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Abstract: Stem cells are self-renewing undifferentiated cells that give rise to multiple types 

of specialized cells of the body. In the adult, stem cells are multipotents and contribute to 

homeostasis of the tissues and regeneration after injury. Until recently, it was believed that the 

adult brain was devoid of stem cells, hence unable to make new neurons and regenerate. With 

the recent evidences that neurogenesis occurs in the adult brain and neural stem cells (NSCs) 

reside in the adult central nervous system (CNS), the adult brain has the potential to regenerate 

and may be amenable to repair. The function(s) of NSCs in the adult CNS remains the source 

of intense research and debates. The promise of the future of adult NSCs is to redefi ne the 

functioning and physiopathology of the CNS, as well as to treat a broad range of CNS diseases 

and injuries.
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Introduction
Seminal studies in the 60s using [3H]-thymidine autoradiographic labeling by Altman 

and Das were the fi rst to report the generation of new neuronal cells in the adult 

rodent dentate gyrus (DG), and cell proliferation in the ventricular zone, migration 

and persisting neurogenesis in the adult olfactory bulb (OB) (Altman and Das 1965; 

Altman 1969). However, these studies had little impact, because of the paucity of 

cells labeled and the diffi culty of defi nitively identifying them. It was not until the 

1990s, with the advent of new procedures for labeling dividing cells in the CNS, 

like bromodeoxyuridine (BrdU) (Gratzner 1982; Miller and Nowakowski 1988) and 

retroviral labelings (Van Praag et al 2002), that neurogenesis in the SVZ and DG 

really became accepted (Gross 2000; Taupin and Gage 2002). Though over the past 

decades, signifi cant progresses have been made in the fi eld of adult neurogenesis and 

NSCs, there is much debate, controversies and questions to be answered.

Adult neurogenesis, facts, and debates
Neurogenesis in the adult mammalian brain
Neurogenesis occurs primarily in two areas of the adult brain in mammals: the DG 

of the hippocampus and the subventricular zone (SVZ) in several species, including 

human (Eriksson et al 1998; Curtis et al 2007a). In the DG, newly generated neuronal 

cells in the subgranular zone (SGZ) migrate to the granular layer, where they dif-

ferentiate into mature neuronal cells, and extend axonal projections to the CA3 area 

in rodents and primates. In the SVZ, cells are generated in the anterior part of the 

SVZ and migrate to the OB, through the rostro-migratory stream (RMS), where they 

differentiate into interneurons of the OB in rodent and non-human primates (Taupin 

and Gage 2002). Newly generated neuronal cells establish functional connections 

with neighboring cells (Van Praag et al 2002; Carlen et al 2002), particularly GAB-

Aergic innervations in the DG, soon after their migration is completed (Wang et al 

2005). As many as 9,000 new neuronal cells – or 0.1% of the granule cell population 

– are generated per day in the DG of mice, and 65%–75% of the bulbar neurons 
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are replaced during a 6 weeks period in young adult rats 

(Kempermann et al 1997; Kato et al 2001; Cameron and 

McKay 2001). Among them, a signifi cant proportion under-

goes programmed cell death rather than achieving maturity 

(Morshead and van der Kooy 1992; Cameron and McKay 

2001; Gould et al 2001).

The newly generated neuronal cells that survived to matu-

rity may be very stable, and may permanently replace cells 

born during development, as adult-generated neuronal cells 

have been reported to survive for extended period of time 

(eg, for at least 2 years in human DG) (Altman and Das 1965; 

Eriksson et al 1998; Dayer et al 2003; Kempermann et al 

2003). Neurogenesis may also occur, albeit at lower levels, 

in other areas of the mammalian brain, like the Ammon’s 

horn CA1, neocortex, and substantia nigra (SN) (Gould et al 

1999; Rietze et al 2000; Zhao et al 2003). However, some 

of these reports have been contradicted by other studies 

(Kornack and Rakic 2001; Lie et al 2002; Frielingsdorf et al 

2004; Gould 2007). Hence, the bulk of evidence suggests that 

there is little if any neurogenesis going on constitutively in 

other brain regions.

