteosarcoma 
PTT, which effectively inhibited its growth. PDA modification enhances the biocompatibility and hydrophilicity of iron 
oxide and offers robust photothermal conversion capabilities suitable for PTT.192 The folate receptor is overexpressed in 
numerous tumor cells, allowing folate-modified nanocarriers to specifically target them.193–195 Similarly, Luo et al196 

employed a multifunctional nanoplatform crafted from FePS3 and poly-L-lysine-PEG-folic acid (PPF) (FePS@PPF), to 
convey anti-miR-19a, suppressing osteosarcoma growth. Li et al104 utilized an 808 nm near-infrared (NIR) laser for 
irradiation, whereas Luo et al196 employed a 1064 nm NIR-II laser. The chosen irradiation wavelength depends on the 
photothermal conversion efficiency and the depth of lesion.197 And for osteosarcomas that are deep in the tissue, long 
wavelength, such as the NIR-II window (1000–1700 nm), is required for effective treatment.105 Moreover, the control of the 
duration, temperature level and uniformity of photothermal therapy at the lesion site also affects its clinical 
translatability.198 Except from cancer, Fe2O3@PDA-FA and FePS@PPF mainly aggregated in the spleen, and their 
metabolic patterns and effects on the body still needed to be further clarified.104,196 In conclusion, merging the photothermal 
therapy with miRNA genes targeting, especially when utilizing inorganic nanocarriers, holds great promise.

Directions and Challenges in the Future
MiRNAs, which are key players in epigenetic regulation, have demonstrated potent regulatory and therapeutic effects on 
tumors with aberrant gene expression. MiRNAs are promising diagnostic biomarkers of osteosarcoma.199 And then 
numerous miRNAs have been linked to the onset and progression of osteosarcoma, positioning them as potential 
therapeutic targets.200 By analyzing expression profiles of miRNAs across various osteosarcoma types, specific 
miRNAs can be identified for targeted treatment.

MiRNAs are susceptible to be cleared by RNase in vivo, so they need to be protected and delivered by vectors.32,201 

Targeted miRNA delivery for tumor therapy is a burgeoning research area with immense potential. Safety remains 
paramount when selecting delivery vectors. While viral vectors offer robust transfection capabilities, they pose safety 
concerns.202 In contrast, nonviral vectors may have limited drug-loading capacity but are generally safer. Current 
researches on miRNA delivery for osteosarcoma treatment employed nanocarriers, such as polymers, liposomes, 
exosomes, and inorganic particles. Cationic polymers can be cytotoxic because of their abundant amino groups.203 

Intravenous injection of large liposomes has a risk of causing embolism.155,156 Exosomes excel in drug loading and 
biocompatibility; however, some studies have suggested that they may inadvertently promote cancer growth.164–166 The 
exact metabolism of inorganic-based nanoparticles in the body still needs to be explored.104,196 Fortunately, with proper 
engineering, these challenges associated with nanocarriers can be addressed.

Modifications are crucial for enhancing the nanocarrier performance. While abundant surface amino groups of 
PEI contribute to its cytotoxicity, modifications, such as ethylenediamine, can mitigate this effect.139 Using low 
molecular weight (≤2000) PEI to modify nanocarriers can reduce positive charge cytotoxicity while retaining its 
advantages.103 Additionally, suitable modifications can enhance the properties of polymeric supports. For instance, 
HA and folate modifications can enhance the tumor-targeting ability of nanocarriers.117,118 PEGylation extends the 
blood retention time of nanocarriers, thereby facilitating drug release.109 Choosing engineered exosomes from 
MSCs to inhibit osteosarcoma may address the issue of safety.167 These solutions have significant potential for 
safety.
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Given that osteosarcoma tends to metastasize early, the mode of administration is worth being considered. In the review, 
miRNA delivery modalities used to treat osteosarcoma are categorized into local and systemic applications. Chen et al96 

successfully inhibited osteosarcoma metastasis by local application of miRNAs. However, osteosarcoma tends to metas-
tasize early and often has been metastatic by the time it is diagnosed.204,205 Zhang et al57 shrank pulmonary metastasis of 
osteosarcoma by tail vein injection of miR-101 encapsulated in exosomes from adipose-derived mesenchymal stem cells. 
Therefore, systemic delivery might be suitable for osteosarcoma, especially for metastasis. More experiments are needed to 
explore the difference in efficacy between systemic and topical drug administration.

Combining miRNA delivery with other therapies offers promising potential for osteosarcoma treatment. When 
combined with chemotherapeutic drugs, miRNAs enhance the chemosensitivity of osteosarcoma, significantly improving 
the efficacy of chemotherapy.94 The integration of PTT with miRNA delivery holds considerable promise.104,196

Several miRNA-based therapies have been tested in clinical trials.22,206,207 However, no miRNA delivery therapy for 
osteosarcoma has entered clinical trials. Osteosarcoma development is characterized by intricate molecular mechanisms 
and alterations in the expression of several miRNAs.68 Gaining insight into the regulatory networks and associated 
signaling pathways of miRNAs in osteosarcoma could pave the way for initiating clinical trials of miRNA delivery.

Recently, plant-derived nanoparticles have become a hot research topic.208 Plant-derived exosome-like nanoparticles 
are widely available which relatively saves the cost, and are capable of delivering miRNAs.209 Thus, the feasibility of 
using plant-derived exosome-like nanoparticles to deliver miRNAs for the treatment of osteosarcoma could be explored 
in the future.

In summary, when modified with specific substances, the capabilities of nanocarriers can be optimized, making them 
highly effective for miRNA delivery in osteosarcoma treatment. Compared to exosomes whose contents are uncertain, 
polymers, liposomes, and inorganic-based nanoparticles have relatively more defined influence on the organism and thus 
have advantages in clinical applications. Furthermore, integrating miRNA delivery with therapies such as chemotherapy 
and PTT presents vast potentials, warranting additional researches. In conclusion, multiple kinds of carriers and miRNAs 
can be combined into a lot of delivery systems, which generates various research orientations in the future.

Conclusion
Overall, miRNA delivery holds significant promise for osteosarcoma treatment, particularly when combined with other 
therapies. However, the application of nanocarriers for miRNA delivery in osteosarcoma treatment remains in the early 
stages of development. The in vivo metabolism mechanism, toxicity, mode of administration, and dosage of miRNA 
delivery vectors still need to be clarified through further studies to accelerate clinical translation. In conclusion, however, 
miRNA delivery holds great promise for the treatment of osteosarcoma.
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