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Introduction: Sonneratia alba extract exhibits antimalarial activity, mainly due to its secondary metabolites—naphthoquinones, 
flavonoids, tannins, and saponins—where naphthoquinone is the primary active component. However, its low bioavailability limits its 
effectiveness. To improve this, a phytosome-based vesicular system was proposed. This study focused on formulating a phytosome 
with S. alba and developing a predictive model to enhance its antimalarial activity.
Methods: Phytosomes were produced using antisolvent precipitation and optimized with 3-factor, 3-level Box-behnken model. 
Particle size, zeta potential, and entrapment efficiency were assessed. The optimized phytosomes were characterized by their physical 
properties and release profiles. Their antimalarial activity was tested in white BALB/c mice infected with Plasmodium berghei using 
Peter’s 4-day suppressive test.
Results: The optimal phytosome formulation used a phospholipid-to-extract ratio of 1:3, reflux temperature of 50°C, and a duration of 
2.62 hours. The phytosomes had a particle size of 471.8 nm, a zeta potential of −54.1 mV, and an entrapment efficiency (EE) of 82.4%. 
In contrast, the phytosome-fraction showed a particle size of 233.4 nm, a zeta potential of −61.5 mV, and an EE of 87.08%. TEM 
analysis confirmed both had a spherical shape. In vitro release rates at 24 hours were 86.2 for the phytosome-extract and 95.9% for the 
phytosome-fraction, compared to 46.9% and 37.7% for the extract and fraction alone. Overall, the phytosome formulation demon-
strated good stability. The actual experimental values closely matched the predicted values from the Box–Behnken model, indicating 
a high degree of accuracy in the model. Additionally, the phytosomes exhibited significantly greater antimalarial activity than the 
S. alba extract and fraction alone.
Conclusion: The findings indicated that the vesicular formulation in phytosomes can enhance the antimalarial activity of S. alba 
extract and fraction.
Keywords: antimalarial S.alba, phytosome, box-behnken, extract, fraction

Introduction
Lipid drug delivery systems (LDDS) are gaining significant attention from researchers in formulation development due to 
their potential to improve drug efficacy and safety.1 LDDS is a novel technology designed to address challenges such as 
the solubility and bioavailability of poorly water-soluble drugs.2 Many active substances with promising therapeutic 
potential can have their physical properties enhanced through an appropriate drug delivery system.3

Herbal remedies have been extensively examination by researchers worldwide for their clinical effectiveness, serving 
as a potential substitute for synthetic pharmaceuticals. These remedies offer notable advantages, such as significant 
therapeutic efficacy, minimal adverse effects, and cost-effectiveness compared to synthetic medications.4 However, 
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a major challenge in pharmaceutical formulation is the limited bioavailability of these compounds due to their inherent 
low solubility in aqueous solutions.5 Phytosome—a type of nanoparticulate system—can enhance the aqueous solubility 
of phytoconstituents, thereby increasing their bioavailability and therapeutic activity. Phytosomes are vesicular delivery 
systems composed of natural active substances and phospholipids.6,7 Phospholipids—a class of lipids with amphiphilic 
characteristics—facilitate the formation of lipid bilayer.6–8 The primary goal of the phytosome delivery system is to 
improve the bioavailability of active ingredients, making them more easily absorbed.7,9,10 Research has demonstrated that 
phytosomes effectively enhance membrane stability and permeability. Recent studies have shown that this technology 
can significantly improve the activity of various phytoconstituents,11 such as sinigrin,12 apigenin,13 quercetin,14 

gingerol,15 Lantana camara extract,16 and Murraya koenigii extract.17

Phytosomes can be prepared using several methods, such as solvent evaporation, antisolvent precipitation, freeze- 
drying co-solvency, and salting-out techniques.18 In the antisolvent precipitation technique for phytosome production, the 
plant extract or active ingredient is dissolved with phospholipids in a solvent. This mixture is then refluxed at a specific 
temperature for a predetermined time to form a transparent solution. Next, n-hexane is added as an antisolvent to 
precipitate the phytosomes.19 Figure 1 illustrates the phytosome preparation using the antisolvent precipitation method.

S. alba is a mangrove plant traditionally used by Indonesian coastal communities to treat wounds, diarrhea, and 
fever.20,21 The plant’s antimalarial activity is attributed to secondary metabolites, such as alkaloids, flavonoids, quinones, 
and triterpenoids.22,23 Specifically, naphthoquinone has been identified as the key component responsible for its 
antimalarial properties.22 However, naphthoquinone exhibits low bioavailability due to its poor solubility in water and 
rapid elimination from the body.24–26 This limitation poses a significant challenge to the effective use of herbal medicine 
for health promotion.27 Lipid-based drug delivery systems have been shown to enhance the activity and physicochemical 
stability of bioactive compounds.28–30 Therefore, employing such systems offers a promising approach to enhancing the 
antimalarial activity and physical properties of S. alba.

The challenge of controlling malaria has become increasingly complex, primarily due to widespread drug 
resistance.31 This escalating resistance renders many antimalarial drugs ineffective, resulting in higher morbidity and 
mortality rates.32 Consequently, there is a growing interest in herbal medicine as an alternative therapeutic approach. 
However, the inherent issues of low bioavailability and solubility of herbal active compounds highlight the need for 
research into improved delivery systems. Nanotechnology, with its potential to enhance drug safety and efficacy, offers 
promising avenues for addressing these challenges.27

To achieve the desired product quality, careful considerations of formulation ingredients and process parameters is 
essential.33 Employing a systematic, scientific, and risk-based approach in the design and development of formulations 
and manufacturing processes ensures the quality of the final product.34–36 Design of experiments (DOE) is a valuable 
statistical tool for establishing correlation among key independent variables that influence production.37 This tool 

Figure 1 Phytosome fabrication process using the antisolvent precipitation method.
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allows for the analysis of interaction between variables and respond parameters, facilitating interpretation and 
prediction based on input parameters. Experimental design enables the prediction of nanoparticles with optimal 
particle size, zeta potential, and entrapment efficiency (EE).38 The Box-Behnken design—a statistical method— 
enables the simultaneous analysis of multiple parameters, minimizing the need for experiments in settings that pose 
risks or uncertainties.39

The primary objective of this research was to develop a predictive formulation model for S.alba phytosomes as lipid- 
based delivery system using the Box-Behnken design. This included studying the effect of independent variables 
(phospholipid-to-extract ratio, reflux temperature, and reflux time) on the responses such as particle size, zeta potential, 
and entrapment efficiency (EE). Additionally, the optimized phytosome formulations were evaluated for their in vivo 
antimalarial activity.

Materials and Methods
Instruments
Particle size analyzer (PSA) and zeta potential characterization were conducted using the Horiba Scientific SZ-100. 
Electronic spectra were obtained using a Specord 200 UV-Vis spectrophotometer across the wavelength range of 200 to 
800 nm. The range was selected to identify the peak wavelength of the active compound, naphthoquinone, which 
literature gests to be at 269 nm.40 Confirmation of this wavelength was achieved through measurement, indicating 
a specific peak at 268 nm within the 200–800 nm range. Transmission electron microscopy (TEM) images were captured 
using a JEOL JEL-1400 Transmission electron microscope operating at 100 kV.