Stem cells in the adult brain
The origin of newly generated neuronal cells in the adult brain 

remains the source of controversies. One theory contends 

that they originate from differentiated ependymal cells in the 

lateral ventricle, while another contends that they originate 

from astrocyte-like cells in the SVZ and SGZ (Taupin and 

Gage 2002). A glial origin for adult generated neuronal cell 

receives further support recently (Filippov et al 2003; Garcia 

et al 2004). Hence, the possibility of ependymal origins for 

NSCs has been has mostly discounted and astrocyte-like 

cells represent the most accepted model for the source of 

stem cells of the adult brain.

It is postulated that newly generated neuronal cells 

originate from residual stem cells in the adult brain. Stem 

cells are defi ned by fi ve attributes: proliferation, self-renewal 

over an extended period of time, generation of a large number 

of differentiated progeny, maintenance of the homeostasis 

of the tissue, and regeneration of the tissue following injury 

(Potten and Loeffl er 1990). NSCs are the self-renewing, mul-

tipotent cells that generate neurons, astrocytes, and oligoden-

drocytes of the nervous system. Neural progenitor cells are, 

as most broadly defi ned, any cells that do not fulfi ll all of the 

attributes of NSCs. Though NSCs remain to be characterized 

in the adult CNS, self-renewing, multipotent NSC-like cells 

have been isolated and characterized in vitro from various 

areas of the adult CNS, neurogenic and non-neurogenic, 

including the spinal cord, suggesting that NSC may reside 

throughout the CNS (Taupin and Gage 2002).

There are currently no specifi c markers of adult NSCs. 

Nestin, the transcription factors sox-2, oct-3/4, and the 

RNA-binding protein Musashi 1 are markers for neural 

progenitor and stem cells, but also label population of glial 

cells (Lendahl et al 1990; Sakakibara et al 1996; Doetsch 

et al 1999; Zappone et al 2000; Kaneko et al 2000; Komi-

tova et al 2004; Okuda et al 2004), further fueling the 

controversies over the origin of newly generated neuronal 

cells in the adult brain.

Rate and modulation
The rate of neurogenesis in the rodent DG and SVZ is 

modulated by various environmental stimuli, physio- and 

pathological conditions (Taupin 2005). For example, 

environmental enrichment promotes the survival of newly 

generated neuronal cells in the DG. Voluntary running 

stimulates the generation of newly generated neuronal cells 

in the DG, but not the SVZ. Stress, neuroinfl ammation and 

aging decrease neurogenesis in the DG (Nithianantharajah 

and Hannan 2006; Mora et al 2007). In the diseased brain 

and after injuries to the CNS, like strokes and traumatic 

brain injuries (TBIs), neurogenesis is stimulated in the 

neurogenic areas, and new neuronal cells are generated at the 

sites of injuries, where they replace some of the degenerated 

nerve cells (Grote and Hannan 2007). Cell tracking studies 

revealed that newly generated neuronal cells at sites of 

injuries originates from the SVZ. Newly generated neuronal 

cells migrate partially through the RMS to the degenerated 

areas. It is estimated that 0.2% of the degenerated nerve cells 

are replaced in the striatum after focal ischemia (Arvidsson 

et al 2002). Hence, neurogenesis can be stimulated in the 

injured brain.

