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Background: Excessive salt consumption has been associated with detrimental health consequences, including hypertension, colitis, 
and autoimmune disorders. However, recent studies have proposed that high salt diet (HSD) can both stimulate the immune system, 
affecting the differentiation of immune cells, promoting or inhibiting cytokine secretion to fight cancer or elicit a more potent 
autoimmune response, and exerting an immunosuppressive effect to influence disease development, providing mechanistic insights 
into the direction of immune regulation in which HSD affects disease.
Objective: This paper reviews the immunomodulatory effects of HSD on various innate immune and adaptive cells, especially 
macrophages, dendritic cells, and T cells, in relation to disease development.
Methods: We identified papers by electronically searching the Web of Science (WOS) database from inception through March 2023.
Results: A growing number of animal experiments and in vitro cell culture studies have shown that HSD can regulate the 
differentiation and activation of a variety of immune cells, and promote or inhibit different cytokines to mediate the development 
of a variety of diseases, including nephropathy, hypertension, cancer, inflammatory bowel disease, and a number of autoimmune 
diseases. These findings provide a new mechanism for pathological changes in the direction of immune regulation and suggest that 
HSD is a predisposing factor for a variety of diseases, providing new mechanistic insights into dietary health modification.
Conclusion: HSD mediates the development of multiple diseases by regulating the differentiation and activation of a variety of 
immune cells, and the underlying mechanisms may be related to gut microbes and their metabolites.
Keywords: HSD, immune dysregulation, disease pathogenesis, mechanistic insights, review

Introduction
Table salt is an essential component and an important ingredient in food. Salt can enhance the taste of food and increase 
its palatability. In Western countries, salt is often added to food and consumed in larger amounts than recommended. 
Numerous studies have shown that high salt intake is inversely correlated with human health,1 leading to various 
conditions such as hypertension,2 osteoporosis,3 colitis,4 kidney disease,5 gastric cancer,6 dementia,7 obesity,8 and more. 
High salt intake is a significant risk factor for numerous diseases and should be of great concern.

The immune system is a complex network of organs, cells, and proteins that protect the body from infection. This defense 
system is carried out by identifying and handling foreign objects. The network consists of the lymphatic system, complement 
system, spleen, thymus, bone marrow, and cells (white blood cells, B cells, T cells). Immune cells have a protective and 
preventive effect against pathogens that invade the host. The state of the immune environment is influenced by dietary 
factors. HSD has been shown to adversely affect autoimmune diseases by shifting immune cell balance to a pro- 
inflammatory state.9,10 In addition to affecting effector T cells (Teff) responses, such as Th17 cells.11,12 It has also been 
shown that HSD can also affect the function of regulatory T cells (Tregs).13–17 Increased salt concentration favors the 
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differentiation of CD4+T cells to pathogenic Th17 cells, which predispose to a variety of inflammatory diseases by regulating 
the immune environment.18 In addition, high salt interferes with the mitochondrial respiration of Tregs, leading to the 
dysfunction of Tregs, and the “downtime” of Tregs increases the risk of many diseases.19 Therefore, immune imbalance due 
to excessive salt intake is a key factor in triggering diseases. Thus, immune imbalance plays a key role in HSD-induced 
disease development. There is a need to further summarize the data linking HSD, the immune environment, and disease.

To date, many reviews have focused on the role of sodium in modulating immune cell function. Examine 
studies by Nicola Wilck et al20 that have demonstrated a role for high extracellular salt in modulating the 
differentiation and function of innate and adaptive immune cell populations. Western diets are rich in salt. 
However, there is still a lack of discussion of recent studies on the intestinal immune imbalance induced by 
HSD in disease and its corresponding mechanisms. Therefore, this paper aims to systematically summarize the 
characteristics of HSD-induced immune imbalance in disease and reveal the potential mechanisms of interaction in 
the HSD model. The following sections systematically illustrate the effects of HSD-mediated immune imbalance 
with various diseases such as hypertension, nephropathy, cancer, and IBD and their corresponding mechanisms.

Material and Methods
All data related to high salt in the immune field reported in this paper were found using the advanced search function of the 
WOS core collection in March 2023, and the language is limited to “English”. All data were analyzed using the local function 
of WOS. The potential search keywords are the following: TS = ((immune or immunity or inflammation) AND “high salt”).

Results
HSD-induced immunity is closely associated with kidney disease, hypertension, cancer, inflammatory bowel disease, and 
autoimmune diseases. Animal experiments and in vitro cell culture studies provided evidence that HSD mediates diseases 
development by affecting immune cells and their secreted cytokines (Figure 1).

