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Abstract: Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed 
significantly. Unfortunately, this treatment prolongs the patient’s life only by a few months, causing many side effects in the human 
body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances 
containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a 
competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative 
ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine 
would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion 
of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted 
treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to 
the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding 
the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with 
compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential 
Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine. 
Keywords: fullerenes, nanotube, nanoparticles, drug delivery, personalized medicine, platinum-based drugs, cisplatin, carboplatin, 
oxaliplatin, nedaplatin

Introduction
Cancer is defined by the WHO (World Health Organization) as a group of diseases caused by abnormal, uncontrolled cell 
growth, which can be located in almost any organ or tissue of the body.1 The primary cause of cancer-related deaths is 
metastasizing,2–7 which is the spread of cancer cells from the initial organ or tissue to another one in the host.7

Nowadays, cancer is one of the leading causes of death globally. The most common women’s cancers are breast, 
colorectal, lung, cervical, and thyroid, whereas among men, these are lung, prostate, colorectal, stomach, and liver cancers.1

Lung cancer is one of the most common and serious types of cancer worldwide, for which detailed treatment 
regimens are presented. In 2022, lung cancer had the most new cases among all cancers, as many as almost 2.5 million, 
which constituted 12.4% of all new cancer cases. Although this statistic was comparable to breast cancer, lung cancer had 
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a twice as high mortality rate of over 1.8 million people, which accounted for 18.7% of all cancer deaths.8 The situation 
in Poland in 2019 is similar: among men it accounted for 16.1% and among women for 9.9% of new cases, while the 
mortality statistics were 27.4% and 17.9%, respectively.9 According to the American Cancer Society’s estimates of lung 
cancer in the USA, in 2024 there will be over 230 thousand new cases and over 125 thousand deaths.10

Lung cancer can be divided into two histologically different classes that grow and spread differently,11 Small Cell 
Lung Cancers (SCLC) and Non-Small Cell Lung Cancer (NSCLC).

Small Cell Lung Cancers (SCLC) - they constitute approximately 10–15% of all lung cancers. SCLC originate from 
hormonal cells of the lung and are characterized by rapid growth, a tendency to metastasize (even in over 60% of patients12), 
and susceptibility to chemotherapy. The survival rate is extremely low for 5 years - only 7%.13 Fortunately, they are highly 
susceptible to chemotherapy.12 Most often, they are located centrally in the lungs, and their presence is related to smoking.14

Non-Small Cell Lung Cancer (NSCLC) - they constitute approximately 80% of all lung cancers, and unlike SCLC, they 
most often develop slowly and may remain hidden until an advanced stage. They can originate from different types of cells.14 

Non-Small Cell Lung Cancer (NSCLC) being divided into many types, the most common of which are squamous cell lung 
cancer, large cell lung cancer, and adenoma. Active and passive smoking are factors that increase the risk of developing the 
disease, but NSCLC can be detected in people who have never smoked. Unfortunately, NSCLC is more resistant to 
chemotherapy and radiotherapy than SCLC.10 The survival rate for the next 5 years is significantly higher - 30%.10

The likelihood of effective treatment increases with the early detection of cancer.11,15,16 The treatment method 
depends on the type of cancer cells, their location, and the stage of the disease. Nowadays, traditional therapeutic 
treatment methods include, first of all, surgical resection, radiation therapy, and chemotherapy, while newer forms of 
treatment include targeted therapy, immunotherapy, hormone therapy, gene therapy, and photodynamic therapy.3,11,17–20 

Currently, however, combined therapy is used more and more often instead of monotherapy (Chapter 2, Subsection 2.4). 
The combination chemotherapy, including a Platinum derivative and drugs from other groups, is used in the treatment of 
many cancers (Chapter 2, Subsection 2.4 and Supplementary Materials: Tables S1 and S2). Nowadays, scientists are 
constantly looking for new anticancer drugs (Chapter 4, Subsections 4.3–4.5) that would provide a better therapeutic 
effect with minimal side effects (Chapter 2, Subsection 2.3), but also for new forms of treatment, which includes the 
creation of nanomedicine (Chapter 4). A significant development in chemotherapy is the combination of nanostructures 
with Platinum-derivative drugs (Chapter 4), which improves drug accumulation at the target site and weakens their side 
effects. Moreover, the creation of nanomedicine limits to an absolute minimum the possibility of combining the Platinum 
compounds with amino acids in the peripheral blood (Chapter 3, Subsection 3.2). Going further, at the cellular level, it 
limits the combination with compounds competing with nucleobases (Chapter 3, Subsection 3.1). There are many 
examples of combining a nanostructure with a chemotherapeutic agent in the literature (Chapter 4). Platinum compounds 
are often combined with organic nanostructures (protein nanotubes, liposomes, nanobodies, polymers), inorganic 
nanostructures (dendrimers) and carbon nanostructures represented by fullerenes, nanotubes, and rhombellans (Chapter 
4, Subsection 4.4).

Platinum Compounds
Platinum compounds are among the first, most effective, and most frequently used chemotherapy drugs. The oldest of them 
is Cisplatin (formerly Peron Saltz21), discovered by Micheal Perone in 1844.22 However, its cell division-inhibiting 
properties remained hidden until 1965, when Bennett Rosenberg of the University of Michigan described the inhibition 
of sarcomas and leukemias in mice in the presence of Cisplatin.23 It focused the attention of the scientific world on Platinum 
compounds, which naturally led to the expansion of their family to include additional substances. Currently, the family of 
Platinum derivatives can be divided into compounds that have been approved for treatment around the world, such as 
Cisplatin, Carboplatin, Oxaliplatin, and those that are only used in selected countries, such as Nedaplatin, Heptaplatin and 
Lobaplatin, taken by patients in Japan, Korea and China, respectively.24–27 Over the years, thousands of Platinum-derived 
compounds have been tested, but most of them were rejected in subsequent stages, mainly due to their high toxicity.28

Cisplatin (used since 1978) is a drug with a very wide range of uses in solid cancers, such as testicular cancer, ovarian 
cancer, bladder cancer, lung cancer, head cancer, neck cancer, stomach cancer, mesothelioma, cervical cancer, prostate 
cancer, skin cancer, salivary gland cancer, and others (Figure 1a).
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Carboplatin (used since 1989) is a compound belonging to a second-generation of platinum drugs with weaker 
anticancer activity but, at the same time, a less destructive effect on the body, compared to cisplatin, which is used in 
ovarian and testicular cancers, small-molecule lung cancer, neck cancer, head cancer, bladder cancer, breast cancer, brain 
cancer, and neuroblastoma (Figure 1b).28,48–65

Nedaplatin (used since 1995 in Japan) is a second-generation platinum drug, developed to provide a treatment with 
effectiveness similar to that of cisplatin and better than Carboplatin but with decreased renal and gastrointestinal 
toxicities. Moreover, it is much more soluble in water than Cisplatin. Nedaplatin is used to treat cancers of the head, 
neck, a small cell lung cancer, as well as esophagus (Figure 1c).28,59,60,66–71

Oxaliplatin (used since 1996) is a third-generation platinum drug, developed to overcome the resistance against first- 
and second-generation platinum drugs. Oxaliplatin has a different mode of action than Cisplatin, it creates fewer cross- 
links, but induces ribosome biogenesis stress. The lipophilic ligand increases penetration through cell membranes. It is a 
substance used mainly in chemotherapy of the colorectal cancer and, to a lesser extent, in stomach and esophageal 
cancers (Figure 1d).42,58–60,65,72–110

Heptaplatin (used since 1999 in Korea) is currently used in the treatment of gastric cancer and has fewer hematologic 
toxicities than Cisplatin with this same combination. The important advantage is its high solubility in water (Figure 1e).59,111–114

Lobaplatin (used since 2010 in China)24,25,115–117 is used in patients suffering from chronic myelogenous leukemia, 
small cell lung cancer and metastatic breast cancer118 (Figure 1f).25–27,59,66,115–118

All the above-mentioned compounds are administered in monotherapy or combined therapy, in which, in addition to 
Platinum derivatives, other medicinal substances are used, and each one has its own patterns (Table S1 given in 
Supplementary Materials). In this work, we will focus mainly on complex therapies for Non-small cell lung cancer15,16 

and Small cell lung cancer119,120 (Chapter 2, Subsection 2.4 and Table S2 given in Supplementary Materials).

Figure 1 The structure of Pt drugs; (a) - Cisplatin, (b) - Carboplatin, (c) - Nedaplatin, (d) - Oxaliplatin, (e) – Heptaplatin, and (f) - Lobaplatin.29–47
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The development strategies for these drugs focus on the combination therapy mentioned above (given in 
Supplementary Materials) and the therapy using nanostructures (for drug delivery), as well as other key issues: low 
selectivity towards cancer cells, limiting the phenomenon of resistance, and toxicity of chemotherapy.

Mode of Actions
Platinum compounds are administered intravenously in the form of a saline solution in specially prepared bags, to which 
a colored infusion device is connected. The bag contains all the necessary drug data (name, active substance, dose, 
solvent, infusion time), as well as the patient’s data and information to protect it from light. These solutions contain 
Platinum compounds in the form of a prodrug, which, due to the high concentration of chloride ions in the blood, remains 
inactive, but this state changes after the drug enters the cell.40 Compounds derived from Platinum penetrate the cell 
membrane by passive diffusion or active transport via the copper transporter CTR1106 organic cation transporters 
(OCTs),121 solute carriers (SLCs)121 and ATP-binding cassette (ABC) multidrug transporters.121 The details on these 
mechanisms for each Platinum drug are given in Table 1.

