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Purpose: Observational research provides valuable insights into treatments used in patient populations in real-world settings. 
However, confounding is likely to occur if there are differences in patient characteristics associated with both the exposure and 
outcome between the groups being evaluated. One approach to reduce confounding and facilitate unbiased comparisons is inverse 
probability of treatment weighting (IPTW) using propensity scores. Machine learning (ML) and entropy balancing can potentially be 
used in generating propensity scores for IPTW, but there is limited literature on this application. We aimed to assess the feasibility of 
applying these methods for reducing confounding in observational studies. These methods were assessed in a study comparing 
cardiovascular outcomes in adults with type 2 diabetes and established atherosclerotic cardiovascular disease taking once-weekly 
glucagon-like peptide-1 receptor agonists or dipeptidyl peptidase-4 inhibitors.
Methods: We applied advanced methods to generate the propensity scores compared to the original logistic regression method in 
terms of covariate balance. After calculating weights, a weighted Cox proportional hazards model was used to calculate the sample 
average treatment effect. Support Vector Classification, Support Vector Regression, XGBoost, and LightGBM were the ML models 
used. Entropy balancing was also performed on features identified in the original cardiovascular outcomes study.
Results: Accuracy (range: 0.71 to 0.73), area under the curve (0.77 to 0.79), precision (0.53 to 0.60), recall (0.66 to 0.68), and F1 
score (0.60 to 0.64) were similar between all of the advanced propensity score methods and traditional logistic regression. Among ML 
models, only XGBoost achieved balance in all measured baseline characteristics between the two treatment groups, closely 
approximating the performance of the original logistic regression. Entropy balancing weights provided the best performance among 
all models in balancing baseline characteristics, achieving near perfect balancing.
Conclusion: Among the advanced methods examined, entropy balancing weights performed the best for optimizing balancing and 
can produce similar results compared to traditional logistic regression.
Keywords: propensity score, machine learning, entropy balancing, type 2 diabetes, glucagon-like peptide-1 receptor agonists

Introduction
Observational research offers valuable insights into patient populations exposed to different treatments in real-world settings. 
However, unlike in randomized clinical trials where confounding of intervention and control groups is reduced or eliminated, in 
real-world studies, differences in patient characteristics associated with both the exposure and outcome between the groups being 
evaluated can potentially lead to underestimating or overestimating the true effect of the exposure on the outcome being 
measured.1,2 Commonly used methods for reducing confounding in observational studies include methods based on propensity 
scores such as propensity score matching and inverse probability of treatment weighting (IPTW).1,3–5

IPTW is an approach to controlling for confounding variables by using propensity scores to facilitate unbiased 
comparisons in observational studies.1 Propensity scores are calculated as an individual’s probability, or propensity, of 
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being exposed or treated based on their characteristics, and can be generated using statistical models. After calculating 
propensity scores, the inverse of the score of being exposed/treated is calculated as a weight for each individual; this 
weight is then applied to the overall study population. When these weights are used in causal inference tasks, they 
effectively create a pseudo population of patients for which the demographic and clinical characteristics are more 
optimally balanced between the groups being compared.

Machine learning (ML), a subfield of artificial intelligence (AI), is the use of computer systems and algorithms to 
develop models that can complete complex tasks, including analyzing and identifying patterns in data. ML is increasingly 
viewed as a valuable tool in advancing healthcare and clinical research.6–10 ML has been applied in real-world evidence 
(RWE) and health economics and outcomes research11–13 including but not limited to extraction of patient information from 
unstructured electronic health records,14,15 developing predictive models,16–18 detecting medical conditions,19–21 and in 
digital health interventions.22 Further, ML has the potential to be used in generating propensity scores for IPTW or other 
methods of causal inference.23–25 However, to our knowledge, there is limited literature on using ML for propensity scores 
for IPTW, including a recent observational real-world study of an ML-based propensity score approach (using Random 
Forest and Bayesian Additive Regression Trees), which generated similar findings to the traditional logistic regression- 
based propensity score approach; however, detailed comparisons between these approaches were not presented.26

Similar to IPTW, entropy balancing is a method that allows for the estimation of causal effects in observational studies.27 It 
is a multivariate matching approach that adjusts for covariates instead of relying on a model to estimate propensity scores. This 
method identifies weights for the control sample to equalize the distribution of covariates across treatment and control 
samples. It has been used in various fields, including medical studies,28–32 to apply causal findings from one population (a 
source population) to another (a target population) based on observed characteristics. This approach can be more effective in 
balancing covariates than traditional propensity score weighting methods because it operates directly on the covariate 
distributions as opposed to specification of a logistic function.29,33,34 In addition to its flexibility, entropy balancing can 
generate better covariate balance and subsequently more precise effect estimates with large target populations.34,35