Limit and pitfalls of BrdU labeling
The modulation of neurogenesis and its quantifi cation have 

been subject of debates, partly due to the use of BrdU, a thy-

midine analog, labeling as a method of assessment. As BrdU 

crosses the blood-brain barrier, it is generally administered 

intraperiteonally. It is suggested that activity, like exercise, but 

also the effects of various treatments and physio- and patho-

logical conditions on cerebral fl ow, metabolism and perme-

ability of the blood-brain barrier to reagents, and in particular 

to BrdU, may affect the availability of BrdU to the brain. The 

variation of BrdU quantifi cation observed in these conditions 

would then refl ect the change in BrdU uptake by the cells, 

rather than the modulation neurogenesis (Taupin 2007).
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With regard to the quantifi cation of neurogenesis with 

BrdU, one study suggests that the standard concentration 

used to assess neurogenesis (50–100 mg/kg body weight 

in rodents, intraperitoneal injection) may not label all the 

dividing cells (Taupin 2007), whereas another study reports 

that it does (Burns and Kuan 2005). Further systematic stud-

ies on BrdU labeling in the CNS are thus needed to further 

defi ne the conditions in which BrdU can be used for studying 

neurogenesis. The use of BrdU to study neurogenesis carries 

other limitations, like labeling of DNA repair, abortive cell 

cycle reentry and gene duplication, without cell proliferation 

(Taupin 2007). Other strategies are therefore necessary to 

make educated conclusions with regard to adult neurogenesis 

when using BrdU labeling, like the study of markers of the 

cell cycle and use of retroviruses.

Mechanisms underlying adult 
neurogenesis
Most of the mechanisms underlying adult neurogenesis and 

NSC growth and fate determination are yet to be uncovered. 

It has been reported that cell death stimulates the proliferation 

of neural progenitor cells in the adult hippocampus (Gould 

and Tanapat 1997). Other studies reveal that the mitotic rate 

is regulated by the number of available progenitor cells, rather 

than by cell death (Ekdahl et al 2001; Jin et al 2004). On the 

molecular level, epidermal growth factor and basic fi broblast 

growth factor were the fi rst mitogens to be identifi ed for 

neural progenitor and stem cells in vitro, and to stimulate 

neurogenesis in vivo (Reynolds and Weiss 1992; Gage et al 

1995; Craig et al 1996; Kuhn et al 1997). However, other 

factors present in conditioned medium, like the glycosylated 

form of the protease inhibitor cystatin C (CCg), are also 

required for the proliferation of self-renewing, multipotent 

NSCs from single cells in vitro (Taupin et al 2000), and 

remain to be characterized, as well as the pathways of these 

mitogens and cofactors.

Broader potential of adult stem cells
Adult stem cells are multipotents; they generate lineage 

specifi c cell types restricted to the tissues from which they 

are derived. Several studies have reported that adult-derived 

stem cells, and particularly adult-derived neural progenitor 

and stem cells, may have a broader potential; ie, they gen-

erate cell types of lineages other than their tissues of origin 

(Bjornson et al 1999; Brazelton et al 2000; Mezey et al 

2000). However though some studies presented convincing 

results, phenomenon like contamination, transformation, 

transdifferentiation, and cell fusion have been reported as 

possible explanation for the phenotypes observed in some 

studies (Anderson et al 2001; Mezey 2004).

Function(s) of newborn neuronal cells
The function(s) of adult neurogenesis has been the source 

of intense research and debates. Evidences suggest that 

newly generated neuronal cells participate to process like 

learning and memory, and depression (Gould et al 1999; 

Shors et al 2001; Jacobs et al 2000; Santarelli et al 2003). The 

involvement of adult neurogenesis in learning and memory 

has been challenged by other studies. Increased hippocampal 

neurogenesis has been observed without improvement of 

learning and memory performances, in the Morris water 

maze test, in mice selectively bred for high levels of wheel 

running (Rhodes et al 2003). Therefore the function of 

newly generated neuronal cells in the adult brain remains 

to be determined.

Finally, the evidence that neurogenesis occurs in the adult 

brain, and that NSCs reside in the adult CNS provide new 

avenues for cellular therapy. Cell therapeutic intervention 

may involve the stimulation of endogenous or the transplan-

tation of neural progenitor and stem cells of the adult CNS. 

However, adult NSCs have yet to be brought to therapy.