The choice of transport type depends on lipophilicity. More lipophilic substances, such as Oxaliplatin, will have 
dominant passive transport, whereas more hydrophilic substances, such as Heptaplatin and Nedaplatin, will cross copper 
receptors to a greater extent (Figure 2 and Table 1).

After passing through the membrane, these compounds are inactivated during the hydrolysis process and then show 
significant affinity for proteins (cysteine sulfhydryl groups)47,125–133 and nucleic acids (nitrogen atoms of purines, ie 
guanine and adenine).25,33,34,66,117,134,135, As a result of their action on DNA, the compounds generate a huge number of 
cross-links in nucleic acids, both within the same DNA strand and between strands, which distorts and damages the 
DNA. If these changes are not repaired by DNA polymerase, it leads to apoptosis (Figure 3).136–139

The most preferred attachment site for Cisplatin is the N7 nitrogen atom in the nitrogenous base of guanine 
(Figure 4). Additionally, the N7 of adenine, N3 of cytosine and thymine, and N1 of guanine and adenine are less 
preferred sites. Cisplatin attaches to the greatest extent to the two guanine bases laying on the same strand. They may lie 
next to each other or be separated by another base.

The next most common connection is the attachment of Cisplatin to a guanine base and an adenine base, lying next to 
each other on the same strand. Bonds between DNA and monoadduct strands are relatively rare62 (Figure 5).

Additionally, Platinum drugs stimulate the production of reactive oxygen species (ROS), which indicate oxidative 
stress. This process is mainly responsible for drug toxicity.140–146 ROS also lead to cell death by damaging mitochondrial 
DNA, which causes mitochondrial leakage and the release of cytochrome C and caspase-9, which initiate the apoptotic 
pathway.135

Table 1 Mechanism of Platinum Drug Transport Across the Cell Membrane

Cisplatin Passive diffusion is believed to play a major role in Cisplatin accumulation.41 However, active transport, although not so significant, 

also occurs using, among others, copper transporters,122 organic cation transporters and the family of multidrug and toxin 
extrusion123.

Carboplatin Carboplatin is transfused through the cell membrane by passive diffusion, although it can enter the cell through active transport 
(copper transporters).124 In contrast to cisplatin, as research has shown, it is not transported by organic cation transporters and 

multidrug and toxin extrusion family.123

Oxaliplatin In the case of Oxaliplatin, passive transport predominates initially after administration, but over time, active transport begins to 

dominate. The main types of transporters include organic cation transporters and multidrug and toxin extrusion family.105,123

Nedaplatin The transport mechanism of Nedaplatin is still little known, but we do know that organic cation transporters and multidrug and 

toxin extrusion family transporters are not involved in it.123

Heptaplatin Not documented.66

Lobaplatin Not documented.66
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Figure 2 Types of transport of chemotherapy drugs across the cell membrane and the blood/cancer cell barrier. Symbols +, -, and ? denote activity, inactivity, and no data in 
the literature, respectively.25,33,34,47,66,117,125–135

Figure 3 The scheme of the mode of action of Cisplatin.123,136–139
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Resistance
One of the most important reasons why the treatment with Platinum derivatives is abandoned or does not bring the 
expected results is the phenomenon of resistance. This phenomenon makes further treatment, eg with Cisplatin, 
ineffective and another effective therapy must be found. Such a solution may be, for example, the use of another 
Platinum-derivative drug, eg Nedaplatin, to which cancer cells are not resistant.67 Resistance to Platinum compounds can 
be divided into three types: pre-target, on-target and post-target. Pre-target resistance involves at least two processes. The 
first one involves reducing the cellular accumulation of Platinum-derivative drugs. This process occurs, for example, by 
reducing the absorption of Platinum-derivative drugs, eg by affecting copper transporters147 or also by increasing efflux 
from cells.148 The second one involves increasing the deactivation of Platinum during its journey to the cell and in the 
cell by binding it to other substances, such as B vitamins or proteins containing sulfur amino acids.148 As for the on- 
target resistance. cells acquire greater resistance to the action of Platinum-derivative drugs by improving the repair 
processes using DNA polymerase, which cuts out the nucleotide attacked by drugs. As a result, the changes caused by 
Platinum-derivative drugs that were supposed to lead to apoptosis are repaired, and the cell does not start the process of 
apoptosis.33,134 Post-target resistance to Platinum-derived drugs may involve inhibition of the reaction cascade leading to 
apoptosis. One of the most common examples of such resistance is TP53 inactivation, which occurs in approximately 
half of all human cancers.149 Unfortunately, the resistance that develops is most often multifactorial in nature, and 
therefore stopping one pathway of resistance development cannot bring any clear benefits. Additionally, the very low 
selectivity of Platinum-derivative drugs, and therefore the high administered dose, drives the development of resistance. 
This effect also increases with the administration of subsequent doses.150

Side Effects
The second most common reason that causes the treatment with Platinum derivatives to be discontinued is the resulting 
side effects. All Platinum-based drugs have dozens of different side effects, which are depicted in Figure 6. Their main 
reason is the poor selectivity of Platinum compounds. This means that apoptosis is not only induced in cancer cells but 
also in healthy ones.50,56,64,69,73,83,87,90,92,110,111,151–162 Each Platinum derivative has its own side effects, which occur 

Figure 4 Binding sites of Cisplatin with nucleobases of DNA.40,62
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relatively frequently after its use and are presented in Table 2. Side effects may become so intense that they require us to 
limit the dose of the drug or generally discontinue the treatment with a given substance. For Cisplatin, the most common 
limiting effect is nephrotoxicity, for Carboplatin it is myelosuppression, and for Oxaliplatin it is neurotoxicity.154

One of the most common side effects is gastrointestinal toxicity. The effect on the digestive system includes, in addition 
to the most common nausea, vomiting, reflux, diarrhea, and constipation, also gastrointestinal disorders, and, even though 
relatively rarely, it may lead to eating disorders. Platinum compounds release 5-hydroxytryptamine into the gut, which 
induces vomiting. Additionally, consequences may damage the villus.32 The effect of Platinum compounds on the bone 
marrow causes hematological toxicities such as leukopenia (low level of white platelets), especially neutropenia (low level 
of neutrophils), thrombocytopenia, and anemia (low level of red blood cells). The sum of all these phenomena is called 
myelosuppression, in which the production of all blood cells is decreased. Although this phenomenon is caused by all 
Platinum drugs from this group, it is most characteristic of Carboplatin for which it is a limiting factor.165 What’s more, for 
Loboplatin, the dose-limiting toxicity is thrombocytopenia.59 Platinum compounds are mainly excreted in the urine and 
therefore also cause nephrotoxicity, which is mainly manifested by acute renal failure, reduced reabsorption of magnesium 
and calcium (which may lead to hypomagnesemia and hypokalemia), reduced synthesis of Erythropoietin (the hormone 
responsible for the maturation of erythrocytes), and increased levels of uric acid in the blood (hyperuricemia). Cisplatin has 
the highest nephrotoxicity, affecting almost 90% of patients, for whom it is a limiting factor.154,166 A very common 
complication, especially among children, is ototoxicity, damage to the inner ear which may manifest itself in pain, loss of 
high-frequency hearing (4000–8000 Hz), or balance disorders.154,161,167,168 Ototoxicity may be low in the early stages of 
treatment, however, with more cycles, the risk increases significantly.154,165 The mechanism of ototoxicity is not clear, 

Figure 5 Intra- and inter-strand cross-linking of Platinum-derivative drugs with DNA bases.
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however it is assumed that the reason is reactive oxygen species (ROS). Platinum drugs enable the NADPH oxidase to lead 
ROS production.167 After infusion with Platinum compounds, severe neuropathies have been observed, which may include 
paresthesia, areflexia, loss of proprioceptive and vibration sensations, seizures, Lhermitte’s sign, and encephalopathy.169 

Symptoms tend to be stronger in distal parts (such as hands and feet) and the perioral and pharyngolaryngeal areas. 
Peripheral sensory neuropathies are correlated with an increased cumulative dose administered.170 Nevertheless, an entire 

Figure 6 The side effects of Cisplatin.154 This picture has been designed using assets from Freepik.com.164

Table 2 The Side Effects of Platinum Derivatives

Platinum 
Derivatives

The Side Effects

Cisplatin Hematological toxicities,37 gastrointestinal toxicity,37 ototoxicity,155 nephrotoxicity,153 neurotoxicity,154 allergic reaction156 

and hepatotoxicity157

Carboplatin Myelosuppression,154 neurotoxicity,154 gastrointestinal toxicity,154 allergic reaction,50 ototoxicity,164 nephrotoxicity56

Oxaliplatin Neurotoxicity,90 gastrointestinal toxicity,64,83,158,159 hematological toxicities,90 nephrotoxicity,87,92,160 hepatotoxicity73

Nedaplatin Thrombocytopenia, neurotoxicity68,69

Heptaplatin Nephrotoxicity,112 hepatotoxicity,114 neurotoxicity111,112

Lobaplatin Thrombocytopenia, gastrointestinal toxicity, neurotoxicity68
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loss of motor function is extremely rare, and symptoms disappear after a few days and, in rare situations, last for a 
maximum of 4 years.154 Neuropathies are the main cause of limiting Oxaliplatin usage.154 Cardiotoxic effect is rarely 
observed and mainly manifests itself as arrhythmia, tachycardia (heart rate over 100 beats per minute) and bradycardia 
(heart rate under 60 beats per minute), cardiac ischemia (blood flow to your heart is reduced), myocardial infarction, 
diastolic disturbances of the ventricles, and pericarditis.171 The mechanism of action of Platinum compounds’ cardiotoxicity 
is unknown, however there is some evidence that it is linked to ROS.172 The liver is an important organ where several 
biochemical processes occur, for example, the metabolism of a majority of drugs. Oxidative stress is the main reason for 
Platinum compounds’ induced hepatotoxicity. These created ROS lead healthy liver cells to apoptosis.162 On the other hand, 
Cisplatin and Oxaliplatin have the ability to damage liver sinusoids (liver blood vessels). Consequently, these damages 
indicate liver vascular disorders.173 Side effects may become so intense that they can require limiting the dose of the drug or 
generally discontinuing the treatment with a given substance. For Cisplatin, the most common limiting effect is nephro-
toxicity, for Carboplatin it is myelosuppression, and for Oxaliplatin it is neurotoxicity.154 To sum up, side effects may 
include delicate, reversible, and not very bothersome symptoms, such as hair loss,174 as well as irreversible, troublesome 
symptoms that will reduce the quality of life and may pose a threat to health and life.