Despite the potential benefits of advanced methodologies for reducing confounding in observational studies, there is limited 
evidence comparing these methods with traditional methods in actual RWE research practice. The objective of this INFORM 
(Modernization of Real-World Research Methods) study is to establish the feasibility of applying ML methods and entropy 
balancing to reduce confounding in observational studies and compare them with a traditional method. These methods will be 
assessed in a study comparing cardiovascular outcomes in adults with type 2 diabetes (T2D) and established atherosclerotic 
cardiovascular disease (ASCVD) taking once-weekly (OW) glucagon-like peptide-1 receptor agonists (GLP-1 RA) or dipeptidyl 
peptidase-4 inhibitors (DPP-4i) in which a traditional method of propensity scoring and IPTW via logistic regression was used.36 

We consider the feasibility of these methods to be two-fold: (1) the propensity function does not need to be explicitly defined as it 
does with logistic regression, resulting in easier implementation, and (2) given their easier implementation, whether their use for 
propensity scoring results in equal or greater bias reduction as compared to logistic regression.

Methods
Study Design
The original T2D/ASCVD cardiovascular outcomes study36 was an observational cohort study conducted between 
January 1, 2017, and September 30, 2021, using Optum’s de-identified Clinformatics® Data Mart Database (CDM).37 

The primary objective of this study was to compare the time to ischemic stroke and myocardial infarction among US adults 
with T2D and ASCVD who initiated OW GLP-1RA vs DPP-4i. To reduce selection bias and confounding from observed 
covariates between the OW GLP-1RA and DPP-4i groups, propensity scores were estimated using a generalized linear 
model for binary outcome with logit function, ie, logistic regression, on pre-specified variables and ad hoc interaction 
effects informed by expert domain knowledge. The final study sample included 26,430 OW GLP-1RA users and 39,858 
DPP-4i users before weighting. About 82 baseline patient characteristics were balanced, including sociodemographic 
factors, T2D and ASCVD history, healthcare utilization, healthcare costs, comorbidities, medication use, procedures, and 
proxy measures of overall health and diabetes severity. Weights were calculated for IPTW and applied in the calculation of 
weighted descriptive statistics, bivariate analyses, and multivariate analyses to assess covariate balance between groups. 
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After IPTW, baseline characteristics were well balanced between the two groups by using the conventional threshold of 
standardized mean difference (SMD) (<0.1). With adequate balancing through IPTW, a weighted Cox proportional hazards 
(PH) model was used to estimate the treatment effect (rate of ischemic stroke). Results showed that OW GLP-1RA users 
had 26% lower risk of ischemic stroke compared to DPP-4i users (hazard ratio [HR] and 95% confidence interval [95% CI] 
= 0.74 [0.63, 0.87], p<0.001); details of the study have been previously published.36

For this INFORM analysis, we reevaluated the comparative effectiveness on cardiovascular outcomes by applying 
advanced methods to generate the propensity scores and compared these methods to the previously used logistic 
regression method in terms of covariate balance, using the same analytic dataset, dependent variables, and independent 
variables. The new methods included ML models and entropy balancing as detailed later. Performance between new and 
old methods was compared using several measures as described later. Clinical outcomes in the original study were also 
compared using weighted Cox PH models. The sample average treatment effect (sATE) was estimated. This study was 
reviewed by the WCG Institutional Review Board. It was deemed exempt because the research utilizes retrospectively 
collected de-identified data for further analysis without further interaction with the human subjects.

Dataset
We used the CDM for the original cardiovascular outcomes study and the current INFORM study. CDM comprises 
administrative claims data for commercial healthcare and Medicare Advantage enrollees of large national managed care 
companies, across the United States. Their claims data includes verified, adjudicated, adjusted, and de-identified medical 
and pharmacy claims, as well as outpatient laboratory test results from large national laboratories.