Materials
The materials utilized in this study included standardized S. alba extract sourced from Teluk Majelis Village in East 
Tanjung Jabung Regency (Jambi Province, Indonesia), confirmed through plant identification conducted by Drs. Joko 
Kusmoro, M.P., from the Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas 
Padjadjaran, Indonesia, in 2022, based on designation No. 115/LBM/IT/12/2022. Chemicals included 2-Hydroxy- 
1,4-naphthoquinone (purity >99.9%) (Sigma-Aldrich), soy lecithin (Archer Daniels Midlands), dichloromethane 
(Merck), n-hexane (Merck), methanol (Merck), ethyl acetate, 0.5% PGA suspension, Plasmodium berghei, artemisinin 
(Sigma Aldrich), heparin, Phosphate Buffered Saline (PBS), and Giemsa dye. All other chemicals and reagents used 
were of analytical grade.

Animals
Healthy male BALB/c mice weighing 20–30 grams and aged 6–8 weeks were used for the antimalarial activity tests. The 
experimental animals were sourced from PT. Biopharma, Indonesia, and all procedures were conducted following the 
ethical standards established by the Research Ethics Committee of Universitas Padjadjaran, Bandung. The committee 
adheres to globally recognized guidelines, including the Eighth Edition of the Guide for the Care and Use of Laboratory 
Animals (NRC, 2011), and follows the principles of the 3Rs (reduction, refinement, and replacement) as outlined by 
William Russell and Rex Burch (1959) for animal experimentation decision-making.41,42 Ethical approval for all 
experiments conducted in this study was granted by the Research Ethics Committee at Universitas Padjadjaran 
Bandung under Ethical Approval No. 243/UN6.KEP/EC/2023.

Method
Quantification of Naphthoquinone by UV-Vis Spectrophotometer
The levels of naphthoquinone—a marker compound for antimalarial activity—in the extracts and fractions from previous 
study were determined using UV-Vis spectrophotometry (Spectrophotometer UV-Vis Specord 200). The external 
standard method was employed, and absorbance were measured at the maximum wavelength of 268 nm.43 The 
naphthoquinone content in 30 ppm of extract and 30 ppm of S. alba fraction was calculated.
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Development of Phytosome Formula Prediction Using Box-Behnken Design
A factorial design with three factors and three levels was used to optimize essential characteristics impacting the 
response variable.44 The critical material attributes (CMAs) for this study were phospholipid-to-extract ratio (X1), 
reflux temperature (oC; X2), and reflux time (hour; X3). These attributes were evaluated at three levels: low, medium, 
and high, as shown in Table 1. The critical quality attributes (CQAs) assessed in this study included particle size 
(nm; Y1), zeta potential (mV; Y2), and entrapment efficiency (%; Y3) (Table 2). A total of 15 batches were prepared to 
determine the optimal formula for the phytosome complex. The data obtained was entered into the Design-Expert® 

software (Version 13.0.5.0; Stat-Ease Inc., Minneapolis, MN). The most appropriate model for the measured response 
was selected based on the predicted and adjusted coefficients of determination. Adequate precision was also calculated 
to ensure model fit.45,46 The equation representing the model with the best fit was derived. The statistical technique of 
analysis of variance (ANOVA) was utilized to assess the significance of the researched variables by analyzing the 
measured response, with a significance level of p < 0.05.45 Response surface analysis was performed, and contour 
plots, as well as 3D response surface plots, were constructed to elucidate the relationships and interaction between the 
variables.46

Table 1 Independent and Dependent Variables in Box-Behnken Design for 
Phytosome-Extract

Factor Level

−1 0 +1

Independent variable X1, phospholipid-to-extract ratio 1 2 3
X2, reflux temperature (oC) 40 50 60

X3, reflux time (hour) 1 2 3

Dependent variable Y1, particle size (nm) <500 nm

Y2, zeta potential (mV) >+30 mV or <-30 mV
Y3, entrapment efficiency (%) >80

Table 2 Phytosome-Extract Formulations 
Prepared According to the Box-Behnken 
Design

F X1 X2 X3 Y1 Y2 Y3

1 2 60 1 230 −47,3 62,73

2 1 60 2 219,9 −53,1 63,95
3 2 50 2 444,5 −46 73,38

4 2 60 3 315,7 −56,1 66,82

5 3 40 2 466,7 −56,7 49
6 1 40 2 467 −56,6 39,77

7 3 60 2 325,2 −48,5 69,08
8 2 40 1 436,1 −53,4 28,71

9 2 40 3 454,2 −59,2 51,45

10 3 50 3 455,3 −57,8 83,22
11 2 50 2 436,2 −51,7 75,43

12 1 50 3 439,9 −50 65,59

13 2 50 2 439 −53,6 71,13
14 1 50 1 334,2 −55,7 51,66

15 3 50 1 448,6 −46,1 54,32
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Preparation of Phytosomes Loaded with S. Alba Extract
Phytosomes were prepared using the antisolvent precipitation technique. A total of 300 mg of S. alba leaf extract and the 
corresponding quantity of phospholipids, as indicated in Table 2 (ratios of 1:1, 1:2, and 1:3, equivalent to 300, 600, 
900 mg), were added into a 100 mL round-bottom flask. The mixture was subjected to reflux using 20 mL of 
dichloromethane at a temperature range of 40°C, 50 oC, or 60°C for a duration of 1, 2, or 3 hours. The mixture was 
concentrated to 5–10 mL. Subsequently, 20 mL n-hexane was added with constant stirring to precipitate the phytosomes, 
which were then filtered and collected. The precipitate was stored in a desiccator overnight. The resulting phytosome 
powder was placed in amber-coloured glass vials and stored at room temperature.45

Evaluation of Phytosome
Determination of Particle Size and Zeta Potential
The particle size and zeta potential of the phytosomes were determined using Particle Size Analyzer (PSA) with the 
dynamic light scattering (DLS) method. The measurements were performed using Horiba Scientific SZ-100, with the 
sample diluted 10 times in aqueous medium at room temperature.47,48

Entrapment Efficiency
The entrapment efficiency of naphthoquinone in the phytosomes was assessed by determining the amount of unentrapped 
naphthoquinone.49 The phytosome were diluted with methanol and centrifuged at 13,000 rpm for 45 minutes at −4°C 
using a refrigerated centrifuge. The supernatant was collected, and the concentration of free naphthoquinone was 
measured using a UV/Vis spectrophotometer at a wavelength of 268 nm.50 The entrapment efficiency of the phytosome 
was calculated using the following equation.51

In the formula, E0 represents the total amount of naphthoquinone added to the phytosomes and E1 represents the 
amount of free naphthoquinone.