For this reason, finding a solution that will significantly increase the selectivity and thus reduce the side effects of 
Platinum-based drugs is such a big challenge. Scientists are trying to modify existing drugs or replace them with others 
with similar effects and uses.175–177 One of the possible modifications that Platinum compounds can undergo in order to 
reduce side effects is their conjugation with nanostructures.178–189

General Schedules in Treatment of Lung Cancer in the Therapy with Platinum Drugs
The combination chemotherapy, including a Platinum derivative and drugs from other groups, is used in the treatment of 
many cancers (Table S1 and Table S2 given in Supplementary Materials). There are two main reasons for this phenomenon.

The first one is that we use different substances that produce a synergistic effect. This may be another cytostatic that acts in 
a different way, eg Vinorelbine, Gemcitabine, Etoposide, or immunotherapeutic drugs like a monoclonal antibody, eg 
Atezolizumab, Bevacizumab and Pembrolizumab. Monoclonal antibodies can act in multiple ways. One of them is to block 
the activity of abnormal proteins in cancer cells. The second way is to strengthen the immune system by inhibiting or stopping 
immune checkpoints. As a result, cancer cells cannot block these points and thus remain hidden from immune system cells. 
Such points include the PD-1/PD-L1 pathway190–194 and antibodies include Atezolizumab, Nivolumab, Pembrolizumab.195

What’s more, the administration of these substances helps to reduce the phenomenon of resistance to a specific drug, 
especially in the event of treatment relapses.28 In the case of Cisplatin, the phenomenon of resistance is described as a 
change in cellular uptake, efflux of Cisplatin from the cell, increased detoxification of molecules in the liver, or increased 
DNA repair and inhibition of apoptosis.28,196 All this makes the therapy with a given cytostatic less effective, and it is 
necessary to look for another alternative to the treatment or, if possible, increase the dose of the drug, which will further 
increase resistance and intensify side effects. Table 3 shows a regimen consisting of Carboplatin, Paclitaxel and 
Pembrolizumab, which was used in Stage IV Non-Small Cell Lung Cancer with PD-L1 expression lower than 50%, 
without the presence of EGFR gene mutations or rearrangements of the ALK and ROS1 genes. The dose of Carboplatin 
depends on the glomerular filtration rate (GFR) and the formula for the dose in milligrams is expressed as AUC x (GFR + 
25), dissolved in 500 mL of a 5% glucose solution. However, the dose of Paclitaxel depends on the body surface and is 
200 mg for each 1 m2 of the body dissolved in 500 mL of 0.9% NaCl. The monoclonal antibody Pembrolizumab has a 
fixed dose of 200 mg dissolved in 100 mL of 0.9% NaCl. The infusion time varies depending on the substance: 
Carboplatin is 1 hour, Paclitaxel is 3 hours, and Pembrolizumab is 0.5 hour. All three substances are always administered 
during the first day of a twenty-one-day treatment cycle. The number of repeated cycles in the treatment regimen for 
Carboplatin and Paclitaxel is 4 and for Pembrolizumab it is 35. However, these data may vary depending on the treatment 
regimens. All schemes are located in Supplementary Materials (Table S1) and a fragment of this table containing the 
above scheme is located below (Table 3).
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Structures Competitive to Nucleobases of DNA
The mechanisms of action of Platinum-derived compounds have low selectivity, which makes them react with many 
different compounds. Based on in silico and experimental studies, it has been proven that Platinum-derived drugs can 
easily react and form complexes with other chemical compounds containing aromatic rings, especially nitrogen or sulfur, 
with a lone pair of electrons.58,102,198–200

B Vitamins
One of such groups are B vitamins, ie a group of eight water-soluble vitamins (B1, B2, B3, B5, B6, B7, B9, and B12), 
which play the role of cofactors for many cellular metabolic pathways and enzymes involved in the synthesis of nucleic 
acids.201–220 Only 5 out of the 8 are similar to purines, owing to the fact that these vitamins contain aromatic rings with a 
nitrogen atom (B1, B2, B3, B6, and B9). Based on in silico studies, it has been proven that Platinum-derivative drugs can 
easily react and form complexes with other chemical compounds with a structure similar to nucleobases.57,102,198–200 

Such compounds include B vitamins, which can clearly compete with the nitrogenous bases of DNA.57,102,199,200 Ab 
initio research has been confirmed by experimental research.57 Physico-chemical characterization of interaction between 
vitamins and Platinum drugs was performed using UV-vis spectroscopic techniques.57

Thiamine (vitamin B1) is a coenzyme in the metabolism of carbohydrates, and additionally influences the synthesis of 
the neurotransmitter gamma-aminobutyric acid and catalyzes the conversion of pyruvate to acetyl-CoA. Deficiency may 
lead to disorders of the nervous system (beriberi disease), heart muscle, and skeletal muscles, as well as cardiovascular 
disorders.201,202,212,213,221–223 Riboflavin (vitamin B2) takes part in tissue respiration processes and is a component of 
many oxidation-reduction enzymes. Additionally, the vitamin takes part in the metabolism of carbohydrates, fats, and 
proteins, catalyzing oxidation processes. Deficiency may cause disorders in the functioning of the nervous system and 
inflammation of the mucous membranes.201,202,215,216,224 Niacin (vitamin B3) participates in the transfer of hydrogen and 
electrons in the processes of cellular respiration, glycolysis and lipid biosynthesis. Moreover, it is necessary for the 
proper functioning of the brain and the peripheral nervous system, and is also involved in the synthesis of the sex 

Table 3 Lung Cancer Treatment Regimens.197

Non-Small Cell Lung Cancer (NSCLC)

1. Platinum drug Combination drugs Types of cancer

Carboplatin Paclitaxel Pembrolizumab Non-Small Cell Lung Cancer (NSCLC) Stage IV 

(cancer has spread from its original location to 
distant parts of the body), with PD-L1 expression 

lower than 50%, without the presence of EGFR gene 

mutations and rearrangements of ALK and ROS1 
genes.

Tubulin-targeted 

cytostatic drug

Monoclonal antibody, targets the 

programmed cell death protein 1 

(PD-1) receptor of lymphocytes

Dosage

AUC 6 

(*Carboplatin Dose 
[mg] = target AUC x 

(GFR+25))

200 mg/m^2 200 mg

Diluent Number of cycles

5% Glucose, 500 mL 0,9% NaCl, 500 mL 0,9% NaCl, 100 mL Carboplatin and Paclitaxel 4 cycles, Pembrolizumab 
35 cycles

Time Cycle length

1h 3h 30min 21 days

Day/s of therapy

1st day of cycle 1st day of cycle 1st day of cycle

https://doi.org/10.2147/IJN.S469217                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2024:19 9512

Szupryczyński et al                                                                                                                                                  Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


hormones, cortisol, thyroxine, and insulin. Deficiency may lead to pellagra, disorders of the nervous system, and the 
glycolysis process.201,202,217–219 Vitamin B6 is a group of six chemically similar compounds that can transform into each 
other and have a common active form, pyridoxal 5′-phosphate. This form is an extremely important cofactor in the 
metabolism of complex carbohydrates, fatty acids, phospholipids and cholesterol.201–204,220 It is also involved in heme 
synthesis.201,202,205,225 Vitamin B6 deficiencies cause inflammation of the skin and mucous membranes, neuropathies, 
and anemia.210 These vitamins are of key importance, eg in certain disease states like diabetes and Wernicke’s 
encephalopathy.206–208,211 However, it is worth noting and emphasizing that neuropathies are a common side effect of 
Platinum.209,212 It has been proven that B vitamins can weaken the effect of Platinum-derivative drugs.57,102,198–200

Based on previous research, it can be concluded that niacin (vitamin B3) has the greatest affinity for Cisplatin, both 
for its mono- and diaqua200 forms (Figure 7). In the case of thiamine (vitamin B1), Cisplatin forms complexes more 
easily with the nitrogen atom in the N1 position in the ring than with the N7 atom. Pyridoxal phosphate (vitamin B6) has 
a similar ease of complex formation as thiamine.200 On the other hand, the behavior of riboflavin (vitamin B2) is 
completely different.200 This vitamin reacts poorly with Carboplatin. A spontaneous reaction can be observed for 
pyridoxal phosphate (vitamin B6) and the value of Gibbs free energy of reaction, ΔGr, is negative. Niacin (vitamin 
B3) forms much worse complexes with Carboplatin,57 where the value of ΔGr is approximately zero. Oxaliplatin has the 
same affinity for B vitamins as Cisplatin.102 However, changing the calculation level from B3LYP/6-31G(d,p)/ 
LANL2DZ226 to MN15/def2-TZVP changes this picture.102 The most reactive vitamins are thiamine (vitamin B1) and 
pyridoxal phosphate (vitamin B6), and the least reactive one is niacin (vitamin B3).