Influences of HSD on Immunity Toward Kidney Disease
Renal damage in Dahl salt-sensitive (Dahl SS) hypertension is attributed to oxidative stress and inflammation within the 
kidneys.21,22 Infiltration of immune cells in the kidneys plays a crucial role in the pathogenesis of hypertension and renal 

Figure 1 HSD-induced immunity is closely associated with kidney disease, hypertension, cancer, inflammatory bowel disease, and autoimmune diseases.
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injury in Dahl SS rats.23 Compared to Dahl SS rats on a low-salt diet, rats fed an HSD exhibit increased numbers of 
macrophages, T cells, and B cells in the kidneys, with the severity of hypertension and renal damage correlating with the 
presence of these immune cells.24–27 High salt intake-induced T cell infiltration into the kidneys is significantly 
attenuated in RAG1-deficient rats, and the average arterial blood pressure and urinary albumin excretion rate are 
significantly lower in RAG1-null mutants than in SS rats. Furthermore, the glomerular and tubular damage in the 
kidneys of SS rats fed an HSD is also reduced in RAG1 mutants.28 Experimental evidence demonstrates that treatment 
with immunosuppressive agents during high NaCl intake prevents T-cell infiltration in the kidneys and alleviates SS 
hypertension and renal injury in Dahl SS rats.25,26,29,30 The current study suggests that T lymphocytes that infiltrate the 
kidney can participate in the development of SS hypertension and kidney disease in Dahl SS rats by increasing levels of 
free radicals in the kidney,29 and oxygen radical scavengers can mitigate the progression of salt-induced hypertension and 
related kidney damage.31 In kidney tissue from Dahl SS rats fed HSD, there was an association between increased T-cell 
infiltration, increased oxidative stress, and increased expression of NADPH oxidase.29 Dahl SS rats (SSP 67 Phox) 
inhibited NADPH oxidase by p 67 Phox mutation, improving salt-induced hypertension, kidney damage, and kidney 
immune cell infiltration.32 Long-term administration of immunosuppressants during periods of high salt intake reduces 
T lymphocyte infiltration, reduces the oxidative status and kidney expression of the NADPH oxidase subunit P67 Phox, 
and improves hypertension and kidney disease.29 In addition, Antioxidant therapy administered to rats with Dahl SS 
resulted in a reduction of kidney inflammatory cytokines and chemokines, kidney immune cells, NF-kB, as well as 
arterial pressure, and improved kidney function and damage.33

Macrophage accumulation plays a key role in kidney injury.34–36 In Liu’s study, 5/6 NX rats receiving HSD exhibited 
strongly enhanced macrophage infiltration and activation in kidney tissue, accompanied by worsening kidney 
inflammation.37 Emerging evidence indicates that high salt intake can independently stimulate the immune activation 
of macrophages via STAT1 and exacerbate renal inflammation, leading to kidney damage.37 In the Dahl SS model, the 
addition of dietary salt has been shown to promote the conversion of kidney macrophages to the pro-inflammatory 
phenotype M1,27 increase the production of pro-inflammatory cytokines (IL-6, TNF-α, IL-β), and the expression of 
chemokines (MCP-1, CXCL1, and CCR2).37 Research has demonstrated that administering anti-IL-6 antibodies to Dahl 
SS rats attenuates the development of salt-sensitive hypertension and ensuing kidney damage,38 indicating that an HSD 
potentially induces hypertension and associated renal damage by eliciting the release of the pro-inflammatory cytokine 
IL-6 from macrophages. In addition, IL-6 can produce intercellular adhesion molecule-1 (ICAM-1) by activating 
vascular endothelial cells, however, Takahashi’s research shows that HSD rapidly increases leukocyte adhesion through 
overexpression of the ICAM-1.39 Prostacyclin and nitric oxide are potent inhibitors of white blood cells, and levels of 
vasodilators such as prostacyclin and nitric oxide have been reported to be reduced, and levels of vasoconstrictors are 
elevated in Dahl SS rats. Increased leukocyte adhesion in prehypertensive prehypertension is responsible for subsequent 
kidney injury in rats with Dahl SS. In addition, an imbalance between endothelial cell adhesion, vasodilation, and 
vasoconstrictor substances may be responsible for early angiotensin-II-independent leukocyte adhesion.40–43 It has been 
reported that Dahl SS rats are susceptible to angiotensin-induced kidney damage. Thus, the rapid increase in leukocyte 
adhesion caused by HSD may be associated with the high sensitivity of the renin-angiotensin system in Dahl SS rats.44

Neutrophils are the main immune effector against pyelonephritis.45 The innate immune defense of urinary tract 
infections (UTIs) relies on neutrophils, which clear Urinary tract pathogenic E. coli (UPEC) through phagocytosis, as 
well as mononuclear phagocytes, such as macrophages or dendritic cells, which attract and activate neutrophils by 
chemokines and cytokines.46–48 It has been shown that HSD suppresses intrarenal neutrophil NFAT5 by altering the local 
microenvironment (osmotic gradient of urea) and systemic glucocorticoid-mediated immunity. However, HSD does not 
enhance the response of neutrophils; rather, it systematically damages the antibacterial activity of neutrophils by 
changing hormones and metabolism.45

Influences of HSD on Immunity Toward Hypertension
Antigen-presenting cells (APCs), mainly including dendritic cells (DCs), monocytes (macrophages), and T cells, are the 
first responders to hypertension stimulation and drive T cell proliferation through antigen-MHC receptor interactions.49 
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High salt, as a strong stimulus of inflammatory activation and oxidative stress, can activate APCs,50–53 and indirectly 
activate T cells, leading to hypertension by damaging blood vessel and kidney function.