Morphological Study by Transmission Electron Microscopy (TEM)
The morphological features of the phytosomes were assessed using a transmission electron microscope (JEOL JEL- 
1400). The samples were diluted with distilled water at a ratio of 1:20 and subjected to sonication for 10 minutes. 
A droplet of the phytosome solution was placed on a carbon-coated copper grid. A 2% uranyl acetate solution was then 
added to provide negative staining of the samples. The samples were allowed to dry naturally at room temperature for 15 
minutes before imaging. The phytosomes were imaged using TEM at an acceleration voltage of 100 kilovolts (kV).45,52

In vitro Release Studies
In vitro drug release from extracts, fractions, phytosome-extracts, and phytosome-fractions was conducted using dialysis bag 
technique.53 Release studies were performed at intestinal pH (7.4) using phosphate-buffered saline (PBS) at pH 7.4. In the 
dialysis bag method, pre-weighed samples of extracts/fractions and phytosome-extracts/phytosome-fractions (equivalent to 
2.5 mg of extracts/fractions) were placed in pre-soaked dialysis bags (molecular weight cut-off (MWCO) 14 KDa; Sigma- 
Aldrich, St. Louis, MO, USA). The release was carried out in 100 mL of PBS pH 7.4 at 37 ± 0.5°C with constant stirring at 
100 rpm using a magnetic stirrer. Samples were collected at the following time points: 0, 0.25, 0.50, 0.75, 1, 1.25, 1.75, 2.5, 4, 5.5, 
8, 12, 16, 20 and 24 hours. An equivalent volume of fresh media was added to replaced the aliquot removed.54 The samples were 
analyzed using a UV-Vis spectrophotometer to determine the naphthoquinone content.

Stability Studies
The stability of the phytosomes was evaluated under two different storage conditions. Room temperature stability studies 
were conducted at 25°C ± 2°C and 60% ± 5% relative humidity, while accelerated stability studies were performed at 
40°C ± 2°C and 75% ± 5% relative humidity. Samples were taken at intervals of 0, 30, 60, to 90 days. Particle size and 
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zeta potential were measured to assess the stability profile, and entrapment efficiency was evaluated after the stability 
testing. Additionally, a visual inspection was performed to check for any discoloration of the formulation.10,55–58

Antimalarial Activity Study
Animal Preparation
The experimental subjects were male BALB/c strain white mice, weighing between 20 and 30 grams, and aged 6 to 8 
weeks, obtained from PT. Biofarma, Indonesia. The mice were acclimatized for seven days in a controlled environment 
with 12-hour light/dark cycle. The temperature was maintained at 25 ± 3°C and the humidity was kept between 50% and 
60%. During this acclimatization period, the mice had ad libitum access to food and clean water. Plasmodium berghei 
strain ANKA was sourced from the local malaria laboratory Indonesia. Donor mice were intraperitoneally infected with 
blood containing P. berghei. When the parasitemia in the donor mice reached 20–30%, blood samples were collected 
directly from the heart.59

Animal Grouping and Dosing
The mice were randomly assigned to six groups, each consisting of four animals. Group 1 (the negative control group) 
received a 0.5% PGA solution. Group 2 (the positive control group) was administered artemisinin at 36.4 mg/kg body 
weight. Groups 3 and 4 were treated with individual extracts and fractions at a dosage of 95.28 mg/kg body weight, 
suspended in a 0.5% PGA solution. Groups 5 and 6 received phytosome-extract and phytosome-fraction, respectively, at 
a dose equivalent to 95.28 mg/kg body weight of the extract or fraction, also suspended in 0.5% PGA. All treatments 
were administered via oral gavage.

Rodent Malaria Parasite
The Plasmodium berghei strain ANKA was obtained from Universitas Jenderal Ahmad Yani, Cimahi, Indonesia. 
Cryopreserved parasite stocks were thawed and administered intraperitoneally to the mice, with each mice receiving 
0.2 mL containing 1×107 infected erythrocytes. Parasitic levels were monitored daily by examining Giemsa-stained thin 
blood smears, collected from the tail vein, under a microscope.60

Calculation of Parasitemia
Parasitemia in mice was assessed using thin blood smears prepared from tail blood. A drop of blood was placed on 
a glass side, spread with a cover slip, and allowed to air dry. The blood film was then fixed in absolute methanol for 
approximately 1 second and air-dried. Following this, the slide was stained with 10% Giemsa dye for 10 minutes at room 
temperature, gently rinsed under running water, and air-dried. Infected erythrocytes were counted under a light micro-
scope ata 1000x magnification using an oil immersion lens. The percentage of parasitemia was calculated using the 
following formula.60

Four-Day Parasite Suppression Test
Peter’s suppressive test was conducted over four consecutive days to evaluate antimalarial activity. Initially, all mice 
were intraperitoneally injected with 0.2 mL of a P. berghei suspension, containing approximately 107 parasites. 
Treatments with the test samples (extracts, fractions, or phytosomes) were administered orally 2 hours post-infection 
(Day 0). The mice received daily oral treatment on Days 1, 2, and 3 at the specified dosages. On Day 4, blood samples 
were collected from the tail, prepared as thin blood smears, and fixed in methanol. The smears were stained with a 10% 
Giemsa dye solution and examined under61 light microscope (Olympus, model CX-31, Japan) at 100x magnification.61 

The percentage of parasitemia suppression was calculated using the formula.
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In the formula, A represents the mean parasitemia of the negative control group on day 4, and B denotes the mean 
parasitemia of the test group on day 4.

Results
Quantification of Naphthoquinone in the Extracts and Fractions
Naphthoquinone—a key phytoconstituent in S. alba responsible for its antimalarial activity—was used as a marker for 
quantitative analysis in the development of S.alba phytosomes. In this study, it was determined that 30 ppm of S. alba 
extract contained 4.036 ppm of naphthoquinone, whereas 30 ppm of the fraction contained 5.243 ppm of 
naphthoquinone.

Modelling the Formula for Phytosome Containing S. Alba Extract
The Box-Behnken design was employed to evaluate the effects of various formulation parameters on the phytosome 
development process. Specifically, the study investigated the impact of the phospholipid-to-extract ratio (X1), reflux 
temperature (°C; X2), and reflux time (hours; X3). On the formulations outcomes. The responses evaluated for the 
formulations prepared using the Box-Behnken design are outlined in Table 2.

Table 3 presents the statistical analysis of the optimal model for the measured responses. Figure 2 compares the observed 
experimental results with the predicted values for particle size (A), zeta potential (B), and entrapment efficiency (C). The close 
alignment between the actual and predicted values demonstrates the robustness of the chosen design approach in modelling the 
formulation to meet specific criteria.45

Effect of Variables on Response
The optimized method elucidated the effects of formulation variables—phospholipid-to-extract concentration ratio (X1), 
reflux temperature (oC; X2), and reflux time (hours; X3) on the particle size (nm; Y1), zeta potential (mV; Y2), and 
entrapment efficiency (%; Y3) of phytosomes. The particle size, zeta potential, and entrapment efficiency of the 
phytosome-extract range from 230 to 466.7 nm, −59.2 to −46 mV, and 39.8 to 83.2%, respectively. The model equations 
derived from the response surface analysis are as follows:

Analysis of variance (ANOVA) using quadratic model for particle size response indicated significant effect of linear 
terms X1 (phospholipid-to-extract ratio), X2 (reflux temperature), and X3 (reflux time) at p < 0.05. Additionally, 
interactions between X1 and X2, X1 and X3, and X2 and X3 significantly impacted particle size. The squared terms of 
X2