This means that a specially calculated therapy cannot be as effective as it could be expected, because some of the drug 
can react with vitamins instead of purines in DNA. This highlights another important problem, which is that a Platinum- 
derivative drug may react with competing molecules other than nucleobases before it reaches the target site, ie 
tumor DNA.

Proteins
Another group that may react with Platinum-derivative drugs are proteins.31,152,227–229 The main binding sites are sulfur- 
containing amino acids, such as methionine and histidine. Nitrogen atoms located on Lysine amino acids are also the site 

Figure 7 Exemplary structures of mono (a) and diaqua (b) complexes of Cisplatin with niacin (vitamin B3), Carboplatin with pyridoxal phosphate (vitamin B6) and 
Oxaliplatin with thiamine (vitamin B1).57,102,198,199
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of binding to Platinum-derived drugs. Proteins can form adducts with more than one Pt-containing fragment or 
coordinating protein, and the number of bounds increases with time.31,152,227–229

Cisplatin, Carboplatin and Oxaliplatin were tested in this context, and the studies proved that they bind to proteins, 
mainly albumin, in the bloodstream by 98%, 25%, and 98%, respectively. Of which, 98% of the administered cisplatin 
and 87% of Oxaliplatin were irreversibly bound to proteins. This means that cisplatin binds practically irreversibly to 
proteins, while Oxaliplatin binds mostly irreversibly. However, in the case of Carboplatin, only 10% of the administered 
dose binds irreversibly, which means that if Carboplatin is already bound to proteins, it binds mainly reversibly.230

Other Structures
Drugs containing Platinum, due to their low selectivity towards nucleic acids, may interact with numerous other 
structures that contain a nitrogen or sulfur atom with a lone electron pair.57,198–200,231 These substances may come 
from medications, food, or be synthesized in the body.232 The influence of such substances may reduce therapeutic 
effects, as well as associated side effects.233 Understanding these interactions, that is which substances and to what extent 
bind with Platinum drugs, can help adjust medical doses to maintain their optimal effect.

The use of nanostructures in the anticancer treatment of lung cancers seems to be a good solution. For example, the 
creation of nanomedicine should reduce the high toxicity of Platinum-derivative compounds by not only repeatedly reducing 
the doses of the chemotherapy drug, but also by directing the drug directly to the cancer site, while bypassing healthy human 
cells. Moreover, nanomedicine solves the problem of the chemotherapy drug binding to amino acids during distribution in the 
peripheral blood and binding to other structures similar to nitrogenous bases at the cellular level.

Nanostructures
When Richard Feynman introduced the concept of nanotechnology in 1959,234–238 he did not think it would be one of the 
most promising technologies in medicine of the twenty-first century. Using nanotechnology improves diagnosis, treat-
ment, and prevention and enables people to understand the human body.239–253 Nanostructures can also lead to the 
improvement of drugs. Application of nanostructures can remove the disadvantages of drugs and simultaneously 
highlight their advantages. To reduce the side effects of some drugs and increase the effectiveness of the treatment, 
nanostructures have been used for drug delivery. Because nanostructures are molecules whose external dimensions are in 
the range of 1 nm–100 nm151,254–256 (see Figure 8), they have a much larger surface area than their volume, which makes 
them perfect drug carriers.

Figure 8 The 1 Å – 1 cm scale. The scale provides the size of exemplary objects, corresponding to a given dimension on the scale.151,254–256
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This allows the dosage of the drug to be limited to an absolute minimum, and thus reduces the toxic effect.249 The 
insides of nanostructures, eg empty fullerene cages, can also protect drug molecules from inactivation before reaching the 
target site. As we know, Platinum-derived compounds have low selectivity and react with many different compounds, 
structurally similar to purines containing an aromatic ring with lone pairs of electrons on the N7 atom.57,102,198–200 One 
of such groups are B vitamins, which are supplied, for example, with food.57,102,198–200

General Division of Nanostructures
Nanostructures are a wide range of different systems which, due to various criteria, can be divided into many classes.257–276

The first criterion is the number of dimensions at the nanoscale. If there is only one dimension, such nanostructures 
are called nanoplates.277 Whereas, when two of the three dimensions are present at the nanoscale, these structures are 
called nanofibers.278 When all dimensions are at the nanoscale, we talk about nanoparticles (liposomes, quantum dots, 
and fullerenes).151,254,277,279,280

Secondly, the classification can be based on their chemical composition and include organic, inorganic, and carbon- 
based nanostructures, as shown in Figure 9.

The third way of classifying nanostructures is the criterion of drug delivery technology, which includes biologic, 
polymeric, carbon-based, and metallic-based systems,286 as described in Table 4.

Fate, Side Effects and Biodegradability of Nano Systems in vivo
Nanostructures with Platinum-derivative drugs are administered intravenously, increasing the accumulation of structures 
at the target site using targeting, which can be divided into active and passive.287 Passive targeting involves adding drugs 
to a specific area of nanostructures so that the drugs gain new pharmaceutical and physicochemical properties that result 
in increased accumulation at the tumor site.288,289 Active targeting, on the other hand, involves adding a nanostructure 
that is specifically targeted to a particular receptor or a biomarker located on target-specific cells on which drugs are to 
act. After reaching the target site, the drug is released, but the fate of the nanostructure does not end in this place. They 
have two most popular routes: intracellular degradation in endosomes and lysosomes, or they remain in the bloodstream 
and undergo opsonization and clearance in the process of phagocytosis.290 Phagocytosis most commonly takes place in 
the liver and spleen by macrophages, depending on individual properties such as surface properties or size.291,292 

However, removal from the lungs takes place chemically and physically, eg in the area of the alveoli, absorbed by 
macrophages.293

Figure 9 Division of nanoparticles.249,278,281–285
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The following side effects can be generated by nanoparticles:

● oxidative stress, which can cause inflammation, then genotoxicity, and finally apoptosis,
● genotoxicity, which may be limited to DNA strand breaks, chromosome fragmentation, the formation of oxidative 

adducts, and, consequently, changes in gene expression,
● enhancing cytokine production,
● damage to lysosomes and mitochondria,
● autophagy dysfunction.294

These effects depend on the properties (eg carbon nanotubes have negligible toxicity) and concentrations of specific 
compounds (eg lipid nanoparticles are toxic at a concentration of 500 μg/mL and nontoxic below 200 μg/mL.295,296

Nanomaterials as Carriers for Drugs in the Treatment of Lung Cancer
The use of nanocarriers in the treatment of lung cancer requires them to overcome the physiological and anatomical 
protective barrier of the lungs. Nanotechnology has changed the way in which nanocarriers are used in the treatment of 
lung cancer, which offers enormous opportunities for the future.289 Physicochemical properties such as size, shape, 
stiffness or surface properties are extremely important in determining the distribution capabilities of nanoparticles.297 

Due to the fact that tumor blood vessels have a diameter of approximately 100–600 nm,190,194,298–305 nanoparticles with a 
size of 10–100 nm and a molecular weight above 50 kDa are ideal nanoparticle for drug delivery systems.289 Moreover, 
nanoparticles smaller than 150 nm can avoid uptake by macrophages in the RES.306 Because nanoparticles are larger than 
10 nm, they can also avoid capillary leakage.307

A general distinction is made between organic and non-organic nanoparticles (NPs) in the treatment of lung cancer.289 

In the first (organic) group, one can include:

● solid lipid NPs
● liposome-cholesterol and phospholipid-like biofilm-like NPs,
● nanostructured lipid carriers-NPs mixed with solid lipids and liquid lipids,

Table 4 Nanostructure Classification by Drug 
Delivery Technology.286

Biologic: ● Liposomal
● Protein Nanotubes
● Exosomes
● Viruses
● Nanobodies

Polymeric: ● Hydrophilic Polymeric
● Micelles
● Dendrimers
● Hydrogels
● Nanoemulsions
● Quantum Dots

Carbon-based: ● Nanotubes
● Fullerenes
● Rhombellans

Metallic-based: ● Gold
● Silver
● Palladium
● Magnetic nanostructures
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● polymeric micelles-colloidal NPs composed of amphiphilic block copolymers,
● polymeric NPs composed of polymers such as sodium alginate, chitosan, gelatin, polycaprolactone, polylactide, and 

polylactic acid,
● dendrimer-highly branched, symmetrical, radiating NPs.

The second one (non-organic) encompasses:

● carbon nanotubes-hydrophobic tubular structures made by carbon atoms with diameters between 4 nm and 100 mm,
● magnetic NPs-superparamagnetic materials with a size > 25 nm,
● quantum dots-colloidal NPs with atomic properties.308

There are many examples of clinically used nano- drugs in the treatment of lung cancer in the literature. These examples 
are presented in Tables 5 and 6. In the Table 5 nanomedicines contain Pt drugs, while nano-drugs built from other 
compounds than Platinum are presented in Table 6.

