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Purpose: Parkinson’s disease (PD) is a common neurodegenerative disease that severely affects patients’ daily lives and places 
a significant burden on the global economy. There are currently no specific biomarkers for distinguishing between the different stages 
of PD.
Methods: We divided 78 mice into six equal groups, including five model PD groups (W1–W5; based on the PD stage induced by 
length of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/propofol induction time) and a control group. Then, we used metabolomics 
technology to detect the serum small-molecule metabolites present in each group. Ultimately, we screened for potential biomarkers 
using the variable importance in the projection of the orthogonal partial least squares discriminant analysis and the coefficient value of 
LASSO ordinal logistic regression.
Results: We identified 12 potential biomarkers, including dehydroepiandrosterone sulfate, pipecolic acid, N-acetylleucine, 2-aminoa-
dipic acid, L-tyrosine, uric acid, and 5-hydroxyindoleacetaldehyde. Pathway analysis revealed their involvement in amino acid 
metabolism, caffeine metabolism, steroid hormone biosynthesis, and purine metabolism. Additionally, the receiver operating char-
acteristic curve indicated that a biomarker panel comprising the 12 biomarkers could differentiate between the different PD stages.
Conclusion: Different PD stages are characterized by different metabolites. The biomarkers identified in this study are helpful to 
understand the PD process.
Keywords: Parkinson’s disease, metabolomics, biomarkers, metabolic disturbances, LC–MS

Introduction
Parkinson’s disease (PD), the second most common chronic neurodegenerative disease after Alzheimer’s disease, is 
a multisystem disorder with multiple mechanisms and neurochemical features. It affects 2% of people aged >65 years 
and 4% of people aged >80 years.1–3 The number of people with PD is expected to reach 12 million by 20504, and this 
increased incidence may cause high economic and social burdens. PD is a multifactorial and sporadic disease. Its highly 
complex pathogenesis has not been fully elucidated and may be related to mitochondrial dysfunction, oxidative stress, 
and the inflammatory response.5 The diagnostic criteria for PD include the recognition of specific clinical symptoms that 
are already evident in the patient, usually several years after the neurodegenerative process has occurred. Additionally, 
even if the diagnostic criteria are correctly applied, the rate of PD misdiagnosis is high for some nonspecific clinical 
symptoms. Although positron emission tomography and single-photon emission computed tomography imaging are 
highly sensitive and can be used for imaging diagnosis of PD, they are not specific to PD, are costly, and carry the risk of 
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radiation exposure. Therefore, it is crucial to investigate the mechanisms and evolution of PD and to search for PD 
biomarkers.6

Metabolomics is the science of quantitatively measuring the composition of all metabolites of a biological system 
(cell models, tissues, organs, or whole organisms), usually small-molecule metabolites with relative molecular masses 
<1000, as well as dynamic alterations in these metabolites in response to internal and external stimuli.7 This rapidly 
developing emerging discipline follows the advent of genomics, transcriptomics, and proteomics and has been widely 
used in various fields, such as nutrition, toxicology, and disease diagnosis.8 Improvements in high-resolution mass 
spectrometry technology have led to the increasingly extensive application of metabolomics technology in clinical 
medicine, especially in screening for disease biomarkers and intrinsic regulatory mechanisms. Metabolites play active 
regulatory roles in systems biology, and metabolomics tools provide a direct functional readout of an organism’s 
physiological state, which is difficult to obtain using other histological methods. Thus, the resultant metabolic profile 
is a complete description of the organism’s phenotype.9 In recent years, the development of analytical and bioinformatic 
tools has resulted in the exponential growth of metabolomics research. Further studies, such as the functional analysis of 
metabolites, may lead to the discovery of relevant bioinformation, such as proteins and genes upstream of the metabolite, 
which, in turn, can be linked to other histological studies.

Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics is a powerful tool for analyzing metabolite 
changes and has been used to decipher metabolic reprogramming in many disease types, including neurodegenerative 
diseases.10–12 In this study, we used untargeted metabolomics technology to screen five established groups of PD model 
mice and a healthy control group for serum metabolites that may be potential biomarkers of early PD and or progression 
biomarkers that are produced in response to the changes in the different PD stages.

Material and Methods
Construction of the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)/Probenecid 
Mouse Model
We purchased 78 male 10-week-old C57BL/6 mice from Shanghai SLAC Animal Laboratory Animal Co., Ltd. and 
housed them under a 12/12 h light/dark cycle (23°C ± 2°C, 45% ± 5% humidity). The experimental treatment of the mice 
complied with the ethical code of the Second Affiliated Hospital of Soochow University.

The 78 mice were divided into six groups (n = 13/group), including one control group and five experimental groups with 
PD at different stages. After acclimating the mice to the laboratory environment, all mice in the experimental groups were 
subcutaneously injected with 2 mg/mL MPTP (Sigma, cat # MO896) in saline and then intraperitoneally injected with 
250 mg/mL probenecid (Aladdin, cat# p129440) 1 h later.13 The above treatment procedure was performed twice a week (3.5 
d intervals) for 1–5 weeks, depending on the PD group. Mice with early, middle-stage, and advanced PD were euthanized at 
predetermined ages. During weeks 1–5 after the establishment of the PD model, blood samples were taken from each mouse 
group. The samples were centrifuged at 3500 × g for 5 min to obtain the supernatant serum, which was then removed, divided 
between two Eppendorf tubes, and stored at −80°C for untargeted metabolomics analysis.

Blood Sample Collection and Pre-Treatment
Serum samples stored at −80°C were removed and thawed. Then, 100 µL of serum was placed in a 1.5 mL Eppendorf 
tube, 400 µL methanol(containing approximately 200 ng/mL of 2-chlorophenylalanine as an internal standard) was 
added, and the mixture was vortexed for 5 min, followed by centrifugation for 10 min at 13000 rpm. Finally, the 
supernatant (containing the isolated metabolites) was removed and placed in an injection vial. The entire process was 
performed on ice. Quality control (QC) samples were made from a mixture of all samples and processed in the same 
manner as the samples.

UPLC-MS/MS Analysis
Ultra-performance liquid chromatography (UPLC) was performed on an UltiMate 3000 UPLC system (Dionex Corp., 
USA) in tandem with a high-resolution Q-Exactive Orbitrap Mass Spectrometer (Thermo Fisher Scientific, USA) using 
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ACQUITY UPLC HSS T3 columns (2.1 × 150 mm, 1.8 µm; Waters Corp, Milford, MA, USA). The samples were 
measured randomly using the protocol described by Want et al14 The column temperature was 40°C, and the flow rate 
was 0.25 mL/min. The detailed gradient elution conditions and optimal mass spectrometry parameters are presented in 
the supplementary materials (Table S1 and S2). The loading volume for each sample was 5 μL, and the other liquid phase 
parameters were the same as previously described.15 During sample LC-MS analysis, we interspersed one QC sample in 
every five mouse serum samples for subsequent quality judgment of metabolomics data and data preprocessing.

Metabolite Identification and Differential Metabolite Screening
Compound Discoverer 3.3 software was used for the automatic extraction and preliminary identification of mass 
spectrometry raw data. A matrix containing information such as the mass-to-charge ratio, substance name, retention 
time, and peak area was obtained. Firstly, we found the identified internal standard substances and calculated the RSD of 
the peak area of the internal standard(2-chlorophenylalanine), which was less than 10% in this study, and consequently, 
we deleted the substances with RSD greater than 30% from the identified substances in QC. Subsequently, we used the 
Human Metabolome Database (http://www.hmdb.ca/) to perform secondary identification and corroboration of the 
identified substances based on the sample information. Ultimately, we identified 201 serum metabolites. Detailed 
substance information is provided in the supplementary materials (Table S3).