ML Models
For this research, we utilized two types of ML models: Support Vector Machine (SVM) and Gradient Boosting. From these types, 
we have four different models: Support Vector Classification, Support Vector Regression (SVR, treated the outcome as 
continuous), XGBoost, and LightGBM. These models were chosen based on their proven effectiveness in various fields and 
their ability to handle complex, high-dimensional data. SVM is a set of supervised learning methods used for classification, 
regression, and outliers detection.38 It is effective in high-dimensional spaces and is still effective in cases where the number of 
dimensions is greater than the number of samples. SVR is an extension of SVM that applies the SVM concepts to regression 
problems.39 It has been proven to be an effective tool in real-value function estimation. While SVR is not typically used for binary 
outcomes, we chose to utilize this as a linear probability model and explore its potential in this specific context. Gradient boosting 
is an ML technique for regression and classification problems, which produces a prediction model in the form of an ensemble of 
weak prediction models, typically decision trees.40 XGBoost41 is a scalable ensemble technique that has been demonstrated to be 
a reliable and efficient ML model. LightGBM,42 similar to XGBoost, is an ensemble learner of weak decision trees, but is focused 
on providing extremely fast training performance using selective sampling of high gradient instances. In Gradient Boosting 
frameworks, like XGBoost and LightGBM, loss functions set the learning objective and are optimized during model training. 
Any given loss function aims to minimize the error between predicted and actual outcomes, thus guiding the model’s learning and 
determining its performance; however, the differences between loss functions can lead to differences in model performance for 
any given task. For this reason, we have chosen to evaluate XGBoost and LightGBM using two different loss functions: a mean 
squared error loss function (“XGBoost Error”, “LightGBM Error”) and a squared log loss function (“XGBoost Loss”, 
“LightGBM Loss”). Mean squared loss is favored for its simplicity and ability to penalize discrepancies between predictions 
and real values across a broad spectrum of regression scenarios. On the other hand, squared log loss is advantageous for skewed 
target variable distributions, mitigating outlier impacts by focusing on logarithmic differences. These two objectives have been 
chosen and tested due to their demonstrated capacity to accurately capture complex data relationships. All ML models were 
trained on features that were identified in the original cardiovascular outcomes study. For each model, we conducted 
hyperparameter tuning using a subset of our data (approximately 5%), which enabled us to identify the optimal hyperparameters. 
Specifically, for SVM models, this tuning process involved fine-tuning the kernel function and regularization alongside additional 
parameters. For Gradient Boosting models, we adjusted the number of leaves/branches, depth limit, and learning rates, along with 
various other settings. This preparatory step allowed us to establish the best configurations before embarking on the main training 
phase with the entire dataset. The ML models were used to perform prediction tasks to create propensity scores. With the 
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generated propensity scores, weights were calculated and applied to the data. Thus, these models were used as an intermediary 
step for bias reduction when estimating the sATE and not for other purposes such as causal inference.

Entropy Balancing
In the INFORM study, entropy balancing was initially performed on features that had been identified in the original 
cardiovascular outcomes study. We also tried a “no interaction” approach. The primary distinction between the original and 
the no interaction approaches lies in the latter’s use of all available features without specifying interaction terms, allowing 
models to autonomously determine feature significance without prior filtering.

Comparisons Between New Advanced Methods and Traditional Material and Methods
The performance of the ML models was compared between both the new advanced methods and the traditional logistic 
regression method in terms of classification accuracy, area under the curve (AUC), precision, recall, and F1 score. AUC 
measures the area under the Receiver Operating Characteristic (ROC) curve, with higher values indicating better model 
performance in distinguishing between treatment classes.43 Precision measures the ratio of true positive predictions to the 
total number of positive predictions, with higher values indicating fewer false positives. Recall measures the ratio of true 
positive predictions to the total number of actual positives, with higher values indicating the model’s effectiveness at 
identifying all positive instances. The F1 score is the harmonic mean of precision and recall, with higher values 
indicating a better balance between these two metrics.44 All four metrics are percentages and, therefore, range from 0 
to 1. The evaluation metrics were calculated based on the performance of the models on the test dataset, which 
constitutes 20% of the total data. These metrics were obtained after training the models on the training dataset, 
comprising the remaining 80% of the data. This process was done once; the metrics we report are from the single 
partition of test data, and therefore, 95% confidence intervals are not reported.

The distribution plots for propensity scores and sATE were produced for each method. The baseline characteristics 
and SMD45–47 between the OW GLP-1RA group and DPP-4i group after IPTW were compared for each method of 
estimating propensity scores and for entropy balancing. SMD is the [difference between groups]/[SD of combined 
groups]. SMD <0.1 was considered a non-significant difference.45–47

Almost all variables were non-missing except race, BMI, region, and HbA1c. Missing data for these variables were 
treated as a separate “unknown” category. All analyses were conducted using R 4.2.2 (Supplementary Methods).