The effects of DCs and hypertension are bidirectional, DCs not only aggravate hypertension, but hypertension enhances 
the activity and activation of DCs. Neoantigens produced by mechanical trauma of hypertension can activate DCs,54,55 

which are presented by DCs to T cells, and induce the production of pro-inflammatory cytokines and ROS,54–57 further 
aggravating hypertension. Isolevuglandins (IsoLGs) are highly active products of lipid oxidation that form covalent bonds 
with lysine residues, resulting in post-translational modification of protein.58 Related studies have shown that IsoLGs play 
an important role in promoting the activation of T cells and hypertension.59 Transfer of isoketal-activated DCs into wild- 
type mice was shown to increase blood pressure,59 and removal of IsoLGs reduces T-cell activation and prevents 
hypertension and end-organ damage.59 It was demonstrated that in a murine model, elevated Na+ is a potent stimulus for 
the formation of IsoLGs adducts in DCs.60 High salt intake increases the epithelial sodium channel (ENaC)-mediated 
sodium entry into DCs and exchanges with calcium (Ca2+) via Na+/Ca2+ exchangers. Ca2+ enters the activating protein 
kinase C (PKC), which in turn phosphorylates the NADPH oxidase subunit P47 phox.60 This leads to NADPH oxidase 
activation, increased superoxide, and derived ROS.60 The production of ROS leads to the formation of IsoLGs, the 
presentation of costimulatory factor CD86, and the secretion of pro-inflammatory factors IL-6, IL-1β, and IL-23.61 

Activated DCs promote T cell activation by accumulating IsoLGs and presenting them to T cells via MHC-II cell surface 
receptors, stimulating the production of IFN-γ and TNF-α (from CD8+ and CD4+Th1) and IL-17A (from γδ-T cells and 
CD4+Th17), resulting in vascular and renal dysfunction and salt-sensitive hypertension.59,60 Van Bethescom et al demon-
strated that salt can activate DCs through serum glucocorticoid kinase 1 (SGK1) and that the loss of SGK1 in DCs reduces 
salt-sensitive hypertension.62 Mice lacking SGK1 expression in T cells are protected from ANGII infusion and DOCA salt- 
induced hypertension and eliminate hypertension-induced renal and vascular inflammation and end-organ damage.63 IL-17 
is a marker of inflammation produced by Th 17 cells. Studies have found that IL-17 acts on endothelial cells and leads to 
eNOS Thr 495 phosphorylation, which is mediated by RhoA/Rho kinases and leads to reduced NO production and reduced 
NO-mediated vasodilation,64 leading to hypertension. Deletion of SGK1 in T cells eliminates an increase in the frequency 
of spleen Th 17 cells in response to ANGII infusion.63 In addition, studies have shown that HSD can induce the production 
of Th 17 cells by reducing lactobacilli, resulting in hypertension in mice and humans.65

High-salt-activated monocytes/macrophages have a dual role in regulating vascular function and blood pressure. High 
sodium concentrations are recognized by macrophages as chemotactic stimuli in a dose-dependent manner.66 

Macrophages can sense high sodium concentrations via the sodium-calcium exchanger 1 (NCX 1), leading to macro-
phage activation followed by activation of the osmoprotective transcription factor nuclear factor of T cell 5 (NFAT5).67 

NFAT5 leads to increased NO production by nitric oxide synthase (NOS)-2 and the production of pro-inflammatory 
cytokines such as IL-1β, IL6, and TNF-α, which are released in high-salt reactions.50 In addition, NFAT 5 triggers the 
secretion of vascular endothelial growth factor (VEGF)-C.67,68 VEGF-C signaling, in turn, leads to VEGF receptor 
(VEGFR)3-dependent hyperplasia of the lymphatic capillary network, which enhances interstitial sodium clearance by 
improving drainage of interstitial fluid and electrolytes into the vascular ventricle. VEGF-C also stimulates the expres-
sion of endothelial nitric oxide synthase (eNOS) via VEGFR2 receptors, increases NO production, and acts as a direct 
compensatory vasodilation mechanism to buffer blood pressure increases due to excess extracellular volume.68 In 
addition, disturbances in macrophage infiltration or VEGF-C signaling can increase blood pressure in rats on HSD.68 

Macrophages cause vascular dysfunction and hypertension by releasing ROS and pro-inflammatory cytokines in different 
tissues, including the vasculature, kidneys, and brain69 In addition, Mahnik et al observed that high-salt treated rats 
acquired a pro-inflammatory macrophage(M1) response and also exhibited fluid retention, leading to hypertension.70 

Figure 2 shows the mechanism of HSD-induced immune disorders in kidney disease and Hypertension.
Myeloid-derived suppressor cells (MDSCs) are a group of immature myeloid cells that inhibit T cell activation as well 

as Th17 and Th1 cells,71,72 MDSCs by inhibiting inducible nitric oxide synthase (iNOS), ROS, and peroxynitrite inhibit 
T cells function.71 In addition, MDSC cells can induce the differentiation of Tregs by producing IL-10.72