Differential Metabolite Analysis
We used R 4.2.2 software for principal component analysis (PCA) and heatmap construction. The orthogonal partial least 
squares discriminant analysis (OPLS-DA) model was constructed using the ropls package in R.16 Each group (negative 
control [NC] and W1–W5) was transformed as an ordinal variable in the OPLS-DA model. The LASSO ordinal logistic 
regression (LOLR) model was constructed using the glmnetcr package in R.17 The feature selection in LOLR was 
performed based on the base peak chromatogram (BPC) criteria. The performance of the LOLR model was evaluated 
using the receiver operating characteristic (ROC) curve. Pathway analysis was performed using MetaboAnalyst 5.0 
software (http://www.metaboanalyst.ca).

Results
Successful Modeling
A total of 78 C57BL/6 mice were used in this study. They were divided into six groups: an NC control group and five PD 
model groups. These PD groups represented increasingly severe PD stages due to different lengths of MPTP/propofol 
induction time on the hippocampal tissues of PD mice as follows: W1. early PD; W2, transition from early development 
to middle-stage PD; W3, middle-stage PD; W4, transition from middle-stage to advanced PD; and W5, advanced PD. 
Due to the death of two mice during the modeling process, data from 76 mice were analyzed (NC, 12; W1, 13; W2, 13; 
W3, 13; W4, 12; and W5, 13).

Metabolomics Profiling
We assessed the quality of various aspects of the metabolomics data prior to data analysis. We obtained BPC plots with 
good peak shapes, and the classical BPC plots for each group are shown in Figure 1A and B. Additionally, the percentage 
of variables with an RSD greater than 30% in the QC sample was less than 20% of the total variables. Finally, we 
evaluated QC clustering using PCA plots. In metabolomics studies based on LC–MS technology, reliable and high- 
quality data can only be obtained if analytical errors do not affect the results of multivariate analysis. Thus, the stability 
of the LC–MS system needs to be evaluated, and this is achieved by running QC samples throughout the sample analysis 
process.18 The PCA model showed QC samples clustered together and near the far point of the coordinate axis, indicating 
that there were few systematic errors during sample processing and detection and that the metabolomics method design 
was stable Additionally, there was a definite trend of separation between the normal group and the various PD 
developmental stages (Figure 1C).
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The OPLS-DA model is a supervised model that can be used for screening for differential metabolites. As seen in the 
OPLS-DA model of this study, the distinction between the NC group and the PD model groups was clearly evident, and 
there was a definite trend in the horizontal coordinate from W1 to W5 (Figure 2A).

Serum Biomarker Screening
We defined the developmental progression of the PD model mice on a scale of 0–5, where 0 represented the healthy control 
group, and 1–5 represented the progressive severity of PD. The biomarkers were screened as variable importance in the 

Figure 1 Representative BPC plots and PCA plots for the six groups. (A) Representative BPC plots for each group in positive ion mode. (B) Representative BPC plots for 
each group in negative ion mode. (C) PCA plots for six groups and QC samples.

Figure 2 Different PD stages have different metabolic characteristics. (A) OPLS-DA plot of the six mouse groups. (B) Scatterplot of variable importance in the projection 
(VIP) values in the OPLS-DA model plotted against the coefficients of LOLR. Biomarker screening was based on the principles of VIP values >2 and coefficient values ≠ 0. 
Red represents risk factors, and blue represents protective factors. (C) Heatmap of the 12 serum biomarkers for PD in the six groups. Blue represents decreasing levels, and 
red represents increasing levels.
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projection >2 in OPLS-DA and |coefficient|>0 in LOLR, and the visualization diagram is shown in Figure 2B, where red 
represents risk factors and blue represents protective factors. We ultimately identified 12 differential metabolites, including 
pipecolic acid (PA), L-tyrosine, uric acid, vanillylmandelic acid (VMA), 5-hydroxylysine, 2-aminoadipic acid (2-AAA), 
dehydroepiandrosterone sulfate (DHEAS), 2-hydroxyphenethylamine, 7-methylxanthine, 5-hydroxyindoleacetaldehyde 
(5-HIAL), 9(S)-HPODE, and N-acetylleucine (NALL) (Table 1).