Though it is now accepted that neurogenesis occurs in the 

adult brain and NSCs reside in the adult CNS, much questions 

and controversies remain to be answered: what is the origin 

of newly generated neuronal cells in the adult brain, what are 

their molecular markers, what are the factors and mechanisms 

controlling NSC growth and fate specifi cation, what is the 

potential of adult-derived stem cells, what are the functions 

of newly generated neuronal cells in the adult brain, and how 

can we use adult NSCs therapeutically?

The future of adult neurogenesis
Newly generated neuronal cells represent a small fraction 

of nerve cells in the adult brain. But data presented above 

suggest that their relevance to CNS physio- and pathology, 

and cellular therapy as signifi cant, but yet to be uncovered. 

One of the key underlyings of the importance of newly 

generated neuronal cells is their relative contributions 

compare to the preexisting network to CNS functioning. 

One can postulate that such contribution will depend on the 

specifi c properties of adult generated neuronal cells.

On the functioning of newly generated 
neuronal cells in the adult brain
Adult newly generated neuronal cells belong to three groups 

based on their destinies. The fi rst group consists of the newly 
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generated neuronal cells that will undergo post-mitotic 

death (Morshead and van der Kooy 1992; Cameron and 

McKay 2001). The second group represents a population 

of newly generated cells that neither undergo apoptosis, 

nor differentiate to a defi ned fate. This latter group of cells 

likely contributes to renewing the stem cell niche. Niches 

are specialized microenvironments that regulate stem cells 

activity (Moore and Lemischka 2006; Scadden 2006). 

In the adult brain, neurogenic niches are maintained in 

restricted regions and have been identifi ed and characterized 

(Alvarez-Buylla and Lim 2004). These niches, an angiogenic 

and an astroglial niches, control NSCs self-renewal and 

differentiation (Palmer et al 2000; Song et al 2002). It is 

hypothesized that neurogenic niches underlie the properties 

and functions of NSCs in the adult CNS (Alvarez-Buylla 

and Lim 2004; Taupin 2006; Lim et al 2007). The third 

group consists of the newly generated neuronal cells that 

will survive to maturity and integrate the network (Altman 

and Das 1965; Eriksson et al 1998; Kempermann et al 2003; 

Dayer et al 2003).

Several lines of evidence suggest that newly generated 

neuronal cells have different properties and physiological 

functions, than mature nerve cells, that may underlie their 

specifi c functions. Young granule cells in the adult DG appear 

to exhibit robust long-term potentiation that, in contrast to 

mature granule cells, cannot be inhibited by GABA (Wang 

et al 2000). More recently, newly generated neuronal cells 

in the adult hippocampus were characterized as receiving 

GABAergic excitatory input (Ge et al 2005, 2007; Tozuka 

et al 2005), a function of GABA previously reported during 

development (Ben-Ari 2002). Once cells have matured 

and integrated the pre-existing network, they may then 

functionally replace nerve cells born during development. 

Among the questions that arise from such theory are: What 

are the physiological functions of the newly generated neural 

cells during the time they are distinct from their mature 

counterpart? What is the function of such cellular renewal? 

Why would it occur only and specifi cally in discrete areas 

of the adult brain?

On the functionality of newly generated 
neuronal cells in the adult brain
The increase of neurogenesis in diseases, disorders, and after 

injuries might then serve a neuroadaptative process (Figure 1). 

Patients with neurological diseases, like Alzheimer’s disease, 

epilepsy, and Parkinson’s disease (PD), but also recovering 

from strokes and injuries, are at greater risk of depression 

(Perna et al 2003; Gilliam et al 2004; Sawabini and Watts 

2004) and present memory impairments (Kotloski et al 2002; 

Wang et al 2004). Since learning and memory, and depres-

sion are associated with hippocampal neurogenesis (Gould 

et al 1999; Jacobs et al 2000; Shors et al 2001; Santarelli et al 

2003), the depressive episode and learning impairments in 

patients suffering from neurological diseases, or disorders 

may contribute to the regulation of neurogenesis, in an addi-

tive, or cooperative manner with the disorder. Therefore, 

modulation of neurogenesis in the hippocampus might be 

an attempt by the CNS to compensate for other neuronal 

functions associated with the disease, like depression, and 

learning and memory impairments.