2 and X3
2 also demonstrated a significant on particle size. Figure 3A illustrates the effects of these independent factors 

on particle size. A negative slope for variable X2 indicates an inverse relationship between reflux temperature and particle 
size. Conversely, a positive correlation was observed between X1 and X3, suggesting that an increased phospholipid-to- 
extract ratio and longer reflux time are associated with larger particle sizes. In contrast, higher reflux temperatures 

Table 3 Statistical Analysis of Responses Y1, Y2, and Y3 for the Optimal Model

Fitting Model Response R2 Adjusted R2 Predicted R2 Adeq Precision SD %CV Lack of Fit

Quadratic Particle size (Y1) 0.9965 0.9901 0.9482 34.7475 8.3 2.16 not significant

2FI (two factor interaction) Zeta potential (Y2) 0.7401 0.5452 0.3714 6.9111 2.93 5.56 not significant

Quadratic % EE (Y3) 0.9834 0.9535 0.7773 20.7985 3.13 5.18 not significant
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resulted in smaller particles. Positive coefficients for X1 and X3, along with a negative coefficient for X2, corroborate 
these observations.

The zeta potential response, as modeled by the 2FI (two-factor interaction) model, is significantly influenced by the 
linear terms X2 (reflux temperature) and X3 (reflux time) at p < 0.05. Additionally, the interaction between X1 

(phospholipid-to-extract ratio) and X3 has a significant impact on zeta potential. The 2FI model specifically examines 
the interaction between pairs of factors, focusing on how the interaction between these two factors affects the response. 
Figure 3B illustrates the effects of the independent variables on zeta potential. Analysis of the data revealed a positive 
correlation with variable X2 indicating that an increase in the phospholipid-to-extract ratio is associated with a higher 
zeta potential. In contrast, a negative correlation was observed with variable X3, suggesting that longer reflux times are 
associated with a decrease in zeta potential.

The entrapment efficiency was significantly influenced by the linear terms X1 (phospholipid-to-extract ratio), X2 

(reflux temperature), and X3 (reflux time), as determined by the quadratic model with a significance level of p < 0.05. 
Additionally, the interaction between X2 and X3 had a notable effect on entrapment efficiency. The quadratic terms X2

2 

and X3
2 also exhibited significant influence on this response. Data analysis revealed a positive correlation with variable 

X1, indicating that a higher phospholipid-to-extract ratio is associated with increased entrapment efficiency. Both 
variables X2 and X3 demonstrated positive slopes up to the midpoint, suggesting that optimal reflux temperature and 
reflux time lead to higher entrapment efficiency. However, beyond this midpoint, entrapment efficiency decreased with 
increasing reflux temperatures and longer reflux times. Figure 3C illustrates the effects of these independent variables on 
entrapment efficiency.

The ideal phytosome characteristics include particle size in the nanometer range, zeta potential within a stable range, 
and maximized entrapment efficiency. To assess these parameters, the effects of factors X1, X2, and X3 on particle size 
(refer to Figure 4), zeta potential (refer to Figure 5), and entrapment efficiency (refer to Figure 6) were evaluated. 
Contour plots, both 2D and 3D, were used to visualize the impact of these factors.

Contour plots represent a two-dimensional surface where points with identical responses are connected to form lines 
indicating consistent response levels. In contrast, 3D-surface plots provide a more detailed perspective on the response 
surface, offering a clearer understanding of the interactions between variables and their effects.

The goal of the optimization was to achieve phytosomes with particle sizes in the nanometer range, zeta potentials 
indicating good stability, and maximum entrapment efficiency. The optimized phytosome-extract formula was then 
applied to phytosome-fraction formulations. The physical characteristics of both the optimized phytosome-extract and 
phytosome-fraction are summarized in Table 4.

Figure 2 Comparison of predicted and actual values for (A) particle size (nm), (B) zeta potential (mV), and (C) entrapment efficiency (%) of phytosomes containing S. alba.
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Surface Morphology of Phytosomes
The surface morphology of the phytosome-extract and phytosome-fraction from the optimized formulations was 
examined using transmission electron microscopy (TEM) 100 kV. As depicted in Figure 7, the TEM images revealed 
that both S. alba phytosome-extracts and phytosome-fractions exhibited a spherical shape with smooth with smooth 
surface characteristics.

In vitro Release Studies
In vitro dissolution studies at pH 7.4, shown in Figure 8, demonstrated that the drug release percentages from phytosomes 
were significantly higher compared to those from extracts and fractions. This enhanced release can be attributed to the 
improved solubilization and complete release of the active constituents from the phytosome matrix. Over 24 hours, the 

Figure 3 Effect of phospholipid-to-extract ratio (X1), reflux temperature (X2), and reflux time (X3) on the response: (A) particle size, (B) zeta potential, and (C) 
entrapment efficiency.
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Figure 4 Contour plots (A–C) and surface plots (D–F) illustrating the impact of variables (X1–X3) on the particle size of phytosomes.
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Figure 5 Contour plots (A–C) and surface plots (D–F) depicting the influence of variables (X1–X3) on the zeta potential of phytosomes.
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Figure 6 Contour plots (A–C) and surface plots (D–F) demonstrating the effect of variables (X1–X3) on the entrapment efficiency of phytosomes.
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percentage of drug released was as follows: extract = 37.7%, fraction = 46.9%, phytosome-extract = 86.2%, and 
phytosome-fraction = 95.9%.

Stability Studies of Phytosomal Formulation
Stability studies were conducted monthly over three months to assess the particle size and zeta potential of phytosomal 
formulations. These evaluations were performed under two conditions: at room temperature (25 ± 2°C) and under 

Table 4 Physical Parameters of Optimized Phytosome Formulations

Formulation Phospholipid-to- Extract 
Ratio (X1)

Temperature 
(°C) (X2)

Reflux Time 
(Hour) (X3)

Particle Size 
(nm)

Zeta Potential 
(mV)

EE (%)

Phytosome-extract 1:3 50 2.62 471.8 −54.1 82.4%

Phytosome-fraction 1:3 50 2.62 233.4 −61.5 87.08%.

Figure 7 Surface morphology of optimized phytosome-extract (A) and phytosome-fraction (B) from S. alba at 10000x magnification.

Figure 8 Drug release profiles of extract, fraction, phytosome extract, and phytosome fraction at pH 7.4.
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accelerated conditions (40 ± 2°C). The variations in particle size and zeta potential are detailed in Table 5 and Table 6. 
Additionally, the entrapment efficiency of naphthoquinone was assessed at the end of the stability period and is presented 
in Table 7. The results indicate that, overall, the phytosome formulations maintained stability at room temperature.