Nanoparticles can have passive or active anti-cancer properties. Among the first, there are three techniques, but only 
two of them have been used in anti-cancer treatment in the human body. In the first case, the acidic microenvironment of 
tumors is used to limit the action of NPs to acidic conditions.289 In the second one, because NPs are positively charged, 
the tumor cells can be used to carry additional negative charges.313 Active targeting gives the effect of precise targeting 
by placing ligands on the surface of the nanoparticle, thanks to which it is possible to attach, for example, enzymes that 
recognize receptors in the blood vessels of the tumor.265,270,314,315 Bazak at al.,316 showed that in some cases, receptors 
and ligands help inhibit tumor drug resistance by facilitating endocytosis. Various types of ligands can be found in the 
literature, such as polymers,265,270,314,315 small molecules, fragments, antibodies and aptamers (APTs).311,317–319 In the 
treatment of lung cancer, numerous receptors have been used that have the ability to increase the specific binding of a 
nanoparticle containing a drug (Figure 10):320

Table 5 Nanodrugs Used in Lung Cancer Containing Platinum Compounds309,310,316

Trade name Components Types of tumors Clinical 
trial status

Administration 
route

Lipoplatin Liposomal 
Cisplatin

NSCLC In clinical 
Phase III

Intravenous 
infusion

SPI-77 Liposomal 
Cisplatin

NSCLC In clinical 
phase II

Intravenous 
infusion

Aroplatin Liposomal 
cis-bis-neodecanoato-trans-R,R-1,2- 

diaminocyclohexane platinum (II)

Malignant Pleural 
Mesothelioma

In clinical 
phase II

Intravenous 
infusion

RT-LC03 Nanobody Envafolimab 

Cisplatin

NSCLC and SCLC In clinical 

phase II

Intravenous 

infusion

AP5280 HPMA Polymer 

Cisplatin

Solid Tumors In clinical 

phase I

Intravenous 

infusion

ProLindac or AP5346 Hydrophilic Polymer 

DACH-Pt

Solid Tumors In clinical 

phase I

Intravenous 

infusion

Platinum PAMAM complex PAMAM (poly(amidoamine)) Dendrimer 

Cisplatin

NSCLC In vitro 

study

Intravenous 

infusion

Poly(l-glutamic acid)-cisplatin Micelle PEG-b-poly (glutamic acid) 

Cisplatin

NSCLC In clinical 

phase II

Intravenous 

infusion
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Table 6 Nanodrugs Used in Lung Cancer Containing Other Than Platinum Compounds.312

Trade name Components Types of tumors Clinical trial status Administration route

Doxil or 

Caelyx

PEGylated 

Liposomal 

Doxorubicin

NSCLC FDA Approval 1995 Intravenous infusion

L-BLP25 BLP25 LiposomeVaccine NSCLC In clinical phase II Subcutaneous infusion

LEP-ETU Liposomal 

Paclitaxel

Lung Cancer In clinical phase I/II Intravenous infusion

LIPUSU Paclitaxel Liposome 

and Cisplatin

Squamous NSCLC In clinical Phase IV Intravenous infusion

LY01610 Hydrochloride Liposome 

Irinotecan

Extensive-stage SCLC In clinical phase II Intravenous infusion

ONIVYDE Liposome 

Irinotecan

SCLC In clinical phase III Intravenous infusion

OSI-211 Liposomal Lurtotecan SCLC In clinical phase II Intravenous infusion

Genexol-PM Polymeric Micelle 
Paclitaxel

NSCLC Approval in Europe 
2013, Korea 2007

Intravenous infusion

PM-03-2015 Paclitaxel Micelles 
and Cisplatin

NSCLC In clinical phase III Intravenous infusion

Combidex Iron oxide 
nanoparticles

SCLC NDA field Intravenous infusion

CYT-6091 TNF-α bound 
PEGlyated 

colloidal Gold 

particle

Solid tumor In clinical phase I Intravenous infusion

Photofrin Porfimer sodium NSCLC FDA Approval 1995 Intravenous infusion

ABI-007 Nanoparticle albumin 

Paclitaxel

Advanced NSCLC In clinical phase II Intravenous infusion

ABI-009 Protein-bound nanoparticles 

Rapamycin

Neuroendocrine 

Tumors

In clinical phase II Intravenous infusion

Nab-paclitaxel Nanoparticle albumin 

Paclitaxel

Advanced or 

metastatic squamous 
lung cancer.

In clinical phase II Intravenous infusion

DOTAP:Chol-TUSC2 or FUS1 TUSC2-nanoparticles 
Erlotinib

NSCLC In clinical phase II Intravenous infusion

BIND-014 Polymeric nanoparticle 
Docetaxel

NSCLC In clinical phase II Intravenous infusion

ONC-003 Quaratusugene Ozeplasmid 
Osimertinib

NSCLC In clinical phase II Intravenous infusion

CRLX101 Cyclodextrin-polyethylene glycol 
Camptothecin

NSCLC In clinical phase II Intravenous infusion

EP0057 Cyclodextrin-polyethylene glycol 
Camptothecin

SCLC In clinical phase II Intravenous infusion
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● Epidermal Growth Factor Receptor (EGFR) due to its structure322 plays a crucial role in the advancement of 
carcinoma. There is an external and internal fragment of tyrosine kinase activity. An extracellular section includes 
the ligand-binding area responsible for the regulation of tumor growth (invasion, angiogenesis, metastasis, and 
proliferation of cells). The binding of the ligand to the attachment region causes conformational modifications. 
Further, the binding of ligands and the activity of tyrosine kinase lead to autophosphorylation that triggers 
alterations in the signaling.323–328

● Growth Hormone Receptor (GHR) is a single-pass transmembrane receptor with at least one cytokine receptor 
homology domain (CRHD) in its extracellular portion. The CRHD has two fibronectin III (FNIII)-like folds. GHR 
overexpression has been identified in A549 NSCLC and other related cancers.288,329,330

● Folate acid (FA) Receptor, the folate receptors demonstrate a greater binding affinity for folic acid, which is 
composed of four forms of the receptor: Folate Receptor Alpha (FRA), Folate Receptor Beta (FRB), Folate 
Receptor Gamma (FRG) and Folate Receptor Delta (FRD). Folate Receptor Alpha (FRA) glycosylphosphatidyli-
nositol-anchored glycoprotein placed on the cell surface, referred to as FOLR-1 or folate binding protein (FBP), 
assists in the delivery of 5-methyltetrahydrofolate (5-MTF). Overexpression of the FRA has been observed in lung- 
like solid tumor types, but several studies have reported elevated levels of overexpressed FRA in NSCLC.288,331–340

● Vascular Endothelial Growth Factor Receptors (VEGFR), vascular permeability factor, leadind to vascular 
leakage. There are three major types of tyrosine kinase receptors, namely FLT-1 (VEGFR1), FLK-1 (VEGFR2), and 
FLT-4 (VEGFR3), which show the ability to bind only with mammalian VEGFR. These receptors are frequently 

Figure 10 Lung cancer with cell receptors used as targets (right side of the Figure) and the nanoparticles with anticancer drugs and with a specific ligands structure (left side 
of the Figure and bottom of the drawing) used in targeted anticancer therapy.288,289,321
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overexpressed in NSCLC and possess an acknowledged significance in the angiogenesis, proliferation, and 
metastasis of tumor cells.341–345

● Fibroblast Growth Factor Receptor (FGFR), the extracellular component, made up of immunoglobulin resem-
bling domains with affinity for the FGF ligand, consists of a transmembrane region, and posses tyrosine kinase 
activity. Unusual signaling of FGF/FGFR, amplification or alterations of genes (oncogenic) may contribute to 
tumorigenesis and therapy resistance in various cancers such as solid tumors and malignant melanoma. Elevated 
expression of FGFR1 is reported in NSCLC with varying ratios in squamous cell carcinomas and lung 
adenocarcinomas.346–350

● σ receptor, membrane-bound protein sigma receptors, σ1 (sigma-1) and σ2 (sigma-2). Overexpression of σ2 
receptors showed six out of 15 human adenocarcinoma samples and twelve out of 15 human SCLC samples.351–362

● Human transferrin (TF) Receptor, an iron-binding protein to transfer iron absorbed via the digestive tract and 
iron released by red blood cell degradation into bone marrow in the form of the TFR-Fe3+ complex to generate 
mature red blood cells and transporting iron into cells that express TFRs.363 TFR is expressed at a modest level in 
all normal nucleated cells. The ligature shows that expression level is higher in cells with a high proliferation rate, 
especially in tumor cells, such as chronic lymphocytic leukemia, liver cancer and lung cancer.364–371 Also, low 
molar concentration of artemisinin after pretreatment could kill the cells in SCLC. Thymoquinone-NP modified 
transferrin enhances the apoptosis and death cascade of NSCLC cells, and limits these migration cells without a 
toxicity effect.372

● αvβ3 Integrin, consists of non-covalently linked alpha and beta subunits and belong to the transmembrane 
heterodimeric glycoprotein family. There are 24 distinct integrin receptors, which depending on the orientation 
patterns, exhibit between of 18 α and 8 β subunits. Integrins are detected in almost 82% of all NSCLC patients, 
regardless of differentiation type or degree. However, 13% of SCLCs demonstrated an overexpressed α3β1. 
Downregulated levels of integrin expression have been related to SCLC, as well as the disease’s high severity 
and potential to spread.289,373–375

● CD44, membrane-bound glycoprotein, plays an important role in malignant tumor-related activities used as a cancer 
stem cell (CSC)/tumor-initiating cells (TIC) marker.376 CD44 has overexpressed in solid tumors, such as pancreatic 
cancer, breast cancer, and lung cancer.377–379 The receptor is involved in many signal cascades that mediate tumor 
enhancement and can indirectly activate cell proliferation pathways through ligands and activate anti-apoptotic 
pathways.380 In the case of SCLC, activation of CD44-MAPK-PI3K signal transduction results in increased 
invasiveness and multi-drug resistance phenotype of lung cancer cells.