Results
Final Study Sample
This study included 26,430 OW GLP-1RA users and 39,858 DPP-4i users before propensity score weighting. Detailed 
patient characteristics can be found elsewhere.36 Because no significant imbalance was observed in the sample sizes 
between OW GLP-1RA users and DPP-4i users, no imbalance correction was performed.

Predictive Performance of Propensity Score Models
Overall performance was similar between the advanced methods and traditional logistic regression. In Table 1 we 
compare predictive performance of the different propensity score models and see, in terms of classification accuracy, 
AUC, precision, recall, and F1 score, that all advanced ML methods perform similarly to logistic regression. For all 
models, classification accuracy is between 0.71 and 0.73, AUC is between 0.77 and 0.79, precision is between 0.53 and 
0.60, recall is between 0.66 and 0.68, and F1 score is between 0.60 to 0.64. This parity evidences the utility of all models 
to adequately distinguish between the experimental groups. Among the ML models, XGBoost Error and XGBoost Log 
Loss models perform slightly better, and SVM regression and SVM classification seem to perform the worst. Further, to 
ensure that our models were not overfitting, we compared the evaluation metrics for the training dataset and the test 
dataset. The metrics did not show substantial differences, indicating that the models generalize well to unseen data.
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Balancing Results
The propensity score and sATE distributions were similar between XGBoost (Figure 1 C1 and C2), LightGBM (Figure 1 
D1 and D2) and logistic regression (Figure 1 A1 and A2). However, the distribution of SVM regression (Figure 1 B1 and 
B2) has less separation between the two treatment groups. The ranking of ML methods in balancing of baseline 
characteristics from best to worst was XGBoost, LightGBM, and SVM. Among ML models, only XGBoost achieved 
balance in all measured baseline characteristics between the two groups, closely approximating the performance of the 

Table 1 Predictive Performance Metrics for Different Propensity Score Models

Performance 
Metrics

Logistic 
Regression

SVM 
Regression

SVM 
Classification

XGBoost 
Error

XGBoost Log 
Loss

LightGBM 
Error

LightGBM Log 
Loss

Accuracy 0.72 0.71 0.71 0.73 0.73 0.72 0.72

AUC 0.79 0.77 0.77 0.79 0.79 0.79 0.79

Precision 0.58 0.55 0.53 0.60 0.60 0.58 0.57

Recall 0.67 0.66 0.68 0.68 0.68 0.68 0.67

F1 Score 0.62 0.60 0.60 0.63 0.64 0.63 0.62

Note: For Gradient-Boosting models, two learning objectives were tested: Error and Log Loss. 
Abbreviations: AUC, area under the curve; RMSD, root mean squared deviation; SVM, support vector machine.

Figure 1 Distribution Plots for Propensity and sATE. Propensity graphs (A1-D1): These graphs display the distribution of the propensity score by the two index drugs. Models 
that are capable of distinguishing between the two groups will have minimal overlap concentrated near 0.5 with separate peaks at 0 and 1. sATE graphs (A2-D2, E-F): These 
graphs display the distribution of the sample average treatment effect weights by the two index drugs. Distributions that look different across models indicate a difference in 
sample balancing. 
Notes: SVM Regression, XGBoost LogLoss, and LightGBM LogLoss results are similar to the results for SVM Classification, XGBoost Error, and LightGMB Error, respectively. 
Abbreviations: DPP-4i, dipeptidyl peptidase-4 inhibitors; GLP-1RA, glucagon-like peptide-1 receptor agonists; sATE, sample average treatment effect; SVM, Support Vector Machine.
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original logistic regression. The entropy balancing weights provided the best performance among all models in balancing 
baseline characteristics (Table 2 and Supplementary Table 1). This method achieved near perfect balancing, with SMDs 
for all baseline characteristics very close to zero.

Table 2 Balancing Results (Key Variables), Standardized Mean Difference by ML Method

Variables Baseline Logistic 

Regression 

(reference)