Antiplasmodium Activity
Previous research has established that the effective dose (ED50) of S. alba ethanol extract for antimalarial activity is 
95.28 mg/kg body weight (BW) mice.62 In this study, the same dosage was administered to test groups, which included 
both extracts and fractions at 95.28 mg/kg BW. For phytosomes-extracts and phytosomes-fractions, the doses were 
adjusted to be equivalent to 95.28 mg/kg BW of the respective extracts or fractions. The antimalarial activity against 
Plasmodium berghei is illustrated in Figures 9 and 10, showing percentage parasitemia percentage inhibition, respec-
tively. The negative control group exhibited the highest parasitemia percentage (25.7%), followed by extracts (11.95%), 
fractions (10.12%), phytosome-extracts (5.12%), phytosome-fractions (3.98%), and the positive control (0%). In terms of 
suppression percentage, the positive control achieved the highest suppression (100%), followed by phytosome-fraction 
(84.51%), phytosome-extract (80.12%), fraction (60.54%), extract (53.38%), and the negative control (0%).

Table 5 Changes in Particle Size and Zeta Potential at Room Temperature 
Over Three Months

Formula Characterization Day

0 30 60 90

Phytosome-extract Particle size (nm) 441.8 449.7 450.7 455.9

Zeta potential (mV) −54.1 −53.6 −52.9 −48.4
Phytosome-fractions Particle size (nm) 233.4 238.4 242.6 252.5

Zeta potential (mV) −61.5 −59.1 −58.6 −52.7

Table 6 Changes in Particle Size and Zeta Potential at 40°C in Three 
Months

Formula Characterization Day

0 30 60 0

Phytosome-extract Particle size (nm) 441.8 452.3 460.0 464.6

Zeta potential (mV) −54.1 −50.5 −45.5 −43.4
Phytosome-fractions Particle size (nm) 233.4 237.6 248.9 258.6

Zeta potential (mV) −61.5 −60.8 −57.2 −56.9

Table 7 Stability Studies of Naphthoquinone at 
Different Temperatures

Formula EE Day 0 (%) EE day 90 (%)

Temperature Temperature

25°C 40°C 25°C 40°C

Phytosome-extract 82.4 82.0 80.6 76.7

Phytosome-fractions 87.1 86.8 85.8 83.0
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Discussion
Phytosomes are vesicular delivery systems created through the interaction between phytoconstituents and phosphatidyl-
choline in phospholipids, resulting the formation of hydrogen bonds between the two components.63 This innovative 
approach enhances the efficacy of bioactive compounds by integrating lipid molecules, thereby increasing the lipophi-
licity and improving bioavailability.

Compared to other lipid-based drug delivery systems, phytosomes offer distinct advantages in enhancing the 
bioavailability of phytochemical extracts. They form molecular complexes with phospholipids, which help protect active 
ingredients from degradation and increase their permeability across cell membranes.64–67 This interaction improves the 
solubility of poorly soluble phytoconstituents, thereby enhancing their absorption and bioavailability.68,69 The chemical 
bonds formed between phospholipid head and the phytoconstituents ensure the stability of the complex during storage 

Figure 9 Percentage of parasitemia in negative control, positive control, ethanol extract, ethyl acetate fraction, phytosome-extract, and phytosome-fraction of S. alba leaves.

Figure 10 Percentage suppression of parasitemia on day 4 for negative control, positive control, ethanol extract, ethyl acetate fraction, phytosome-extract, and phytosome- 
fraction of S. alba leaves.
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and use.68,70 Furthermore, phytosomes demonstrate higher entrapment efficiency, indicating that the active compounds 
are effectively encapsulated within the system.71

In this study, phytosomes were prepared using the antisolvent precipitation method. This approach demonstrated superior 
entrapment efficiency compared to other methods, highlighting its effectiveness in the process.67 Specifically, the antisolvent 
precipitation method outperformed the rotary evaporation technique in terms of entrapment efficiency, as evidenced by the 
investigation into phytosome-naringin systems.72 Additionally, the antisolvent precipitation method is advantageous for large- 
scale production due to its simplicity, cost-effectiveness, and ease of using available equipment.67,73 Importantly, this method 
yields phytosomes in powder form, which is crucial for maintaining stability—a key factor in scaling up production for 
commercial use.

Sonneratia alba was selected as the primary plant extract for this study based on several criteria, including its traditional 
use, phytochemical composition, and availability. S. alba—a mangrove species—has been traditionally employed by 
Indonesian coastal communities for treating wounds, diarrhea, and fever.20,21 Phytochemical analyses have identified 
secondary metabolites in S. alba, such as quinones, triterpenoids, alkaloids, and flavonoids, which are known for their 
antimalarial properties.22 Previous research has demonstrated that ethanol extracts of S. alba leaves exhibit significant 
antimalarial activity against P. berghei ANKA—the malaria parasite.62 This highlights S. alba as a promising natural resource 
for developing antimalarial agents. Additionally, S. alba’s widespread presence across various regions of Indonesia enhances 
its accessibility for both research and commercial applications.

In this study, a loading dose of 300 mg of S. alba was selected based on preliminary experimental optimizations. 
Loading doses exceeding 300 mg resulted in lower entrapment efficiency (EE), likely due to the phytosomes’ limited 
capacity to encapsulate the drug effectively.

The design of experiments (DOE) is a systematic approach used to evaluate the interactions among various factors 
affecting formulation process and the quality of the final product.74 By providing a framework to assess how independent 
variables influence the responses, DOE enhances the understanding of the relationships within the system and supports 
predictive modeling. In this study, a three-level Box-Behnken design (BBD) was employed to formulate and optimize the 
phytosome-extract derived from S. alba. BBD is advantageous for its precision and efficacy in analyzing and optimizing 
process parameters across various applications and research scenarios. Analysis of variance (ANOVA) was utilized as part of 
this methodological approach to ensure the robustness and accuracy of the results. ANOVA applied to the Box–Behnken 
design is a statistical method used to determine significant differences among variations tested in an experiment. In the context 
of phytosome formulation, variations such as phospholipid concentration, reflux temperature, and reflux time were examined 
for their impact on phytosome particle size. The primary goals were to achieve a nanoscale particle size, a stable zeta potential, 
and maximum entrapment efficiency. The independent variables investigated have been previously recognized as crucial 
factors in phytosome formulation.75 The experimental results indicated that a quadratic model best described the responses for 
particle size (Y1) and entrapment efficiency (Y3), while a two-factor interaction (2FI) model was most suitable for the zeta 
potential (Y2).75

The models were selected due to their insignificant lack of fit (LOF) values (refer to Table 3). The term “lack of fit” 
describes a situation where the mathematical model does not adequately represent the relationship between the variable 
and the responses. LOF assesses the model adequacy by measuring the discrepancy between observed and predicted 
values of the response variable. A statistically significant LOF indicates that the model does not effectively capture data 
variation, while an insignificant LOF value suggests a good fit76 and provides further validation of the model 
accuracy.76,77 The validity of the models was confirmed through various statistical tests and diagnostic plots to ensure 
they accurately represents the relationship between the variables and the response.78

To select the most appropriate model, it is essential to evaluate it based on the coefficient of determination (R2). To ensure 
the model’s validity, the discrepancy between the adjusted R2 and the predicted R2 should remain below 0.2.76 This criterion is 
crucial for developing reliable predictions and optimizing processes or systems. The experimental design demonstrated its 
efficacy in predicting the optimum formulation through the conducted trials, utilizing the selected independent variables.