A factor promoting the use of receptors in combination with a nanostructure in the treatment of lung cancer is the fact 
that the receptors themselves are significantly overexpressed only in cancer cells.381 Therefore, their use brings benefits 
in the form of reducing side effects and improving the effectiveness of treatment. For example, the σ receptor induces320 

cell death only in cancer tissue, but never in unaffected (stem) cells. However, TFR, while showing high expression, also 
shows high histological specificity. Its expression in lung adenocarcinoma is much higher than in other histological 
types.289 Since TF plays, an important role in the abnormal iron metabolism of lung cancer cells, the iron uptake by lung 
cancer cells can be inhibited through this receptor, which will ultimately affect the proliferation of pathological cells. It 
has also been shown that FR activity is higher in diseased cells compared to physiological cells.289

In the case of nanomedicine treatment, the route of administration may be different, not only through injections into 
the peripheral blood. A new direction in the development of nanostructures for the treatment of lung cancer is the use of 
drug delivery by inhalation. This allows to reduce the dose of the drug without weakening the effect because the local 
concentration will be appropriate, and moreover, such a kind of application could limit the absorption into the blood-
stream and thus reduce the side effects.374 The nanostructures used for inhalation are polymers and lipids, which increase 
bioavailability, stability and stay longer at the target site. The key requirements for a nanostructure to be used in inhalants 
are its size, from 10 to 100 nm, based on an animal model, and its surface-active properties, which are intended to 
prevent phagocytosis by macrophages.382 Animal studies have confirmed that in the case of inhalation, the accumulation 
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of drugs in target sites is higher than when using the intravenous route.383,384 What is more, such application reduces 
concentrations in the liver, spleen and kidneys compared to intravenous administration.385

Examples of Applications of Nanostructures with Platinum Compounds
There are many examples of nanostructures combined with Platinum drugs in the literature. Platinum compounds, due to 
their low selectivity and increased resistance, are often combined with nanostructures. In the area of organic nanos-
tructures, the following combinations with Platinum-derived drugs can be distinguished:

● protein nanotubes,386

● liposomes,85,387–400

● nanobodies,401

● polymers,402,403

while inorganic nanostructures are represented by

● dendrimers,403–405

and among the representatives of the carbon-based ones, there are

● nanotubes,406–418

● rhombellans.260,419–421

The wide variety of nanostructures means that Platinum-based drugs can be located both on the surface of 
nanostructures, eg fullerenes and nanotubes, and inside, eg liposomes and nanotubes. These structures can, like 
liposomes, fuse with the cell membrane and release chemotherapeutics directly into the cell, or they can disintegrate 
in the acidic environment located near the tumor and be released there (polymer ProLindac403,422). Among the 
nanostructures transporting Platinum, both active (antibodies) and passive (nanotube (cis,cis,trans-Pt(NH3)2Cl2(OEt) 
(O2CCH2CH2CO2H) and SWNCT406,407) targeting can be found.

This diversity makes it difficult to describe in detail all nanostructures combined with Platinum-derived drugs, apart 
from the general facts that nanostructures increase stability, protect Platinum-derived drugs against inactivation in the 
blood, increase accumulation in cancer tissues, and reduce side effects, while increasing selectivity.

These combinations are widely described in the literature, and in situ, in vitro, and in vivo studies, as well as clinical 
trials are very promising. Unfortunately, they have not yet been introduced to the market, but when they are, they will 
probably significantly improve the survival rate and quality of life of patients.

Protein Nanotubes
Protein nanotubes are nanotubes made of peptide and/or protein fragments that have been connected, for example, by 
self-assembly or by creating a pulsed electric field. Compared to classic nanotubes, they are more biocompatible and 
biodegradable. Moreover, they can undergo surface and internal modifications, enabling the effective and controlled 
release of substances.423 According to in vivo mouse studies, protein nanotubes from the plant virus TMV (tobacco 
mosaic virus) in combination with Cisplatin are an effective method in the treatment of ovarian cancer. The nanostructure 
consists of TMV monomers, in which each monomer is composed of 2130 identical copies of a coat protein, and each 
coat protein has two glutamic acids. TMVs were taken from Nicotiana benthamiana plants, multiplied, and formed into 
300×18 nm nanotubes that can accommodate cisplatin molecules in a 4 nm wide empty channel. What is important to 
emphasize is that TMV is safe for humans because it does not infect mammals. The results of the study prove that highly 
distributed TMV-cisPt showed better effectiveness and accumulation within tumors than free Cisplatin.386 The plant virus 
TMV in combination with Cisplatin was tested in mice using Alanine Transaminase (ALT), Aspartate Aminotransferase 
(AST) (both are indicators of liver injury), and Kidney Injury Molecule 1 (KIM-1) assays. Mice were administered 

International Journal of Nanomedicine 2024:19                                                                                   https://doi.org/10.2147/IJN.S469217                                                                                                                                                                                                                       

DovePress                                                                                                                       
9521

Dovepress                                                                                                                                                  Szupryczyński et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


solutions containing Cisplatin alone, TMV- cisPt, TMV in Phosphate Buffered Saline (PBS) and a control containing 
only PBS in three injections on days 7, 10 and 14, and toxicity was examined on days 15 and 19 after tumor implantation. 
As shown by the results of the ALT test, all results were within the norm, unlike the AST tests, where on day 15, the 
TMV- cisPt, indicated potential hepatotoxicity, but on day 19, the results were normal. On the other hand, no renal 
toxicity was reported.386

Liposomes
Liposomes are bilayer delivery vehicles made of phospholipids and an aqueous core84,388,394–396 (Figure 11).

These nanostructures have a wide spectrum of use, because they can be applied to both hydrophilic and hydrophobic 
drugs. Liposomal delivery of small-molecule drugs has presented many advantages, such as the highest local drug 
concentration, reduced toxicity, and better LADME (liberation, absorption, distribution, metabolism, and excretion). 
Natural phospholipids possess low toxicity and weak immunogenicity. Disadvantages include rapid circulation clearance, 
a low half-life time, and worse penetration of such structures.

Currently, in clinical trials, there is Lipoplatin (9% Cisplatin and 91% lipid), the phospholipids’ bilayer of which 
contains dipalmitoylphos-phatidylglycerol, soy phosphatidylcholine-3, and DSPE-PEG 2000 cholesterol. However, 
Lipoplatin, instead of using copper receptors, delivers cisplatin by fusion with the cell membrane and releases cisplatin 
into the cell, which avoids membrane resistance. Inside the cell, Cisplatin activates mitochondria and other pathways 
leading to apoptosis. In preclinical studies on rodents, this combination had lower toxicity than normal Cisplatin. The 
main side effects reported were neutropenia and gastrointestinal toxicity, but unlike Cisplatin, hepatotoxicity, neuropathy, 
cardiotoxicity, ototoxicity, and hair loss were not reported. The use of Liposomal deserves special mention because of its 
significantly reduced nephrotoxicity, which is a major Cisplatin dose limit marker. Furthermore, compared with normal 
tissues, it was much higher than Cisplatin. The accumulation of lipoplatin in cancerous tissues was higher than in healthy 
tissues, up to 221 times higher for colon tumors; additionally, Lipoplatin reacted more often, causing cell damage 10 to 
171 times more often in cancer cells than in healthy cells. Prospectively, it may significantly reduce side effects by 

Figure 11 The scheme of liposomes.394
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improving selectivity. In the second phase of trials, Lipoplatin was combined with gemcitabine and used in the treatment 
of patients who were resistant to Platinum chemotherapy. The European Medicines Agency gave Lipoplatin an orphan 
drug status for treatment of pancreatic adenocarcinoma275,279–282,284,285,312,313.

Another liposomal drug with Cisplatin is SPI-77 (cisplatin: lipids ratio is circa 1:70), the bilayer of which consists of 
hydrogenated soy phosphatidylcholine, cholesterol, and DSPE-PEG200. The results of the first phase of clinical trials 
showed much fewer side effects compared with Cisplatin. Despite the fact that accumulation in tumor tissues was four 
times greater, antitumor activity was the same or less.388,398

The pH-sensitive liposomal formulation for Cisplatin is SpHL-CDDP, which consists of dioleoylphosphatidyletha-
nolamine, unsaturated phosphatidylethanolamine, cholesteryl hemisuccinate, and DSPE-PEG 2000. Unsaturated phos-
phatidylethanolamine improves the release into the cell, whereas cholesteryl hemisuccinate gives properties of rapid 
release at acidic pH because, when the pH reaches acid values, it induces a destabilization formulation and releases 
Cisplatin. The survival rate in the ascitic tumor was much higher after using SpHL-CDDP than Cisplatin.389,395

The first combination of liposomes with Oxaliplatin is Aroplatin (drug: lipids ratio is 1:15), which consists of 
dimyristoylphosphatidylcholine and dimyristoyl phosphatidylglycerol. In the second clinical study, the response was 
good, though there was a problem with drug distribution and some tissues were not exposed to the Aroplatin.390

The next combination of Oxaliplatin is Lipoxal, which in the first clinical study phase had high effectiveness for 
gastrointestinal cancer and lower toxicity compared with Oxaliplatin.84

Nanobodies
In 1993, a heavy-chain antibody was discovered which, unlike regular antibodies, was naturally deficient in light 
chains.424 The structure of a heavy chain antibody includes two constant regions, ie a hinge region and a heavy chain 
variable domain, which, when isolated, give us nanobodies. Nanobodies are artificially obtained single-domain antibody 
molecules. They have an oval shape with dimensions of 4 nm × 2.5 nm × 3 nm and a molecular weight of 12–14 kDa 
(compared to ordinary antibodies (150 kDa) is approximately 1/10 of the molecular weight of conventional antibodies).

Compared to regular antibodies, a nanobody is characterized by lower immunogenicity, better tissue penetration, and 
higher stability. However, they have a shorter half-life. From a manufacturing standpoint, they are easier to modify and 
cheaper to produce. They also demonstrate high targeting ability.