The increase in neurogenesis would also be a factor 

contributing to the plasticity of the CNS, and particularly 

related to the recovery in the CNS after injury. After 

cerebral strokes and TBIs, there is a striking amount of 

neurological recovery in the following months and years, 

despite often-permanent structural damage (Sbordone 

et al 1995; Anderson et al 2000). Though the mechanisms 

underlying such recovery are not fully understood, properties 

of plasticity of the CNS, like the reorganization of the pre-

existing network and axonal sprouting have been implicated 

in the recovery (Ramic et al 2006; Kolb and Gibb 2007). 

Particularly, reorganization of the contra-lateral hemisphere 

has been involved in plasticity after brain injury (Cramer 

and Basting 2000). Neurogenesis is increased bilaterally 

in the DG and the SVZ after cerebral strokes and TBIs. 

The bilateral increase in neurogenesis would contribute to 

the plasticity related recovery in the CNS, and particularly 

after injury.

The generation of newly generated neuronal cells at the 

sites of injury could represent a regenerative attempt by the 

CNS. In the diseased brain and after injuries to the CNS, 

new neuronal cells are generated at the sites of degeneration, 

where they replace some of the lost nerves cells (Arvidsson 

et al 2002). Hence, there is no functional recovery. The 

generation of new neuronal cells at the sites of injury could 

represent an attempt by the CNS to regenerate following 

injury. Several hypotheses can explain the lack of recovery of 

the CNS after injury. The number of new neurons generated 

may be too low to compensate for the neuronal loss: 0.2% 

of the degenerated nerve cells in the striatum after focal 

ischemia (Arvidsson et al 2002). The neuronal cells that are 

produced are nonfunctional because they do not develop 

into fully mature neurons, because they do not develop into 

the right type of neurons, or because they are incapable of 

integrating into the surviving brain circuitry. Gliogenesis has 

also been reported to occur at the sites of injuries (Fawcett 
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Figure 1 Functionality of adult neurogenesis. Adult neurogenesis occurs throughout adulthood. Hence the physiological function(s) of adult neurogenesis remains to be 
elucidated. Adult neurogenesis may be involved in the physiopathology of CNS functioning.

- Patients with neurological diseases, like Alzheimer’s disease, epilepsy, and Parkinson’s disease, but also recovering from stroke and injury, are at greater risk of 
depression and present memory impairment. Since learning and memory, depression are associated with hippocampal neurogenesis, the increase of neurogenesis in diseases, 
disorders, and after injuries might then serve a neuroadaptative process.

- After cerebral strokes and traumatic brain injuries, there is a striking amount of neurological recovery in the following months and years, despite often-permanent 
structural damage. The increase in neurogenesis would also be a factor contributing to the plasticity of the CNS, and particularly related to the recovery in the CNS 
after injury.

- In the diseased brain and after injuries to the CNS, new neuronal cells are generated at the sites of degeneration, where they replace some of the lost nerves cells. 
The generation of newly generated neuronal cells at the sites of injury could represent a regenerative attempt by the CNS, and its participation to the healing process.

- The total number of neurons in the adult brain does not dramatically increase, and cell death is an established process in that adult brain. Newly generated neuronal 
cells may contribute to cellular homeostasis. The desequilibrium in cellular homeostasis may result in neurodegenerative diseases.

The relative contribution of adult neurogenesis to these processes remains to be elucidated. Specifi c properties of newly generated neuronal cells yet to be deter-
mined would underlie the role of newly generated neuronal cells in CNS functioning.

and Asher 1999). Therefore, neurogenesis and gliogenesis at 

the site of injuries may participate to a healing process.