Temporal Analysis of Biomarker Trends
We used MetaboAnalyst 5.0 to plot the heatmap representing the different stages of PD. The results revealed that some of the 
serum biomarkers showed an upward trend and some showed a downward trend from the early to advanced PD stages 
(Figure 2C). We plotted the trend of change for the 12 PD biomarkers to understand their trends in the different PD stages 
(Figure 3). 2-Hydroxyphenethylamine, NALL, 5-HIAL, and VMA showed a clear increasing trend during PD progression, 
whereas 2-AAA and L-tyrosine showed a clear decreasing trend during PD progression. Interestingly, DHEAS and uric acid 
showed an increasing and then decreasing trend, whereas PA, 7-methylxanthine, and 9(S)-HPODE showed a decreasing and then 
increasing trend.

ROC Curve Analysis
Through metabolomics analysis combined with machine learning, we identified potential biomarkers that changed 
according to the PD stage. ROC curves are widely used to evaluate the sensitivity and specificity of biomarkers and 
to visualize the relationship between sensitivity and specificity.19 The area under the curve corresponding to each ROC 
curve is a determination of the diagnostic efficiency of the biomarker, and the larger the area, the higher the value.20 To 
understand the processes of PD, we constructed ROC curves using the 12 PD biomarkers. We found this biomarker panel 
helped us to understand the PD processes (Figure 4).

Metabolic Pathway Analysis
We used MetaboAnalyst 5.0 to analyze the potential metabolite data obtained above by searching for metabolic pathways 
in which the metabolites may be involved. Pathway analysis of potential markers revealed that three of the ten pathways 
were differential metabolic pathways, namely lysine degradation, phenylalanine, tyrosine and tryptophan biosynthesis, 

Table 1 Detailed Information on the Potential Biomarkers

HMDB ID Biomarker Chemical formula VIP value Coefficient value

HMDB0000070 PA C6H11NO2 2.57 −0.49

HMDB0000158 L-Tyrosine C9H11NO3 2.57 −0.49

HMDB0000289 Uric acid C5H4N4O3 2.01 0.10

HMDB0000291 VMA C9H10O5 2.34 0.37

HMDB0000450 5-Hydroxylysine C6H14N2O3 2.14 0.25

HMDB0000510 2-AAA C6H11NO4 2.35 −0.27

HMDB0001032 DHEAS C19H28O5S 2.31 −0.21

HMDB0001065 2-Hydroxyphenethylamine C8H11NO 2.01 0.12

HMDB0001991 7-Methylxanthine C6H6N4O2 2.26 −0.46

HMDB0004073 5-HIAL C10H9NO2 2.31 0.49

HMDB0006940 9(S)-HPODE C18H32O4 2.1 −0.10

HMDB0011756 NALL C8H15NO3 3.52 0.88

Notes: For convenience of viewing, substances are numerically sorted according to their HMDB ID.
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and tyrosine metabolism (Figure 5). The detailed results and parameters of the pathway analysis are presented in the 
supplementary materials (Table S4).

Discussion
Despite the advances in elucidating PD pathogenesis and pathophysiology, no clinical markers have been identified that 
are 100% reliable for PD detection in clinical practice, and neurologists continue to rely on clinical expertise to diagnose 

Figure 3 Trends of the 12 PD biomarkers identified in the six groups.

Figure 4 ROC curve of a biomarker panel composed of the 12 PD biomarkers.
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PD. This is an urgent issue that must be addressed by biomarker researchers in the coming years.21 Emerging evidence 
indicates that peripheral alterations, including metabolic dysregulation, may precede and contribute to 
neurodegeneration.10,22–24 Thus, distinguishing patients with PD from healthy individuals and distinguishing molecular 
networks at various stages of PD development may lead to new insights into PD pathogenesis and the identification of 
key biomarkers. In this study, we constructed mouse models of PD at different stages, and with the help of metabolomics 
and machine learning technology, screening revealed 12 potential biomarkers capable of distinguishing between the 
different PD stages. Additionally, pathway analysis of the biomarkers revealed several probable metabolic pathways that 
might lay the foundation for subsequent investigations of PD mechanisms.