By employing the Box-Behnken Design (BBD), the relationship between actual and predicted values can be described 
by a mathematical model derived from the experiment. This model should accurately reflect the data measured at specific 
experimental points. A well-developed model will yield predictions that closely match the actual value, as illustrated in 
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Figure 2. In this figure, actual values (represented by bullets points) are in proximity to the predicted values (depicted as 
lines generated by the mathematical functions).

The interaction graph in the Box-Behnken design (refer to Figure 3) visually represents the interplay between 
independent variables and the responses measured in the experiment. This graph aids in understanding how variations 
in one factor can influence the responses. By analyzing interaction graphs in Box-Behnken designs, researchers can make 
more informed and relevant decisions regarding the effects of the factors on their experimental outcomes. A positive 
coefficient indicates a direct correlation between the factors and the response variable, meaning that as the factor 
increases, the response also increases. Conversely, a negative coefficient implies an inverse relationship, suggesting that 
an increase in the factor leads to a decrease in the response.5 The equation reveals a positive relationship between the 
independent variable (phospholipid-to-extract ratio [X1]), and the three responses variables (particle size [Y1], zeta 
potential [Y2], and entrapment efficiency [Y3]. The reflux temperature (X2) positively influence zeta potential (Y2) and 
EE (Y3), but negatively affects particle size (Y1). Conversely, reflux time (X3), has positive impact on particle size (Y1) 
and EE (Y3), while its effect on zeta potential (Y2) is negative. The response surface graph, illustrated in Figure 3, 
provides a clearer depiction of the relationships between these factors and their respective responses.

The specific levels for the independent variables—phospholipid-to-extract ratio, reflux temperature, and reflux time—in 
the Box-Behnken design for phytosome formulation using the antisolvent precipitation method were selected based on 
extensive literature reviews.5,19,45,50,79,80 These levels were chosen to provide a thorough understanding of how independent 
variables affect phytosome formulation and to optimize the formulation through the Box-Behnken design. This approach helps 
reduce both the cost and time of experimentation while enhancing the accuracy and reliability of predictions. The Box- 
Behnken analysis identified the main influential factors and their impact on the responses, including particle size, zeta 
potential, and entrapment efficiency, which are affected by the tested variables (phospholipid-to-extract ratio, reflux tempera-
ture, and reflux time) as depicted in Figures 4–6. The optimal formulation was identified as having a phospholipid-to-extract 
ratio (1:3), a reflux temperature of 50°C, and a reflux time of 2.62 hours. Higher temperatures have been associated with 
adverse changes in chemical reactions and molecular structures, potentially leading to the formation of unintended compounds 
not present in the original extract.81 The particle size, zeta potential, and EE of the phytosome-extract optimum formulation 
were found to be 471.8 nm, −54.1 mV, and 82.4%, respectively. When this optimal formulation was applied to phytosome- 
fractions, it yielded particle size, zeta potential, and EE values of 233.4 nm, −61.5 mV, and 87.08%, respectively.

Contour plots and three-dimensional (3D) response surface plots are instrumental in elucidating both main and interaction 
effects while keeping other factors constant. Contour plots offer a two-dimensional representation of the response surface, 
illustrating the interaction between two independent variables and their impact on the response variable. They are useful for 
identifying optimal formulation parameters by examining the relationship among independent variables (ie, phospholipid-to- 
extract ratio, reflux temperature, and reflux time) and response variables (such as particle size <500 nm, zeta potential <-30 
mV, and high EE). The Box-Behnken design provides prediction points to determine the optimal formulation with expected 
outcomes. Subsequently, the predicted model is validated through laboratory experiments, and the results are compared with 
the predicted outcomes to obtain actual results.82 Plot surfaces, offer a more detailed visualization by presenting the response 
surface in three-dimensional space. This approach enhances the understanding of the relationship between independent 
variables and the response variables, facilitating the identification of optimal operating conditions.82 These visual representa-
tions are crucial for optimizing processes and formulations, as they help pinpoint critical factors and their optimal levels, 
ultimately leading to the desired responses.83

Figure 4A and D illustrate the effects of phospholipid concentration and reflux temperature on phytosome particle 
size. An increase phospholipid concentration was associated with larger particle sizes. Conversely, higher reflux 
temperatures were linked to smaller particle sizes. Generally, an increase in phospholipid concentration and longer the 
reflux time tend to increase particle size, as shown in Figure 4B and E. However, when the reflux time exceeded 2.5 
hours, a reduction in particle size was observed. An increase in phospholipid concentration typically results in larger 
phytosome sizes. This phenomenon can be attributed to the higher phospholipid content, which increases viscosity and 
promotes aggregation, leading to larger phytosomes. This observation aligns with the findings of Song et al, who reported 
a positive correlation between lipid content and particle size in the production of phytosomes-breviscapine with various 
drug-to-lipid ratios (1:1, 1:2, and 1:3). Their study demonstrated that an increase in lipid content corresponds to a rise in 
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particle size.84 The higher number of phospholipid molecules contributes to aggregation, which in turn increases the 
particle size.85 In the preparation of phytosome-sinigrin, it was observed that higher phospholipid concentrations resulted 
in larger particles.75 Similarly, the formation of Icariin phytosomes showed that phospholipid concentration significantly 
affects vesicle size, with higher concentration leading to increased particle size.45

The results indicated that higher reflux temperatures led to smaller the particle size (refer to Figure 4C and F), while 
increased reflux times resulted in larger particle sizes. This observation was visually confirmed by color gradient in the 
plots, where the blue-red spectrum represented particle sizes ranging from 219.9 to 467 nm. Specifically, red hues 
indicated large particle sizes, while the blue hues denoted smaller particle sizes. These findings are consistent with 
previous research, which reported that increased reflux temperature can decreased particle size. Higher temperatures tend 
to accelerate the solvent evaporation rate, thereby facilitating the formation of smaller particles.67 Another study 
indicated that increased temperature can enhance complexation and tight integration between phytoconstituents and 
phospholipids, resulting in particles with smaller diameters.85 However, this relationship is not universally applicable and 
may vary depending on the specific phytosome formulation and solvent system employed. For instance, in the formation 
of Icariin phytosomes, reflux temperature significantly influenced vesicle size, with a negative slope reflecting an inverse 
relationship between reflux temperature and particle size.45 Other research has suggested that extended reflux times can 
lead to increased particle aggregation, which results in larger phytosome particle sizes when prepared using the 
antisolvent precipitation method.18,74,86

Figure 5A and D illustrate the relationship between phospholipid concentration and reflux temperature on the zeta 
potential of phytosomes. The data show that increased phospholipid concentration results in a linear increase in zeta 
potential values. Generally, the negativity zeta potential is attributed to the negative phosphate groups in phospholipids, 
which are oriented toward the outer layer of the phytosomal complex.87 As phospholipid concentration rises, the zeta 
potential becomes more negative, reflecting an increase in surface charge. A zeta potential value greater than ± 30 mV is 
indicative of good suspension stability.88,89 High zeta potential values suggest stronger repulsive force between particles, 
reducing the likelihood of aggregation during storage. Conversely, low zeta potential values can lead to particle attraction 
and aggregation, potentially resulting in flocculation and reduced stability of the suspension.90 A study on phytosomes 
preparation using extracts from ginger rhizomes and rosehips confirmed that phytosomes exhibited a negative charged, 
with zeta potential values becoming increasingly negative as the phospholipid concentration increased.52

Higher temperatures can cause phospholipids to assume a more disordered conformation, which may result in less 
negative zeta potential due to the reduced exposure of the negative phosphate groups.91 This phenomenon is illustrated 
by the color gradient in the plots, where the zeta potential ranges from −59.2 to −46 mV.