The total number of neurons in the adult brain does 

not dramatically increase, and cell death is an established 

process in that adult brain (Gould et al 2001). Newly 

generated neuronal cells may contribute to homeostasis of 

the tissue. Neurogenic niches have been described in the 

adult brain, and may hold the molecular and cellular cues 

to such phenomenon (Alvarez-Buylla and Lim 2004). On 

the physiopathological level, an explanation is yet to be 

brought. It is worth mentioning that it has been suggested 

that since environmental enrichment promotes adult neu-

rogenesis, and standard laboratory living condition do not 

represent physiological environment, neurogenesis may 

occur more broadly, at low level, that would remain unde-

tected (Taupin 2007), though such eventuality remains to 

be proven in mammals. Indeed, it has been proposed that 

self-repair mechanisms may operate in the adult rodent 

SN (Zhao et al 2003), the area of the CNS affected in 

PD. If such turn-over of dopaminergic neuronal cells was 

confi rmed, progression of the disease would then be deter-

mined not only by the rate of degeneration of SN neurons, 

but also by the effi cacy in the formation of new dopamine 

neurons. Thus, disturbances of the equilibrium of cellular 

homeostasis could result in neurodegenerative diseases. 

So, in PD, neurogenesis might not only be a process for 

functional recovery, but it may also play a key role in the 

pathology of the disease. However, these data remain the 

source of controversies (Lie et al 2002; Frielingsdorf et al 

2004), and such hypothesis remains to be demonstrated.

Though at this time these hypotheses remain mostly 

speculative, the future of adult neurogenesis and NSC 

research lies in our understanding of the specifi c role and 

relative contribution of newly generated neuronal cells to 

the physio- and pathology of the CNS.

The promise of adult neural 
stem cells
The promise of adult NSCs lie also in our ability to bring 

adult NSC research to therapy. Because of their potential 

to generate the main phenotype of the CNS, NSCs hold the 

promise to cure a broad range of CNS diseases and injuries. 

The confi rmation that neurogenesis occurs in the adult brain 

and NSCs reside in the adult CNS, opens new avenues for 

cellular therapy. Cell therapeutic intervention may involve 

the stimulation or grafting of neural progenitor and stem cells 

(Okano et al 2007; Yamashima et al 2007). The generation 

of new neuronal cells at the sites of injury further highlights 
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the potential of the CNS to repair itself. The SVZ origin 

of the newly generated neuronal cells suggests that the 

stimulation of neurogenesis in the SVZ would provide a 

strategy to promote functional recovery after injury (Curtis 

et al 2007b). Alternatively, the potential to isolate neural 

progenitor and stem cells from nondegenerated brain areas 

from the patient himself would provide an autologous 

source of transplantable neural progenitor and stem cells, 

thereby obviating the need to fi nd a matching donor for the 

tissues and the use of drugs that suppress the immune sys-

tem; thereby increasing the chance of successful graft and 

recovery. However such strategy would involve invasive 

surgery and the destruction of healthy brain tissue, a limit-

ing factor for its clinical application. Neural progenitor and 

stem cells have also been isolated from human post-mortem 

tissues, providing an alternative source of tissues for cellular 

therapy (Palmer et al 2001).

Conclusion
The promise of the future of adult neurogenesis and NSC 

research lies in our understanding of the function and 

relative contribution of newly generated neuronal cells 

in the adult brain, and our ability to bring adult NSC 

to therapy. The molecular, cellular, and physiological 

characterization of adult NSCs is a prerequisite to such 

endeavor. Signifi cant advances have already been made 

in just the past decades. Because of the potential of adult 

neurogenesis and NSCs to redefi ne brain functioning, 

physio- and pathology, and its potential to cure a broad 

range of CNS diseases and injuries, the future of this fi eld 

of research is tantalizing.
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