Aging is the most important risk factor for the development of neurodegenerative diseases, most of which typically 
manifest in the elderly.25 PD is the second most common age-related neurodegenerative condition, and its incidence 
increases with age.26–28 DHEAS is an endogenously produced sex steroid with reported antiaging effects.29 It has been 
reported in the literature that DHEAS not only modulates astrocyte function, reduces inflammation, and activates cell 
signaling survival pathways, but also activates the sigma 1 receptor and agonists of this receptor have neuroprotective 
effects in animal models of PD.30 DHEAS levels are higher in men than in women, which may be due to the association 
between testosterone and the maintenance of DHEAS concentrations.31 Moreover, DHEAS concentrations are associated 
with cognitive levels in older men but are unlikely to play a functional role in cognitive decline.32 Our results revealed 
that DHEAS showed a trend of increasing and then decreasing during PD progression, suggesting that DHEAS exhibited 
compensatory dysregulation during early-stage PD. However, our study only used male mice, so the gender difference 

Figure 5 Plot of metabolic pathway for the 12 PD biomarkers.
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could not be compared. Thus, future clinical patient population studies on PD should focus on the influence of gender on 
changes in DHEAS levels.

Metabolic disorders of amino acids are key in PD.33–35 Potential mechanisms of tryptophan metabolism-mediated 
neurodegeneration include proteotoxicity via a tryptophan-dependent mechanism, excitotoxicity due to the accumulation 
of neurotoxic tryptophan metabolites, and energy imbalance resulting from NAD+ depletion.36 In this study, we screened 
a variety of biomarkers related to amino acid metabolism, including PA, 2-AAA, NALL, 5-HIAL, and L-tyrosine, and 
found that these biomarkers were involved in lysine degradation and the metabolism of tyrosine, phenylalanine, and 
tryptophan. These phenomena suggest, to some extent, the disturbance of amino acid metabolism in PD.

Several studies have revealed the association of amino acid metabolism with disease. PA is an important biomarker 
for the diagnosis of peroxisomal diseases, a contributing factor to hepatic encephalopathy, and a possible biomarker of 
pyridoxine-dependent epileptic seizures.37 Furthermore, plasma PA levels were elevated in a mouse model of malaria.38 

It has also been proposed that PA, a biological byproduct, slows the progression of diabetic retinopathy by inhibiting the 
YAP–GPX4 signaling pathway.39

2-AAA is produced by lysine degradation,40 and plasma levels of 2-AAA may be partly regulated by common 
variants in genes related to mitochondrial and macrophage function. Additionally, elevated plasma levels of 2-AAA have 
been associated with reduced levels of high-density lipoprotein cholesterol.41 Our results showed a gradual decrease in 
serum levels of 2-AAA in mice during PD progression, which is in contrast to the high plasma levels of 2-AAA in PD 
patients in the study of PD by Molina et al42 We hypothesize that this may be due to the fact that this literature deals with 
a small population and does not stratify patients with PD into early, intermediate, and late stages.

Tyrosine is involved in the tyrosine hydroxylase-dopamine (TH-DA) pathway, which has been reported to play an 
important role in PD pathogenesis. Zhou et al found that LRRK2 mutations up-regulate TH expression and DA levels at 
the early stage of disease and this leads to DA toxicity and facilitated DA neuron degeneration.43 In subsequent years, 
they found that α-methyl-L-tyrosine (α-MT), a tyrosine hydroxylase (TH) inhibitor, was able to reverse the pathologies in 
human neurons and TG Drosophila models.44 Those findings provide support for potential clinical trials using the TH– 
DA pathway inhibitors in early or prodromic PD.