Figure 5B and E illustrate the effects of phospholipid concentration and reflux time on zeta potential. High zeta 
potential values were observed with high phospholipid concentrations and low reflux time, as indicated by the red areas 
on the contour plots. This suggests that phytosomes prepared under these conditions may aggregate more easily during 
storage. To achieve lower zeta potential values, two approaches can be considered: using high phospholipid concentration 
with extended reflux times or maintaining both parameters at low values, as shown by the blue areas on the contour plots. 
The influence of phospholipids concentration on zeta potential is not solely linear; other factors, such as reflux time, also 
play a significant role.52 In this study, the effect of reflux time was more pronounced, resulting in a significant increase in 
zeta potential values.

Figure 6A and D illustrate the relationship between phospholipid concentration and reflux temperature on the 
entrapment efficiency of phytosomes. The elliptical shape of the contour plots indicates that optimal entrapment 
efficiency is achieved under specific conditions: high phospholipid concentration combined with intermediate reflux 
temperatures. Additionally, higher entrapment efficiency is observed when using formulations with elevated phospholipid 
concentration and reflux times exceeding three hours (refer to Figure 6B and E).

It is crucial to recognize that entrapment efficiency in phytosomes is influenced by several factors, including the 
stability and formation of the phytosome structure. Increased phospholipid concentration typically enhances entrapment 
efficiency, as phospholipids are fundamental to the formation and stability of phytosomes.75 A higher concentration of 
phospholipids provides more molecules available for encapsulating active compounds, thereby improving entrapment 
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efficiency.91 This relationship between phospholipid concentration and entrapment efficiency has been consistently 
observed in studies studies.91–93

Increased entrapment efficiency was also observed with adjustments to reflux temperature and reflux time (refer to 
Figure 6C and F). The elliptical contour plots indicated that the highest efficiency was achieved with reflux times of 2–3 
hours at specific reflux temperatures ranging from 45–60°C.

Higher reflux temperatures can enhance the solubility of the phytochemicals, potentially leading to improved 
encapsulation efficiency.18 However, excessive high temperatures may also degrade phytochemicals or phospholipids, 
which could negatively impact entrapment efficiency.18 Elevated temperatures may alter the solubility of the components, 
affecting the formation and stability of the phytosomes and, consequently, their entrapment efficiency.94 The effect of 
reflux temperature on entrapment efficiency is complex and depends on the specific formulation. Optimizing reflux 
temperature is crucial for each phytosome formulation to achieve the desired entrapment efficiency. Additionally, longer 
reflux times facilitate the complete encapsulation of active compounds within the phytosomes, leading to higher 
entrapment efficiency.94,95

To ensure the reproducibility and consistency of phytosome formulations across batches, several measures should be 
implemented. One of them is to standardized the phytosome preparation method and replicate it consistently to maintain 
result uniformity. This involves controlling materials, and process parameters (ie, temperature, reflux time, and stirring 
speed), while ensuring these parameters are maintained consistently throughout each batch. At the manufacturing scale, 
quality control measures should be applied to verify the quality and consistency of raw materials and final products. The 
design of experiments (DOE), specifically the Box–Behnken design, can be utilized to optimize process parameters and 
enhance reproducibility. Additionally, routine batch-to-batch characterization of phytosome products is essential to 
confirm that the formulation process consistently produces uniform results across different production batches.

Transmission electron microscopy (TEM) is a powerful technique for visualizing and analyzing the morphology and size 
of phytosomes.18 TEM images of S. alba phytosome-extracts and phytosome-fractions revealed that the particles are spherical 
and exhibit a smooth surface (refer to Figure 7). These observations confirm the successful preparation of phytosomes and 
provides valuable insights into their morphology and structure. The spherical vesicles observed are characteristic of phyto-
some structures, consisting of a phospholipid bilayer encapsulating the active compound.96,97 The TEM images corroborate 
the particle size analysis result obtained from dynamic light scattering technique. Key features observed in the TEM images 
(eg, the spherical shape of the phytosomes) are crucial for their stability and performance.74,88,98 The images show that the 
phytosomes are of consistent size and fall within the designated range, indicating successful formulation.74,88 Additionally, the 
smooth surface morphology of the phytosomes, as depicted in the TEM images, is essential for their interaction with the 
surrounding environment and for maintaining stability.74,88 Importantly, the absence of aggregation in the TEM images is 
crucial for ensuring long-term stability and preventing particle growth over time.74,88

In vitro release results demonstrated that phytosomes significantly enhance the solubilization of naphthoquinone—a 
marker compound of S. alba. The release of the drug from phytosomes was twice as high compared to that from extracts or 
fractions. Phytosomes, as lipid-based nanocarriers, effectively encapsulate hydrophobic compounds within their lipid bilayer. 
The encapsulation of the extract in phospholipids, improved the solubility of the extract, facilitating better dissolution and 
release of the active compounds.99,100 This enhancement contributes to a more pronounced in vitro release profile and 
potentially improved in vivo antimalarial activity.99,101 The phospholipid layer of phytosomes protect the extract, preventing 
the degradation of active substance. This protective layer preserves the integrity of the extract and enhances its release, 
resulting in an elevated in vitro release profile.102 After 24 hours, the release of naphthoquinone from phytosomes approached 
nearly 100%, whereas the release from pure extracts or fractions was less than 50% (refer to Figure 8). Soya lecithin— 
phospholipid— enhances the solubility of naphthoquinone by improving its wettability, which leads to increased solubiliza-
tion in the release medium. Previous studies have also reported the ability of soya lecithin to enhance the solubility of poorly 
soluble drugs.103 Additionally, the nanometer size of the phytosomes likely contributes to the enhanced release of naphtho-
quinone through the dialysis membrane. Smaller particles typically exhibit faster diffusion across semipermeable membranes 
due to their higher surface area-to-volume ratios, facilitating their passage through pores.18

Stability testing of powdered phytosomes was conducted to simulate real storage conditions. The study revealed that 
during long-term physical stability testing, there were no alterations in particle size or zeta potential. Maintaining 
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consistency in these parameters ensures that the formulation remains stable during storage, thereby offering sustained 
pharmacological activity.49 Furthermore, the study on the entrapment efficiency of phytosome during stability testing 
indicated that the phytosomes exhibited chemical stability, with no degradation or deterioration. This stability guarantees 
the preservation bioavailability and effectiveness of the formulation over time.52 The findings suggest that the production 
of phytosomes by antisolvent precipitation technique results in excellent stability. The powdered form of these phyto-
somes can be stored for extended periods without deterioration, thus ensuring long-term stability and efficacy. The 
powdered phytosome product is not only well-suited for long-term storage but also versatile in its applications, such as 
serving as an alternative treatment for malaria. While the particle size and zeta potential of phytosomes showed slight 
changes, these variations were not significant. Notably, particle size variation was relatively greater at 40°C compared to 
25°C, as shown in Tables 3 and 4. The stability of phytosomes can be influenced by temperature. Higher temperatures 
increase the kinetic energy of the molecules within the phytosome, potentially causing vesicles coalescence and changes 
in particle size and zeta potential.74,104,105 Therefore, maintaining temperature control is crucial for ensuring the stability 
of phytosome.