Types of nanobodies include monovalent nanobodies, bivalent nanobodies, bispecific nanobodies, multivalent nano-
bodies, and nanobodies fused with other fragments, for instance Platinum drugs (Figure 12). Most nanobodies are 
currently in the clinical phase, but nanobodies are starting to enter the market and are used, for example, in the treatment 

Figure 12 The scheme of (a) conventional, (b) heavy-chai antibodies, regular antibodies (c) and nanobodies fused with other fragments (d).424
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of thrombotic thrombocytopenic purpura and multiple myeloma. Envafolimab is used in solid cancers, including non- 
small cell lung cancer, because, like Durvalumab and Atezolizumab (Supplementary Materials, Table S1-S2), it targets 
the protein programmed cell death-ligand 1 (PD-L1).425–429 An example of a combination of a nanobody with a Platinum 
drug is the combination of a biparatopic anti-EGFR nanobody (N, 7D12-9G8) synthesized by oxidizing cisplatin 
(maleimide-functionalized Pt(IV) prodrug [Pt(NH3)2Cl2(OH)(OAc)]). The drug accumulation is clearly higher in the 
EGFR-positive A431 cells than in the EGFR-negative A375 cells. Cisplatin showed strong toxicity, in contrast to the 
nanobodies themselves, which showed very low cytotoxicity; the survival of EGFR-positive cells was approximately 
75%, and for EGFR-negative cells, it was over 90%. In the case of combining a nanobody with a Platinum-derivative 
drug, the cytotoxicity to EGFR-positive cells was high - survival rate was only 15%, while the cytotoxicity to EGFR- 
negative cells was very low and similar to the cytotoxicity of nanobodies alone (survival rate of over 90%), which proves 
that the drug conjugate nanobody with Platinum has much lower systemic toxicity than cisplatin. Moreover, nanobody 
conjugation improves pharmacokinetics and increases drug retention, which leads to an increased therapeutic effect.401

Polymers
The third group of nanostructures connected with Platinum drugs are hydrophilic polymers. The most common polymer 
for anticancer drugs is N-methacrylamide (HPMA), which enhances therapeutic efficacy and decreases side effects. 
Furthermore, the connection of drugs with HPMA increases accumulation in tumor tissues.234

AP5280 is a combination of Cisplatin and HPMA (mass ratio 1:10). These results of these in vivo studies show a 19- 
fold higher accumulation in tumors and a 20-fold lower toxicity, as well as promising efficacy.430

ProLindac (AP5346) contains dichloro(1,2-diaminocyclohexane)Platinum(II) (DACH-Pt) and a hydrophilic polymer. 
This combination is stable at physiological pH and remains inactive, but at acidic pH, which is nearby the tumor 
surroundings (presumably the tumor extracellular fluid or the interior of the tumor cell), releases the Platinum drug. 
ProLindac presented a 16-fold better delivery to the tumor and, what is worth highlighting, a 14-fold one to tumor DNA. 
For this reason, the anticancer activity of this combination is much better, and the side effects are much lower in 
comparison with Cisplatin.429 In the first phase of clinical trials, dose-limiting neutropenia occurred only at the highest 
dose, and the main side effects included typical nausea and vomiting, and renal toxicity. However, these effects can be 
prevented by properly preparing the patient for chemotherapy by giving him appropriate antiemetics and hydrating him. 
These results correspond to the results of Phase 2 clinical trials and correspond to the frequency and severity of expected 
side effects of Platinum-based drugs.431

An innovative method is to combine Cisplatin with PLGA-block-polyethylene glycol and with the epidermal growth 
factor receptor. This method turned out to be effective in triple-negative breast cancer. Using epidermal growth factor 
receptors improves selectivity and therapeutic efficacy compared to untargeted and free Platinum drugs.43

AP5280 consists of a cytotoxic Pt complex combined with a water-soluble, biocompatible, non-toxic polymer 
backbone consisting of poly-N-(2-hydroxypropyl)methacrylamide. The platinum content by weight is approximately 
8.5%. As indicated by Phase I studies, the use of nanostructure extends the residence time in the bloodstream and reduces 
renal toxicity and myelosuppression.430

Dendrimers
Another type of nanostructures are dendrimers. They contain in their center a small molecule or a polymer core, from 
which numerous side chains branch off, which sequentially branch again (Figure 13). Multiple end groups allow the 
conjugation of various molecules in the core or at the surface, for instance, Platinum drugs. Drugs connected with these 
structures are characterized by lengthened half-life, higher stability, selectivity, water solubility, tumor accumulation, as 
well as decreased immunogenicity, antigenicity, and toxicity.404,405,432 The preclinical research on complexes of Cisplatin 
and Dendrimers began as early as 1999.431,432

The complex of Cisplatin and poly(amidoamine) dendrimer containing a carboxylate surface group acted against 
cisplatin-resistant (squamous) cancer, causing a decrease in toxicity and an increase in accumulation in tumor tissues 
through increased permeability and retention effect.404,405,435,436
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Carbon Nanotubes
Carbon Nanotubes (CNTs) were discovered by a Japanese physicist Sumio Iijiima in 1991.437 They are universal 
nanostructures with a wide range of applications resulting from unique properties, such as high resistance to stretching, 
high conductivity of heat and electricity, low weight, low toxicity, and a high aspect ratio, which increases the ability to 
penetrate into the cell. In fact, it is assumed that nanotubes pierce the cell membrane like needles. In addition, CNTs enter 
the cell through the membrane via endocytic pathways. Furthermore, they are characterized by greater accumulation in 
cancerous tissues than in normal tissues.25,34,116,117,161,162,395,438,439

Due to their structure and huge surface area, they have excellent abilities as drug transporters. This means that the 
drug can be placed outside the nanostructure using covalent and non-covalent bonds, as well as inside, where it does not 
require the modification of its structure by adding further bonds. The center has a higher and favorable binding energy in 
the direction of absorption, which means that the CNT-drug bonds are not needed. Importantly, hiding the drug inside 
protects it to a greater extent against interactions with external substances, other drugs, deactivating agents, or the 
unfavorable influence of the environment itself. Due to the type of structure, we divide them into single-walled 
(SWCNT) and multi-walled nanotubes (MWCNT).440,441

Various combinations of Platinum compounds and nanotubes can be found in the literature. Firstly, an in vitro study 
was presented in which Platinum(IV) complex cis,cis,trans-Pt(NH3)2Cl2(OEt)(O2CCH2CH2CO2H)] and SWNCT have 
been non-covalently functionalized with an amine-ended PL-PEG chain (Figure 14).

As indicated by studies, this complex enters the cell by clathrin-dependent endocytosis and, thanks to the reducing 
environment of endosomes, releases Platinum compounds inside the cell. Drug release at low pH is facilitated by the loss 
of the axial properties of the ligand by which it is linked to SWNCT. This is an extremely important property, considering 
that many cancer tumors have a low pH. As research confirms, the addition of a nanotube increased the concentration in 
cancer cells 6–8 times compared to the free complex, and was 2 times higher than the Cisplatin used. This proves the 
effectiveness of using SWNCTs as transporters for Platinum compounds.406 The second in vitro study is a modification 
and extension of the tumor cells that highly overexpress the folate receptor (Figure 15). In the studies, these complexes 
were 8.6 times more effective against cancer cells than Cisplatin.407

Figure 13 Structure of a dendrimer.404,405,432–436
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Another study describes a complex hydrophobic cisplatin drug, which is a derivative of cisplatin with two benzoic 
groups attached, and MWCNT (Figure 16). The in vitro studies confirmed the stable entrapment of Platinum derivative 
particles in the nanotube and effective therapy in ovarian carcinoma cells.411

Another example is a three-element complex consisting of: Cisplatin, SWCNT, and epidermal growth factor (EGF) 
(Figure 17).

To reduce the low selectivity and direct the complex towards squamous cancer, EGF was added to the CNT and Cisplatin 
complexes. Without reducing the effectiveness of the therapy, it targets cells overexpressing EGFR, such as squamous cancer 
cells. This results in greater accumulation in these cells and a longer duration of action, which is confirmed by both in vitro and 
in vivo studies.412,413 The next study describes Cisplatin molecules inside SWCNT (Figure 18). The results of this study 

Figure 14 The structure of Platinum(IV) complex cis,cis,trans-Pt(NH3)2Cl2(OEt)(O2CCH2CH2CO2H)] with SWNCT, functionalized with PL-PEG.438

Figure 15 The structure being a modification and extension of the Platinum(IV) complex cis,cis,trans-Pt(NH3)2Cl2(OEt)(O2CCH2CH2CO2H)] with SWNCT, functionalized 
with PL-PEG, in which additional molecules were added to the complex.442 Symbol R means the targeted molecule containing folic acid (vitamin B9) with the structural 
formula (O2CCH2CH2CONH-PEG-FA).
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demonstrated that the Cisplatin complex in the nanotube reduced side effects by inhibiting non-specific, non-selective 
absorption compared to free Cisplatin. However, the complex was not as effective as free Cisplatin.414,415

An interesting form seems to be the “Carbon Nanotube Bottle” complex, consisting of Cisplatin with MWCNT and 
Gold Caps (Figure 19).440

The study was designed so that the caps were made of alkanethiols combined with gold nanoparticles (GNP), protecting 
the open ends and protecting Cisplatin from a premature release. Only at low pH, ie the pH that occurs within the tumor, 
would it open and release the active substance. However, this significantly limited drug release once it reached the tumor, as 
in vitro studies showed that GNPs were end-blocked and approximately 40% of cisplatin was not released within the first 
hour.438 Another in vitro test was the complex of Cisplatin with ultrashort SWCNT and Pluronic F108 (Figure 20).416–418

Figure 16 The structure of a complex of hydrophobic cisplatin drugs with two benzoic groups attached and MWCNT.411

Figure 17 The structure of a complex of Cisplatin, SWCNT, and epidermal growth factor (EGF).443

Figure 18 The structure of a complex of Cisplatin molecules inside SWCNT.444–446

International Journal of Nanomedicine 2024:19                                                                                   https://doi.org/10.2147/IJN.S469217                                                                                                                                                                                                                       

DovePress                                                                                                                       
9527

Dovepress                                                                                                                                                  Szupryczyński et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Pluronic-F108 is a neutrally charged, non-cytotoxic surfactant commonly used for release control in carbon nano-
tubes. This ternary complex showed increased cytotoxicity against breast cancer cell lines after 24 hours compared to 
free Cisplatin.416 The eighth and final in vitro study presents us this time with a complex consisting of Carboplatin and 
oxidized open-ended MWCN (Figure 21).