Oligomerized alpha-synuclein is thought to be pathogenic in PD, Jinsmaa et al reported that 5-HIAL had the same 
ability to induce polyribonuclein oligomerization as 5-hydroxytryptophan in PC12 cells overexpressing 
polyribonuclein.45 Our results showed that 5-HIAL levels showed a gradual increase during the progression of PD, 
which to some extent suggests a relationship between the in vivo levels of 5-HIAL and the development of PD.

The abundance of Desulfobacterota in the gut and inflammasomes (NLRP3, ASC, caspase-1, and IL-1β) in the brains 
of depressed rats significantly decreased after receiving fecal microbiota transplantation from healthy rats.46 These 
suggest that Parkinson’s disease may be associated with dysbiosis of the microbiota and that Desulfovibrio phylum may 
be the causative agent leading to its development. Xu et al found that NALL, which is negatively correlated with 
Desulfovibrio, can effectively inhibit pro-inflammatory factors, and the number of DA neurons in mice significantly 
increased and motor deficits significantly improved after oral administration of NALL, thus speculating that NALL may 
inhibit Desulfovibrio through the gut-brain axis pathway, thereby promoting the repair of DA neuron.47 In addition, 
NALL has been reported to improve functional recovery and attenuate cortical cell death and neuroinflammation after 
traumatic brain injury in mice.48 These findings seem to indicate that elevated NALL appears to be a protective factor, 
but our stratified study of PD found that NALL was higher in the serum of mice with advanced PD, which appears to be 
a risk factor, and this result, which contradicts previous studies, deserves to be further explored.

Our screening identified uric acid as a PD biomarker. Due to its antioxidant properties, uric acid has been 
hypothesized to exert neuroprotective effects,49 and results from a prospective study revealed an association between 
low levels of serum uric acid and motor function deterioration in patients with early-stage PD.50 However, a recent 
randomized trial did not support this association.51 Furthermore, we found that uric acid levels in our PD model mice did 
not show a simple upward or downward trend in the developmental stages of PD. Thus, further studies are necessary to 
clarify the role of uric acid in PD.

Analysis of the 12 PD biomarkers’ ROC curves helped us understand the processes involved in early, middle, and 
advanced PD stages. Temporal analysis of trends in these biomarkers revealed different metabolic disturbances in 
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metabolites during different PD stages. Through the pathway analysis of 12 serum markers, the 12 markers that we 
identified are involved in caffeine metabolism, steroid hormone biosynthesis,33 and purine metabolism,52 These meta-
bolic pathways provide new ideas for future mechanistic studies. However, we have not yet found any study proposing 
a clear relationship between the whole pathway and PD, which deserves further and deeper studies by researchers to 
connect metabolites with pathway analysis. This is the next step we will take in the clinical study of PD.

Conclusion
In summary, we established chronic MPTP/propofol-induced early, intermediate, and late PD mouse models, and used 
metabolomics technology to detect small molecule metabolites in mouse serum, and found that different metabolite profiles 
existed at different PD stages. Subsequently, we established the OPLS-DA model and finally screened 12 potential serum 
markers in PD mice, including DHEAS, 2-AAA, 5-HIAL, and NALL. We found that these markers have different content levels 
at different stages of PD and that markers have different trends in different stages of PD and can be used for diagnostic staging of 
PD. Thus a panel consisting of these 12 markers helps to understand the developmental process of PD. In addition, we found that 
these markers are involved in amino acid metabolism, caffeine metabolism, steroid hormone biosynthesis, and purine 
metabolism. All of these findings lay the foundation for our future mechanistic and clinical studies of Parkinson’s disease.
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regression; HMDB, Human Metabolome Database; NALL, N-acetylleucine; NC, Negative control; NAD, Nicotinamide 
adenine dinucleotide; PA, Pipecolic acid; PCA, Principal component analysis; PD, Parkinson’s disease; QC, Quality 
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