The impact of the immune system on cardiovascular health includes not only hypertension, but macrophages have 
been shown to play a key role in the pathogenesis of atherosclerosis, acute myocardial infarction, and heart failure, 
highlighting the importance of myeloid cells for cardiovascular disease.73 In addition, DCs are also involved in 
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cardiovascular remodeling,74 and the elimination of DCs prevents the development of cardiac hypertrophy and perivas-
cular fibrosis. Neutrophil gelatinase-associated lipocalin (NGAL) produced by DCs may play a key role in adaptive 
immune activation, leading to cardiovascular fibrosis caused by excessive mineralocorticoid hormone.

Influences of HSD on Immunity Toward Cancer
Chronic inflammation is a key hallmark of cancer development and progression.75 The microenvironment of chronic 
inflammation can be induced by reactive oxygen/nitrogen species (ROS/RNS),76 paracrine factors, or tumor-infiltrating 
cells, leading to sustained cell proliferation, DNA damage, or cancer transformation.77 Inflammatory cytokines78,79 and 
chemokines80–82provide beneficial signals that promote cancer cell proliferation78,83 and tumor angiogenesis.84 High salt 
intake serves as an effective inducer of pro-inflammatory states. In a high-salt environment, the immune balance between 
Th17 cells and Treg cells is disrupted. High salt intake induces the differentiation of Th17 cells and the production of 
inflammatory cytokines such as IL-1, IL-6, and IL-23, as well as inflammatory mediators including prostaglandins, 
leukotrienes, transforming growth factor (TGF), and iNOS.85 iNOS is a recognized inflammatory marker and its 
upregulation has been associated with various cancers, including breast cancer.86 Existing research suggests that IL- 
17 has both tumor-suppressive and tumor-promoting effects.87 High salt intake has been shown to accelerate breast 
cancer growth, promote lung metastasis, and increase the levels of Th17 cells.88 The elevated levels of Th17 cells, 
potentially through the secretion of IL-17F, can activate the MAPK signaling pathway in breast cancer cells, thereby 
promoting breast cancer growth.88

Figure 2 Influences of HSD on immunity toward hypertension and kidney disease: High salt intake increases sodium entry into dendritic cells through ENaC-mediated 
transport and exchanges with Ca2+ via the Na+/Ca2+ exchanger. This leads to NADPH oxidase activation, increased O2- production, and generation of ROS, ultimately 
promoting the secretion of pro-inflammatory cytokines. Activated dendritic cells accumulate IsoLGs and present them to T cells via MHC-II cell surface receptors, thereby 
facilitating T cell activation and stimulating the production of IFN-γ, TNF-α, and IL-17A, resulting in vascular and renal dysfunction, as well as salt-sensitive hypertension. 
Furthermore, high levels of sodium activate macrophages through NCX1, subsequently activating NFAT5. NFAT5 triggers the secretion of VEGF-C and NOS-2, increasing 
the production of NO as a compensatory vasodilatory mechanism to mitigate the resulting increase in blood pressure.
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HSD can disrupt the balance of immune cells, promoting the induction of pro-inflammatory cells (such as helper 
Th17 cells and M1-like macrophages), while impairing the function of anti-inflammatory cells (such as M2-like 
macrophages and Tregs).6,50,65 Current research indicates that high salt intake activates a pro-inflammatory Th17 
phenotype in CD4+ T cells and polarizes anti-inflammatory CD4+FOXP3+Tregs towards an inflammatory Th1 
phenotype.13,89 This polarization is accompanied by the secretion of pro-inflammatory cytokine IFN-γ,13,90,91 induction 
of M1,92 and exertion of anti-tumor effects. Figure 3(a) shows an anti-tumor effect of HSD in the early stages of tumors. 
Myeloid-derived suppressor cells (MDSCs) play a pivotal role in tumor-induced immune tolerance.93,94 Upon entering 
the tumor environment, M-MDSCs rapidly differentiate into tumor-associated macrophages (TAMs), leading to increased 
IL-10 secretion and impaired T-cell responses.95,96 HSD may inhibit the production of Treg cells through the function of 
MDSC, thus activating anti-tumor immune surveillance and inhibiting tumor growth in mice.97

The effect of high salt on tumors may change with different stages of tumor growth. Salt exerts anti-tumor effects by 
activating the immune system leading to tumor elimination in the early stages, and then antagonizes these effects and has 
pro-tumor effects through immune exhaustion in the later stages.98 During the initial stages of tumor growth, salt 
promotes tumor elimination through immune surveillance, whereas continued high-salt treatment can lead to the failure 
of CD4+ T cells.99 Long-term in vitro treatment of human monocytes with high salt has resulted in M2 macrophage 
phenotypic switching, which is both anti-inflammatory and pro-tumor.100 Long-term HSD may inhibit the formation of 
MDSCs in the tumor microenvironment, and when MDSCs are depleted, HSD plays a pro-tumor role.101