Entropy 

Balance

SVM 

Regression

SVM 

Classification

XGBoost 

Error

XGBoost 

Log Loss

LightGBM 

Error

LightGBM 

Log Loss

Age group

18–44 0.130 0.008 0.0002 0.014 0.029 0.021 0.017 0.039 0.048

45–64 0.442 0.032 0 0.059 0.112 0.034 0.047 0.060 0.081

65–79 0.079 0.015 0.0001 0.047 0.065 0.023 0.015 0.017 0.008

≥80 0.460 0.059 0 0.135 0.229 0.075 0.0796 0.104 0.119

Sex

Female 0.035 0.010 0.0001 0.042 0.028 0.018 0.021 0.030 0.029

Male 0.035 0.010 0.0001 0.042 0.028 0.018 0.021 0.030 0.029

Race

White 0.149 0.018 0 0.150 0.080 0.033 0.027 0.059 0.067

Black 0.005 0.002 0 0.041 0.016 0.0001 0.0003 0.006 0.014

Hispanic 0.115 0.016 0 0.103 0.055 0.025 0.017 0.041 0.042

Asian 0.148 0.024 0 0.104 0.097 0.058 0.049 0.084 0.088

Unknown 0.005 0.004 0.0002 0.007 0.023 0.018 0.011 0.018 0.018

Commercial insurance/Medicare

Commercial 0.383 0.030 0 0.082 0.088 0.045 0.049 0.077 0.095

Medicare 0.383 0.030 0 0.082 0.088 0.045 0.049 0.077 0.095

Antidiabetic medications

Metformin 0.044 0.001 0 0.006 0.020 0.010 0.004 0.026 0.038

Sulfonylureas 0.125 0.009 0 0.021 0.006 0.009 0.003 0.010 0.003

Thiazolidinediones 0.037 0.011 0 0.059 0.024 0.023 0.014 0.046 0.057

SGLT2 inhibitors 0.313 0.028 0.0001 0.174 0.074 0.044 0.044 0.072 0.086

Insulin 0.555 0.043 0 0.067 0.059 0.062 0.059 0.086 0.100

Cardiovascular disease

Myocardial infarction 0.003 0.0003 0 0.006 0.012 0.012 0.006 0.016 0.013

Ischemic stroke 0.078 0.012 0.0001 0.069 0.060 0.027 0.022 0.052 0.054

Peripheral artery disease 0.125 0.012 0 0.051 0.049 0.021 0.016 0.034 0.039

Transient ischemic attack 0.061 0.013 0.01 0.040 0.039 0.012 0.009 0.024 0.027

Notes: See Supplementary Table 1 for the full set of balancing results. 
Abbreviation: SGLT2, sodium-glucose cotransporter-2.
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Additional Comparisons
Cox PH regression models showed significantly lower risk of ischemic stroke for the OW GLP-1RA users than for the 
DPP-4i users regardless of which method was used to estimate balancing weights. HRs from models using entropy 
balancing weights (with and without interaction) and XGBoost weights (XGBoost Error and XGBoost Log Loss) were 
very similar to the original logistic regression (Figure 2). The findings using SVM methods seem to have the largest 
difference in the HR magnitude from other methods, but the direction and statistical significance are the same as other 
methods (Figure 2).

Discussion
The INFORM study compared ML models and entropy balancing with a traditional logistic regression model to generate 
weights for IPTW. We utilized a large observational secondary data study, the cardiovascular outcomes study, as an 
example case to facilitate the comparison in real research practice. Overall, we found some ML models like XGBoost can 
achieve comparable performance and balancing compared to traditional logistic regression with manual/human/expert 
variable selection. In addition, entropy balancing appears to be the most suitable approach for optimizing weights, ie, 
achieving a highly balanced distribution. The key potential advantage of these advanced methods over the traditional 
approach, especially entropy balancing, is that they could minimize the need for expert-driven feature engineering and 
selection, particularly incorporation of the interaction terms into the model.

In our comparison of ML models, the performance of SVM was not the most favorable for this task, contrary to its 
reputation for effectiveness in binary classification.48 Although SVM excels when faced with simpler feature spaces, its 
performance tends to diminish in higher dimensional feature spaces.49 Although kernel functions are applied to address 
these complexities, their efficacy diminishes in highly complex feature spaces.50 The propensity value distribution plot of 
the SVM models are different compared to all other models or the reference model, which can be attributed to the 
inherent nature of SVM in binary classification tasks. Unlike other algorithms that aim for a more symmetric separation 
between classes, SVM is designed to find the hyperplane that maximally separates the two classes while minimizing the 

Figure 2 Forest Plots of Hazard Ratios of Ischemic Stroke Comparing OW GLP-1RA versus DPP-4i Using Different Weighting Methods. 
Abbreviations: CI, confidence interval; DPP-4i, dipeptidyl peptidase-4 inhibitors; GLP-1RA, glucagon-like peptide-1 receptor agonists; OW, once-weekly; SVM, Support 
Vector Machine.
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margin violations. This results in a unique characteristic where SVM attempts to position the hyperplane in a way that as 
few data points as possible are located close to it – that is, the propensity values will be denser at the extremes (0, 1) as 
compared to the other methods. Despite this, we deemed it worthwhile to explore SVM’s utility in our study, considering 
that the relationships between the collected features and the prediction task might involve less intricate interconnections, 
making SVM well-suited for such scenarios.