The results confirmed the lack of toxicity of the nanostructure and the effective, long-term release of Carboplatin particles, 
showing a maximum Platinum release of 68% on the fourteenth day. The results also showed higher cytotoxicity of 
compounds in nanostructures than free Carboplatin towards prostate, renal, and bladder cancer cell lines.450

Fullerenes
Fullerenes are allotropic forms of carbon, and their structure consists of sp2 carbons connected by single and double 
bonds. Their structure resembles a symmetrical cage of various sizes and shapes. The most popular fullerene is fullerene 
C60 (Figure 22), which consists of 12 pentagons and 20 hexagons, and resembles a sphere in shape.45

Fullerenes properties resemble hydrophobic compounds, for which they have a high affinity. Additionally, thanks to 
these properties, they have good penetration through cell membranes and significant biological activity.453 Fullerenes also 
easily react with electron-rich molecules and are able to bind other compounds using physical and chemical bonds or 
electrostatic interactions.410,454,455 The structure of fullerenes can be modified to increase their binding capacity.453 The 
specific structure allows them to bypass traditional drug resistance mechanisms.456 As shown by in vivo studies (Figure 23), 
fullerenes do not exhibit toxicity while maintaining strong antioxidant properties as free radical scavengers.408 C60 fullerene 

Figure 19 The structure of a complex of Cisplatin with MWCNT and Gold Caps.440 The abbreviation GNP represents gold nanoparticles.

Figure 20 The structure of a complex of Cisplatin with ultrashort SWCNT and Pluronic F108.416–418
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derivatives penetrate plasma membranes and concentrate inside cancer cells, which makes them suitable for the transport of 
Platinum-derived drugs.119,120,132,185,239,258,409,415,419

In vitro studies have shown that C60 fullerene nanoparticles in complexes do not cause DNA strand breaks while 
maintaining the cytotoxic properties of Cisplatin.408 Other studies have shown a greater cytotoxic effect of the complex 
compound on lung cancer cells compared to free Cisplatin, as demonstrated by IC 50 values, although lower after 
treatment for 48 and 72 hours.410 The nano complex also promotes cell penetration and accumulation inside cancer cells, 
and thus intensifies the toxic effect inside cancer cells, consequently leading to apoptosis.410 Studies on T-lymphoblastic 
leukemia cells showed that the fullerene complex with Cisplatin induces a statistically significant increase in the number 
of dead cells compared to Cisplatin alone.409

Figure 22 The structure of fullerene C60.
452

Figure 21 The structure of a complex of Carboplatin and oxidized open-ended MWCN.416,448,449
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Rhombellans
Rhombellans are new theoretical nanostructures described for the first time in 2018 by Diudea, characterized by the fact 
that they are built in such a way that all strong rings are rhombuses, and some of them create propellant structures 
(tricyclo[1.1.1.01,3]pentane).457,458 They are synthesized from [1,1,1] propellane, which contains only triangles.265 As 
Diudea describes, Rhombellans have the following properties:

1. all strong rings are rhombuses;
2. vertex classes consist only of unconnected vertices;
3. the Omega polynomial has one term: 1X^|E|;
4. the line graph of the parent graph has a Hamiltonian perimeter;
5. they contain at least one complete bipartite subgraph K2.3 or the smallest rbl.5 rbl.459

Quantum calculations at the B3LYP/6-31G level of theory confirmed that the syntheses are energetically feasible.459 

Studies on the properties of ADME (absorption, distribution, metabolism, and excretion) confirmed the properties of 
Rhombellanes as nano transporters delivering to the target site.261,263,265,270,275,421

A comparative study on the structure of C60 fullerenes and Rhombellanes shows a significantly higher affinity of both 
Cisplatin420 and Carboplatin419 to fullerenes than to Rhombellanes (Figure 24). Even though Platinum-derived com-
pounds formed more bonds with Rhombellanes, they were of lower quality.419 However, the affinity of Platinum 

Figure 24 The structure of a complex of Rhombellane with Cisplatin.420

Figure 23 The examples of complex of functionalized fullerene C60 with Cisplatin.420
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derivatives is so high that they can form complexes with both fullerenes and Rhombellanes. Comparing Cisplatin and 
Carboplatin, the affinity values for Carboplatin are much higher. As a result, Carboplatin can easily form complexes with 
these nanostructures.421

Others Nanostructures
Micelles
Micelles are colloidal nanoparticles that are formed in an aqueous environment using amphiphilic copolymers or surfactants 
when the critical micellar concentration is exceeded.289,458 Micelles are excellent drug carriers because, due to their smaller 
size below 100 nm in diameter, they actively avoid RES and renal exclusion. They can even passively increase the 
penetration of the endothelial barrier in the area dominated by the tumor. Hydrophobic drugs become trapped in the 
innermost central region, resulting in increased water solubility, reduced toxicity profile, tumor cell-specific aggregation, 
and reversal of drug resistance, ultimately improving the therapeutic efficacy and bioavailability of poorly water-soluble 
drugs. Additionally, circulation time can be extended by adding a hydrophilic coating that prevents vesicular uptake.461

Hydrogels
Hydrogels are a three-dimensional polymer mesh that retains a significant amount of water in its fibers.462,463 It is a 
system of a binary polymer solution that has a cross-linking agent. Hydrogels have gained much attention over the past 
three decades because they possess various unique features that are useful in biomedical applications. At room 
temperature, hydrogels exist as a solution, but when they reach body temperature, they transform into a gel. The main 
mechanism of the anticancer gel form is the creation of a drug reservoir from which the drug gradually penetrates. 
Hydrogels inhibit the formation of cancer, including lung cancer, and at the same time extend the life of the body.464

Nanoemulsions
Nanoemulsions are water-in-oil (w/o) or oil-in-water (o/w) droplets with an average radius of 10–100 nm that are 
translucent or transparent and exhibit a stable thermodynamic profile. This nanostructure is created by dispersing two 
immiscible phases: the water phase in the oil phase, and is maintained by reducing the interfacial tension using various 
surfactants and co-surfactants.465 This structure makes nanoemulsions excellent nanocarriers for hydrophobic and 
lipophilic chemotherapeutics. In addition, nanoemulsion helps in reducing hepatic bypass, inhibits drug degradation in 
an abnormal environment, eliminates P-glycoprotein efflux, facilitates penetration of mucous membranes, and thus 
improves the systemic availability of chemotherapy.466

Quantum Dots (QDs)
These are the smallest of all nanostructures (3–30 nm) made of semiconductor materials. QDs can be modified by coating 
with polymers that improve solubility and absorption.467 The biggest problem associated with the clinical use of QDs is 
the potential cytotoxicity.468 This problem is according with their structure which contains inducing cytotoxicity metal 
atom.469 QDs have been used in molecular profiling and cellular imaging of cancer.470 As proven by in vitro studies on 
lung cancer cell lines, conjugating Erlotinib with QD improves its effectiveness.471 Additionally, QDs can be modified to 
control drug release in an acidic pH environment.472

Metal NPs (Nanoparticles)
Between structures contain metal atoms, used in oncology are iron nanoparticles,321,473 titanium dioxide nanoparticles,329 

zinc oxide nanoparticles,474 cerium nanoparticles,475 silver nanoparticles476 or gold nanoparticles. The latter, due to their 
unique optical and surface properties, high biocompatibility, are easy to modify during synthetize and can be coated with 
a large number of molecules, including drugs used in chemotherapy.477–479

Magnetic Nanostructures
Nanostructures that can be detected and manipulated using magnetic fields. Most often, they have sizes ranging from 
10–200 nm and a neutral surface charge, which is needed to extend the circulation time.480,481 In recent years, they have 
been used in diagnosis and treatment of lung cancers.482–484 However, they exhibit high toxicity. Magnetic nanostructures 
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can interfere with cellular metabolism and cause side effects by producing reactive oxygen species and increasing for 
example the concentration of free iron by metabolizing iron oxide nanoparticles.381,485

Conclusions
To sum up, Platinum compounds have been approved for treatment since 1978, and despite the fact that knowledge about 
these drugs has grown significantly and many newer anticancer drugs and various anticancer therapies have entered the 
market, virtually unchanged Platinum compounds have not fallen out of use and are still among the most popular 
compounds used in certain types of cancer. However, numerous problems associated with therapy with Platinum 
derivatives have been noticed. Firstly, increasing resistance to Platinum-derived compounds, and secondly, high toxicity 
resulting from low selectivity. The most popular solutions to these problems are complex therapy, targeted therapy, and 
conjugation of Platinum derivatives with nanostructures. Theoretical research, as well as in vitro and in vivo studies, on 
nanostructures are optimistic and prove that in the future we will be able to allow new, better forms of Platinum- 
derivative drugs for treatment, which will accumulate better at the site of the tumor, cause fewer side effects for the body, 
and limit the phenomenon of resistance. The presence of nanostructures can protect Platinum-derived drugs from reacting 
with substances in the bloodstream (eg originating from food and drugs, such as B vitamins or proteins), thus reducing 
the therapeutic effect. However, despite numerous studies on single complexes of nanostructures, there is still a lack of 
comparative studies that would compare different complexes of Platinum compounds and nanostructures under the same 
conditions.
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