Tumor neo-angiogenesis is essential for tumor metastasis. VEGF induces tumor angiogenesis through activation of 
cancer-specific PI3K/Akt signaling mechanisms.102 Inflammation-induced cellular stress induces the release of several 
growth factors, which induce neointima formation in tumors. Cancer cells metastasize to various parts of the body 
through these newly- formed blood vessels.84 It has been shown that high salt induces an anti-inflammatory M2 
phenotype in the tumor microenvironment,100 M2 phenotype secretes pro-tumor IL-10 and VEGF.84 In addition, high 
salt synergistically induces cancer cell proliferation, and RNS/ROS release and promotes angiogenic VEGF secretion 
with IL-17,103,104 enhancing cancer cell metastasis.105 Figure 3(b) shows the pro-tumor effects of HSD-induced 
immunomodulation in the tumor microenvironment.

Influences of HSD on Immunity Toward Inflammatory Bowel Diseases
IBD is a chronic, recurrent disorder that typically presents with ulcerative colitis (UC) and Crohn’s disease (CD).106 IBD 
is a high-risk factor for colorectal cancer and a serious threat to human health worldwide. Although its etiology is 
currently unknown, the findings of available studies suggest that IBD is a complex process involving genetics, 
environment, and immunity.107–110 The results showed that HSD could exacerbate DSS and TNBS-induced colitis, 
leading to increased mortality in mice.111,112

Innate and adaptive immune cells play different roles in the pathogenesis of IBD. A large number of studies have 
shown that Th17, Th1, Tregs, and macrophages play an important role in the pathogenesis of IBD. For example, the 
number of Th17 cells in the lamina propria (LP) of the mucosa in colitis patients is significantly increased, resulting in 
IL-17, which causes mucosal damage and enhances disease activity.113,114 Th1 polarization is associated with colon 
inflammation by inducing the production of IFN-γ and TNF-α, while different tendencies to develop colitis are associated 
with an inherent tendency of the immune system to produce Th1 or Th17/Treg responses.115 Tregs are very important 
Tregs, highly expressing IL-10 in IBD and inhibiting inflammation.116 In colitis patients, macrophages in the intestinal 
mucosa secrete cytokines TNF-α, IL-1, and IL-6.117 Intestinal macrophages are the main population of APCS in the 
intestinal mucosa, and they determine the type of response of T cells to luminal antigens.118 Excess salt leads to 
monocyte- and T-cell-driven inflammation, as well as parallel loss of immunoregulatory mechanisms involving the Th17 
axis, M2 macrophages, and Tregs.119

Sodium chloride mediates the inflammatory effects of immune cells, which is very important for IBD. In one study, 
high salt content induced pro-inflammatory factor production by enhancing the signaling pathways of LPS-induced 
macrophage activation p38 and ERK1.53 High NaCl pro-inflammatory factors in LPS and IFN-γ-activated laminar 
propria monocytes (LPMCs) rely on upregulation of the p38 mitogen-activated protein kinase (p38/MAPK) axis, and 
inhibition of p38/MAPK can effectively inhibit the production of inflammatory mediators.120 HSD activates Th17 cells 
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in vitro and in vivo by activating the p38/MAPK/NFAT 5 pathway and the SGK1 pathway of T cells.12 In one study, 
exposing human LPMCs to high concentrations of NaCl enhanced TNF-α and IL17A release in a p38-dependent manner, 
and feeding mice a salt-rich diet exacerbated experimental colitis.121 In addition, high NaCl enhances the expression of 
M1 proinflammatory gene in LPS-activated peritoneal macrophages, and colitis caused by high NaCl level may be the 
result of polarization of M1 macrophages. Therefore, HSD may enhance LPS and IFN-γ through activation, enhance M1 
macrophage polarization, upregulate the p38/MAPK axis, and induce the production of pro-inflammatory factors, thereby 

Figure 3 Influences of HSD on immunity toward cancer. (a) HSD exerts anti-tumor effects in the early stages of tumors: In the early stages of tumors, HSD activates CD4+ 
T cells to promote the pro-inflammatory Th17 phenotype and leads to the polarization of anti-inflammatory Tregs into an inflammatory Th1 phenotype. This results in the 
secretion of inflammatory cytokines such as IFN-γ, inducing the expression of pro-inflammatory M1 macrophages, and exerting an anti-tumor effect; (b) Protumor effects of 
HSD-mediated immunomodulation in the tumor microenvironment: In the later stages of tumor progression, HSD promotes the differentiation of macrophages into the M2 
phenotype and induces the pro-inflammatory Th17 phenotype. This leads to increased secretion of pro-angiogenic VEGF, resulting in enhanced tumorigenicity and 
metastasis.
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aggravating colitis. In addition, in mouse DCs, excess sodium increases IL-1β production, which promotes the production 
of pro-inflammatory cytokines such as IL-17A and IFN-γ by T cells.119 Therefore, HSD-induced colitis is associated with 
the promotion of NaCl-promoting M1 macrophage polarization and IL-1β production in DCs, which in turn promotes 
Th17 polarization and the production of pro-inflammatory factors. Figure 4 shows the mechanism by which HSD 
mediates inflammation in IBD by inducing immune disorders.