On the other hand, our expectations for Gradient Boosting models, specifically XGBoost and LightGBM, were met 
with promising results. Given the high-dimensional nature of our data, Gradient Boosting was anticipated to perform well 
due to its ability to handle complex relationships within features. Both XGBoost and LightGBM demonstrated strong 
performance; however, XGBoost outperformed LightGBM. This could be attributed to the latter’s emphasis on fast 
training performance rather than optimizing predictive accuracy. Nevertheless, our findings show that ML models 
perform similarly to traditional logistic regression and therefore, suggest a notable potential for ML models, particularly 
Gradient Boosting algorithms, in generating weights for IPTW in observational studies.

Entropy balancing, comparatively, shows the most promise, with near-perfect balancing between groups. The fact that 
performance remains high without the need to identify the true propensity function makes this technique ideal for real- 
world applications where domain knowledge is not available. In this study, the increase in balance did not result in 
a meaningfully different estimate as compared with the original logistic model; however, in studies where the logistic 
model is not correctly fully specified, we would expect this method to reduce bias in estimation of the true effect of the 
exposure on the outcome being measured. However, entropy balancing is not without its cautions. Because entropy 
balancing is an optimization problem, it is known that covariate balance, in some instances, may be achieved by 
assigning extreme weights to a small set of observations, in effect nearly removing the observations.29,51 This is similar 
to instances of a propensity model where scores approach 0 or 1, but in entropy balancing, because we are estimating the 
weights directly, we cannot adjust for extreme results of this kind. Further, depending on the balance constraints (eg, 
covariates, distributional moments), entropy balancing may fail to converge where an otherwise simpler propensity 
model would succeed.51 Future research could focus on improvements in covariate balance and estimation of the ATE for 
such an approach.

Examining the implications of our study underscores the continued utility of ML models for propensity scoring tasks, 
even though their performance, in terms of covariate balance, did not consistently surpass the traditional logistic regression 
model. Notably, ML models, devoid of explicit interaction knowledge, demonstrated comparable covariate balance to the 
logistic regression. It is essential to recognize that XGBoost emerged as a robust method for generating weights for use in 
IPTW, exhibiting superior performance compared to other ML models and closely approaching the effectiveness of the 
logistic model; exploring more suitable Gradient Boosting models for this task could yield even better results. The advantage 
of the traditional logistic regression remains in its familiarity and interpretability as long as interaction terms are held to 
a minimum. The traditional approach necessitated a manual, expert-driven process for feature engineering. This approach 
required domain knowledge to identify relevant variables that influence the outcome, a process that, while effective, 
introduced an inherent level of subjectivity and potential bias into the selection process. This complexity underscores the 
evolving landscape of the methodology, where ML models present a promising alternative. We expect it to autonomously 
identify and utilize the most predictive features from the dataset without explicit human intervention in the feature selection 
process. By inputting the entirety of the available data, these models leveraged algorithms capable of assessing the 
importance and relevance of each variable in relation to the predictive objective.

This study has several limitations. First, INFORM inherited some limitations from the original cardiovascular 
outcomes study, including the inability to establish causality, potential measurement errors (eg, misclassified 
billing codes), missing data, and unavailability of information (eg, date and cause of death). Second, as with 
the original study, INFORM used CDM data, including US commercial and Medicare Advantage enrollees; 
caution is needed to generalize the results to other populations. Third, our ML models focused on predicting 
the treatment administered to each patient, and subsequent IPTW were generated based on these predictions. While 
this approach provided valuable insights, an alternative and potentially more suitable task for ML models could 
involve the direct generation of weights optimized to minimize SMD values for better covariate balancing. Despite 
this limitation, our study revealed that ML models, including XGBoost, can achieve comparable covariate balance 
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compared to traditional logistic regression. Fourth, these advanced models are used as an intermediary step for 
bias reduction when estimating the sATE, but they may not be able to fully eliminate bias to establish causality. 
Lastly, we did not validate these methods using simulation, which warrants future research.

Conclusion
Among the advanced methods we explored, entropy balancing weights performed the best for optimizing balancing and 
can produce similar results compared to the traditional logistic regression. It could also minimize the expert-driven 
feature engineering and selection, especially efforts to incorporate the interaction terms into the model.
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