The entrapment efficiency of phytosome showed a slight decrease after storage for three months. It was further 
concluded that at a room temperature of 25°C the amount of active substances in phytosomes was more stable than at 
40°C. Visual inspection revealed no significant color change in the formulation after three months at either 25°C or 40°C. 
Phytosomes can be an effective formulation with good stability, and they are best stored at room temperature (25°C). In 
the stability studies, the decrease in entrapment efficiency was attributed to vesicle leakage, which is caused by the high 
flexibility of the lipid bilayer at elevated temperatures.93,106

In vivo antimalarial activity testing was conducted due to its practicality and efficiency compared to in vitro 
tests.107,108 The content of the extract in phytosomes was equivalent to the effective dose (ED50) of the extract as 
determined by prior study (95.28 mg/kg body weight of mice).62 The antimalarial activity test was conducted using the 
four-day suppression method—widely employed standard test for early infection and primary screening of antimalarial 
drugs. Substances with a percentage inhibition value of more than 30% are considered active.59,109 As shown in Figure 9, 
the percentage of parasitemia in the phytosome-extract group was lower than in the extract group.110 Meanwhile, in 
Figure 10, the percentage inhibition in all groups, except the negative control, exceeded 50%. This indicates that the 
samples administered to the tested groups effectively protected mice from P. berghei infection. The strongest parasite 
inhibition activity was observed on the fourth day of investigation, coinciding with the peak levels of the active 
constituent after continuous administration into the animal’s body system.61 Based on the results, the antimalarial activity 
of phytosomes was higher than that of the extract and fraction, likely due to several mechanisms: increased solubilization 
and enhanced bioavailability. Phospholipids in phytosomes form hydrogen bonds with water molecules, thereby 
increasing the solubility of naphthoquinone by facilitating its dissolution in aqueous media.111 Furthermore, phospholi-
pids can deform cell membranes, allowing deeper penetration of naphthoquinone and thus increasing its 
bioavailability.111 Phytosomes also enhance the absorption of naphthoquinone by improving its solubility, which 
facilitates more efficient penetration into the bloodstream.111 The enhanced solubility and activity of naphthoquinone 
within the phytosome system make it a promising delivery method to improve therapeutic efficacy.112 This research 
highlights a significant novelty. Phytosomes—using the same dose of free extract from a previous study—demonstrated 
higher activity.62 Phospholipids, being amphiphilic, interact effectively with cell membrane, which are also composed of 
phospholipid.75 Active compounds encapsulated in phytosomes can cross the cell membrane more easily, thus enhancing 
the bioavailability of the active compounds and potentially reducing the risk of adverse side effects.113

A previous study by Muhaimin et al demonstrated the antimalarial properties of Sonneratia alba using Peter’s Test 
method on mice. The findings revealed that the ethanol extract derived from the leaves of S. alba inhibited parasitic 
growth in malaria-infected mice. Doses of 300, 150, and 75 mg/kg BW resulted in parasitemia suppression of 77.34%, 
62.35%, and 43.53%, respectively.62 The current research is its continuation to which the delivery system of the active 
extract to enhance its antimalarial activity. It was found that using the same dose, the phytosome-formulated extract 
exhibited significantly higher antimalarial activity (80.12%) compared to the extract alone (53.38%).

Chloroquine is a commonly used antimalarial medication, exhibiting approximately 90% efficacy against malaria- 
causing parasites. However, its use is often limited due to drug resistance and adverse side effects. Phytosomes derived 
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from S. alba extract demonstrated a significant antimalarial inhibition rate of 80%. Since these phytosomes are derived 
from a natural source, they may reduce the likelihood of adverse effects associated with synthetic antimalarial drugs. In 
summary, S. alba extract phytosomes exhibited significant efficacy, comparable to conventional drugs, in combating 
malaria while offering a safer option with fewer risks due to their natural origin. This suggests their potential as a natural 
alternative for malaria treatment.

A previous study by Muhaimin et al identified naphthoquinone as the compound responsible for the antimalarial 
activity of S. alba leaves.22,62 This activity is likely due to the inhibition of parasite growth by damaging mitochondrial 
function, which affects electron transport and prevents the formation of hemozoin.22,114 Naphthoquinones are important 
chemical compounds in the development of antiparasitic drugs.115 Buparvaquone, parvaquone, and atovaquone as well as 
lapachol and α- and β- lapachones, are naphthoquinones that have been investigated as potential antimalarial agents. 
These compounds have demonstrated a broad range of antimalarial activity against both chloroquine-sensitive and 
chloroquine-resistant strains.116

Considering the high resistance to current malaria drugs, the potential for S. alba phytosomes with antimalarial 
efficacy in clinical trials is significant. However, before clinical studies on humans, several factors must be carefully 
addressed. Potential negative effects from the extract, fraction, or phytosomes need to be considered, including allergies, 
systemic responses, or other complications from long-term administration. Monitoring and evaluating the dosage and 
administration of phytosomes is essential to understanding their biopharmaceutical behavior in the human body, as both 
excessive and insufficient doses can have serious repercussions. Additionally, a thorough toxicity assessment is required 
to compared the potential negative effects of phytosomes with those of the extract and fraction, ensuring that at an 
effective dose, the dosage form is safe for human use.

Conclusion
The primary factors influencing phytosomes production—particle size, zeta potential, and entrapment efficiency (EE)—were 
identified through Box-Behnken design analysis. The mathematical model generated relationships between actual and 
predicted values, offering high predictions accuracy. The optimized phytosome-extract formulation achieved particle size, 
zeta potential, and EE values of 471.8 nm, −54.1 mV, and 82.4%, respectively. When applied to phytosome-fractions, the 
formulation yielded particle size, zeta potential, and EE values of 233.4 nm, −61.5 mV, and 87.08%, respectively. 
Transmission electron microscopy (TEM) confirmed that both phytosome-extract and phytosome-fraction of S. alba exhibited 
spherical shape with smooth surface. Stability studies indicated that the phytosome formulation remained stable over time.

In vitro release studies demonstrated that phytosomes significantly enhance the solubilization of naphthoquinone—a 
marker compound with antimalarial activity in S. alba. The antimalarial efficacy of phytosomes showed marked 
improvement compared to the extract and fraction alone. These findings suggest that phytosomes enhance the effective-
ness of phytoconstituents in S. alba extract and fraction antimalarial agents.
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