Empirical evidence supports the notion that the consumption of HSD exerts a stimulatory effect on the Th17 immune 
response via the activation of caspase-1 in macrophages.112,122 Th17 cells are present in the entire LP of the intestine,123 

and emerging evidence suggests that Th17 cells and related molecules play a critical role in the pathogenesis of 
IBD.114,124,125 Existing research indicates that HSD promotes the activation of Th17 cells in the LP and exacerbates 
experimental colitis in mice.112,121 The upregulation of IL-17A and IL-17F has been implicated in the development of 
IBD.112,114,121,124,125 In animal models, knockout of the IL-17 receptor gene in mice prevents the development of IBD.124 

The orphan nuclear receptor (RORγt) is a key transcription factor that drives the development of CD4+ T cells to Th17 
cells,123,126 and we found that HSD significantly increased the expression of RORγt in SILP CD4+TCRβ+ cells. RORγt 
has been reported to control the production of IL-17A and IL-17F, thereby regulating the pathogenicity of mouse models 
of IBD.112,114 As immunosuppressive cells, Tregs secrete a variety of cytokines, including anti-inflammatory factors 
represented by TGF-β and IL-10, which are crucial in maintaining intestinal homeostasis.127 Studies have shown that 
HSD significantly inhibits IL-10 secretion and inhibitory function of Treg cells.68,112 In β7-deficient mice treated with 
DSS, colonic Tregs are depleted, and the upregulation of ICAM-1 between colonic epithelial cells leads to excessive 
infiltration of macrophages in the colon, which promotes the expression of pro-inflammatory cytokines and aggravates 
DSS-induced colitis.128 Disruption of balance may allow T cells to proliferate in an increased manner, thereby 
contributing to the development of chronic intestinal inflammation,129 and HSD may increase the risk of IBD by 
impairing the intestinal Th17/Treg balance.

Figure 4 Influences of HSD on immunity toward IBD: HSD promotes the polarization of macrophages into the M1 phenotype and induces the production of IL-1β in DCs, 
thereby promoting the polarization of Th17 cells and the secretion of pro-inflammatory cytokines IL-17A and IL-17F, leading to the development of IBD.
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In a cross-sectional study examining dietary intake patterns among 67 patients with remission-ending CD, it was 
observed that salt intake exceeded recommended levels in all study cohorts. Notably, both male and female individuals 
with Crohn’s disease exhibited higher salt consumption compared to their respective control groups.130 However, in 
a comprehensive women’s health study investigating dietary habits and lifestyles, there was no clear evidence supporting 
a causal link between dietary salt intake and the occurrence of CD events.131 Consequently, further human-based research 
endeavors are imperative to gain a more comprehensive understanding of the potential role of HSD in IBD.

Influences of HSD on Immunity Toward Autoimmune Disease
Autoimmune diseases, such as multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and 
IBD, showcase a strong association with HSD-induced immune dysregulation. In our earlier discussion, we elucidated the 
intricate mechanisms linking HSD-mediated immune disturbances with the pathogenesis of IBD. Moving forward, we aim to 
delve into the precise mechanisms through which HSD influences immunity in the context of multiple sclerosis, SLE, and RA.

MS is a chronic, inflammatory, autoimmune disease of the central nervous system (CNS)132 characterized by the 
destruction of myelin sheath by autoreactive T cells and axons crossing the blood-brain barrier (BBB).133,134 It is a disease 
that currently has no cure and causes motor, sensory, and cognitive deficits. In genetically predisposed individuals, environ-
mental factors play an important role in the pathogenesis of MS.135 High intake of sodium chloride is currently considered 
a potentially important factor in the onset of MS. EAE is one of the most commonly used animal models for MS, and it can be 
induced by active immunity of myelin peptides or passive transfer of myelin-responsive T cells.136 More recently, in 
experimental autoimmune myelitis models (EAEs), increased NaCl intake has been shown to promote the development of 
Th 17 cells via the MAPK/P38 pathway12 or by altering MAPK signaling in macrophages, promoting pro-inflammatory 
macrophage polarization, and exacerbating CNS autoimmunity.137 In mouse studies, HSD altered the development of 
different cytokine-producing T-helper cell types, and HSD-aggravated EAE mice showed enhanced peripheral-induced 
pathogenic Th17 cell infiltration in CNS.12,35 Sodium intake enhances the polarization of naive Th17 cells to pathogenic 
Th 17 cells lymphocytes by activating the p38/MAPK and SGK1 signaling pathways and drives the development of multiple 
sclerosis-like pathologies.35,138 Studies have shown that excessive dietary sodium intake can induce an increase in the 
frequency of pro-inflammatory Th17 and Th1, as well as impaired function of Treg cells to affect autoimmunity.139 It is 
generally believed that the autoimmune basis of MS stems from an imbalance between pro-inflammatory Th 1 and Th 17 cells 
and anti-inflammatory Tregs.140 The role of the gut microbiota in this process was highlighted in one study, supplementing 
Lactobacillus murine to blunt salt-induced pathogenic Th17 cells and improving EAE deterioration.65 DCs are specialized 
APCS that present antigens to T cells and initiate adaptive immunity.141,142 However, in autoimmune neuroinflammation, 
evidence suggests that the effects of high salt on T cells are applied directly, rather than mediated by DCs.143 This suggests that 
different immune cell subtypes respond differently to NaCl and that the production of a salt-induced pro-inflammatory 
environment involves a specific effect on immune cells rather than nonspecific activation of all lymphocytes and APCs.

Data from humans suggest that the effects of high salt on MS are controversial. One cohort study reported that high 
salt intake was associated with increased disease activity in MS.144 Conversely, four other human studies found no 
association between HSD and MS progression.145–147 In a randomized cross-intervention study on the effect of altering 
salt intake with human cytokines, high salt intake (or dietary changes) did not induce significant changes in any 
characteristic cytokines that controlled Th1, Th2, or Th17 polarization, nor were several other pro-inflammatory 
interleukins, chemokines, and growth factors affected by high salt intake, suggesting that clinically relevant changes in 
salt intake in humans do not reflect systemic concentrations of pro-inflammatory cytokines in the body.148 In addition, 
a case-control study of MSin children and salt intake showed no strong association between dietary salt intake and the 
risk of developing MS in children, and salt intake may not play a significant role in susceptibility to MS among 
children.146 Reasons for inconsistencies in clinical studies and studies using mouse models may include true species- 
specific differences in electrolyte metabolism and immune cell activation. In addition, the salt load used in mouse models 
and human HSDs is also significantly different, requiring high salt concentrations and exogenous Th-polarizing cytokines 
when human lymphocytes are polarized to the Th17 direction in a salt-absorbable manner in vitro.13

SLE is an autoimmune connective tissue disease characterized by increased production of various autoantibodies against 
autoantigens, mainly affecting women of childbearing age,149–151 involving multiple systems. Lupus nephritis is one of the most 
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serious organ manifestations of SLE. The data showed that HSD accelerated lupus progression and increased mortality in MRL/ 
LPR mice (mouse models of SLE).152,153 The proportion of Th17/Treg is significantly increased in MRL/LPR mice fed HSD,153 

and a higher proportion of Tfh cells is observed in the spleen. High NaCl promotes autoimmunity through Tet2-induced DNA 
demethylation and differentiation of Tfh (follicular T helper cell) cells, thereby accelerating the development of SLE in 
experimental MRL/LPR mouse models152 and demonstrating the key role of Tfh cells in autoantibody production and lupus 
pathogenesis.154–158 In the lupus model, excess salt did not increase the number of DCs but significantly promoted the activation 
and maturation of DCs, increased antigen presentation of DCs, and the production of pro-inflammatory cytokines.159 This 
enhancement of differentiation of various Th cell subsets, including Tfh cells, is subsequently achieved by modified DCs.159 

Furthermore, cells cultivated in high salt concentrations exhibited higher expression levels of the p38 gene.12 The downstream 
target of the p38 gene is the nuclear factor that activates T cells, which triggers the production of IL-17.160 IL-17 further enhances 
the production of pro-inflammatory mediators. According to studies, the intake of HSD speeds up the development of SLE by 
promoting immune activation in DCs via the p38/MAPK-STAT1 signaling pathway.159

RA is a chronic inflammatory joint disease that can lead to cartilage, bone damage, and disability.161 Collagen-induced 
arthritis (CIA) and K/BxN serotransfer-induced arthritis (STIA) are mouse models of RA. CIA relies on both adaptive and 
innate immunity, while STIA mainly mimics the innate effector phase.162 CIA mice fed HSD showed more severe arthritis, 
a higher proportion of Th17 cells in spleen cells, and increased IL-17 expression in the synovial membrane and intestine.163 

A study recruiting patients with RA and SLE showed that limiting dietary salt intake suppressed the pro-inflammatory 
response in patients with autoimmune diseases.164 Figure 5 shows the mechanism by which HSD induces immune disorders to 
produce autoimmune diseases.

Figure 5 Influences of HSD on immunity toward autoimmune diseases: HSD promotes the polarization of macrophages into the M1 phenotype and enhances the 
polarization of naive T helper cells towards pathogenic Th17 cells through the activation of the p38/MAPK/NFAT5 and SGK1 signaling pathways. This results in the 
production of pro-inflammatory cytokine IL-17, leading to the development of autoimmune diseases.
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Influences of HSD on Immunity Toward Other Diseases
HSD disrupts immune homeostasis, provoking a pro-inflammatory milieu that underlies the pathogenesis of multiple 
diseases. In murine models, HSD not only facilitates the expansion of bone-derived Th17 cells but also impedes the 
development of anti-bone-derived Treg cells. These perturbations in the host immune system perturb the delicate 
equilibrium between Treg and Th17 cell populations, consequently exacerbating bone loss and compromising bone 
microstructure integrity,91 amplifying the risk of osteoporosis. In addition, HSD has been shown to inhibit the production 
of cerebral endothelial NO by inducing the synthesis of IL-17, the primary effector cytokine secreted by intestinal Th 17 
cells. This effect results in cerebral hypoperfusion, neurovascular imbalance, and cognitive impairment in mice.165 

Furthermore, HSD can exacerbate ischemic stroke by reducing the expression of phagocytosis molecules expressed on 
triggering receptor expressed on myeloid cells 2a (TREM2) and inducing a pro-inflammatory phenotype in macrophages, 
leading to the delayed recovery of stroke lesions.166 Additionally, HSD can worsen liver fibrosis by activating 
enterococcus-dependent macrophages, which can impair intestinal barrier function.167 Studies have also shown that 
HSD can exacerbate food allergy in mice168 and may be involved in the progression of atopic dermatitis by regulating the 
Th 2 response through sodium.169 Therefore, it is crucial to further investigate the effects of HSD on various diseases and 
their underlying mechanisms to develop effective prevention and treatment strategies.

Discussion
This article highlights the potential role of HSD in triggering immune disorders that lead to various chronic diseases. The 
regulation of immune cell differentiation, activation, and function, induced by HSD, can ultimately contribute to the 
development of immune-mediated diseases like IBD, kidney disease, hypertension, cancer, and autoimmune diseases. 
This comprehensive review explores the intricate mechanisms underlying the impact of HSD on innate immune cells. It 
highlights the pivotal role of HSD in promoting macrophage differentiation and dendritic cell activation, enhancing their 
functionality as APCS. Furthermore, HSD exerts profound effects on T cells, driving their proliferation through antigen- 
MHC receptor interactions and influencing their differentiation towards Th17 cells. Concomitantly, HSD compromises 
the regulatory function of Treg cells, destabilizing immune homeostasis. This dysregulation is further accentuated by the 
upregulation of pro-inflammatory factors, including IL-17, and the concomitant decrease in anti-inflammatory factors 
such as IL-10. These intricate cellular and molecular processes collectively contribute to the altered disease development 
observed in response to HSD. Figures 2–5 elucidates the intricate interplay between HSD-mediated regulation of SGK1, 
NFAT5/TONEBP, and p38/MAPK signaling pathways, their impact on T cell differentiation, the delicate balance 
between Th17 and Treg cells, as well as the consequential release of pro-inflammatory and anti-inflammatory factors. 
The elucidated relationships provide valuable insights into the mechanistic underpinnings that drive the development and 
progression of various diseases.

Recent studies have highlighted the crucial role of the gut and gut microbiota in the adverse effects of high-salt conditions 
on immune cells.170 Further investigation into the microbiome’s involvement in salt-induced colitis exacerbation in a mouse 
model of IBD has revealed a decline in lactobacilli and butyrate, a potent anti-inflammatory agent, and an aggravation of 
colitis in mice fed an HSD.4 Interestingly, this effect was absent in germ-free mice,4 indicating the involvement of gut 
microbiota in the exacerbation of colitis. Additionally, HSD-induced reduction in lactobacilli has been shown to induce the 
production of Th 17 cells, leading to hypertension in mice and humans.65 Therefore, future research should focus on exploring 
the mechanisms underlying the gut microbiota’s response to high-salt conditions and its impact on immune function and 
disease pathogenesis. Such studies are essential in developing novel therapeutic strategies aimed at modulating the gut 
microbiota to prevent or treat salt-induced immune dysfunction and associated diseases.

While animal experiments suggest that HSD can lead to immune-mediated diseases, it is important to note that the 
impact of salt on immune cells may not always be pathogenic.171 The effects of HSD on humans are complex and 
variable, depending on the cellular environment in local tissues and the types and stages of diseases. Salt has an anti- 
tumor effect by activating the immune system in the initial stage of tumors, while it exerts antagonistic and pro-tumor 
effects through immune exhaustion in the later stages.98 Moreover, increased mesenchymal salt concentrations at the site 
of skin infection have been shown to enhance the bactericidal response of macrophages through NFAT5-dependent 
mechanisms, thereby promoting host defenses.50 Thus, it is crucial to call for further high-quality research to investigate 
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the effects of HSD on immune cells and to determine the full range of its impact on human health. Future studies may 
focus on exploring the molecular pathways underlying the effects of HSD on gut microbes and their metabolites and 
investigating the development of effective interventions to prevent or treat immune-mediated diseases caused by HSD.

Conclusion
A high-salt diet is an environmental trigger for immune-mediated diseases that can increase tissue sodium concentrations, 
affect immune responses in the microenvironment, regulate the differentiation, activation and function of a wide range of 
immune cells, and thus influence the development of immune-regulatory disorders, including kidney disease, hyperten-
sion, cancer, inflammatory bowel disease, and some autoimmune diseases. The underlying mechanism may be related to 
gut microbes and their metabolites.
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