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Abstract: Sepsis is defined as life-threatening organ injury induced by infection, with high incidence and mortality. Sleep disorder is prevalent 
in septic patients and approximately 50% of patients with sepsis may develop atypical sleep patterns, but many of them may have been 
underdiagnosed by physicians. Sleep disorders and sepsis exhibit a close bidirectional relationship, with each condition significantly 
influencing the other. Conversely, sleep deprivation, sleep dysrhythmia and sleep fragmentation have been shown to impact the outcome of 
sepsis. This review endeavors to offer a comprehensive understanding of the intricate mechanisms that underpin the interplay between sepsis 
and sleep disorders, in addition to exploring potential clinical intervention strategies that could enhance outcomes for patients suffering from 
sepsis. 
Keywords: sepsis, sleep disorders, cytokines, clock genes, sepsis associated encephalopathy

Introduction
Sepsis, a syndrome characterized by deregulated immune responses to infection leading to multiorgan dysfunction, is 
a leading cause of mortality associated with infections.1 It poses a significant global public health challenge, affecting 
millions of individuals worldwide and ranking as one of the primary causes of death.2 More and more studies have 
indicated that sleep quality is severely impaired in septic patients and sleep disorder may worsen the outcome of septic 
patients. Approximately 20% of the working population suffers from sleep disturbances, with the incidence escalating to 
over 50% in critically ill patients.3 It was estimated that sepsis may double the risk of insomnia in septic patients,4 and 
a PSG study revealed that approximately 50% of patients with sepsis exhibited atypical sleep patterns.5

In the past three decades, the intricate relationship between the immune system and the central nervous system (CNS) 
has been established and characterized.6–8 Sleep deprivation has been reported to compromise immune function by 
suppressing natural killer cell activity and cellular immune responses, thereby facilitating bacterial invasion and reducing 
immune reactivity.9–11 Thus, sleep disorder is associated with poorer prognosis in septic patients and may serve as an 
important therapeutic target. Therefore, this review aims to comprehensively discuss the interaction of sepsis and sleep 
and the potential mechanisms (Figure 1).

Physiological Function and Regulation of Normal Sleep
Normal sleep comprises two primary phases: nonrapid eye movement (NREM) and rapid eye movement (REM), which 
alternate approximately every 90 minutes.12 Sleep exhibits a homeostatic nature, where deprivation over an extended 
period leads to an increase in both the duration and intensity of subsequent sleep sessions. Additionally, independent of 
prior wakefulness, the circadian system regulates the timing of sleep, representing a separate regulatory mechanism.13,14 

This circadian process ensures uninterrupted sleep during the primary hours of the night.15 Physiological and cellular 
processes operate in a cyclic manner, adhering to a 24-hour rhythm that is driven by an endogenous mechanism known as 
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the circadian rhythm. This rhythm underlies the life cycle of virtually all organisms.16 The mammalian circadian system 
comprises a hierarchical network of multiple oscillators designed to synchronize internal rhythms with external cycles.17

Almost every cell in the human body exhibits a circadian rhythm, with clocks within tissues and organs operating in 
synchrony.18 The dual-process model of sleep regulation, underpinned by adenosine levels and governed by the hypothalamic 
suprachiasmatic nuclei (SCN), identifies homeostasis and circadian rhythm as two pivotal factors. The SCN plays a crucial 
role in regulating several neurotransmitter systems, including the HPA axis and melatonin secretion from the pineal 
gland.19,20 For instance, melatonin synthesis is triggered by β-adrenergic stimulation of pineal cells, which peaks during 
sleep and wanes during wakefulness, thereby communicating nocturnal cues to the body. These processes ebb and flow in 
cyclic patterns, with peaks occurring approximately every 24 hours. The circadian system is responsible for regulating a wide 
range of vital physiological functions throughout the body, such as brain arousal, sympathetic tone, cardiovascular function, 
coagulation, immune cell activity, glucose control, and metabolism.21–23 Circadian rhythms are inherent biological oscilla-
tions that can adapt to periodic environmental changes.24 A robust circadian rhythm primes the body to meet increased energy 
demands or stress, thereby enhancing the functionality of individual cells, organ systems, and even the entire organism.20,25,26

Substantial evidence indicates that interleukin-1 and TNF are implicated in the modulation of spontaneous NREM 
sleep.27,28 For example, interleukin-1 directly alters the firing patterns of neurons in the hypothalamus and brainstem, 
regions that are known to play a role in regulating sleep-wake cycles.29
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Effect of Sepsis on Sleep Quality
Manifestation of Sleep Disorders in Patients with Sepsis
Sepsis may induce acute alterations in sleep, including dysregulated REM-NREM sleep cycle and fragmented sleep. 
Studies in septic animals have shown that sepsis increases the duration of NREM sleep during the active phase (dark 
phase) but not during the inactive phase (light phase). Moreover, REM sleep is suppressed for a significant period after 
sepsis induction, indicating a disruption in the normal REM-NREM sleep cycle.30 Lipopolysaccharide (LPS) is 
a common mediator of sepsis induced by Gram-negative bacteria, it may disrupt the normal brain oscillatory activity 
regulating REM and NREM sleep state.31 In human patients, sepsis can also induce changes in electroencephalogram 
(EEG) rhythms, characterized by low-pressure mixed-frequency waves with intermittent theta and delta waveform 

Figure 1 The schematic diagram illustrates the relationship between sleep disorders in sepsis patients and various factors that influence sleep quality. These factors lead to 
alterations in the state of sleep, which subsequently impact inflammation and immune status and ultimately result in clinical changes. Created with Biorender.com.
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activity.32,33 Fragmented sleep induced by sepsis was characterized by discontinuous sleep periods that are fragmented by 
frequent awakenings31 and increased times of transitions from one behavioral state to another.30 It has emerged as 
a crucial factor in the manifestation of neurological symptoms in acute systemic inflammation and post-sepsis 
syndrome.34 There are numerous clinical studies evaluating the sleep status of septic patients and supporting that sleep 
was severely disordered in sepsis (Table 1).

Factors Contributing to Sepsis-Induced Sleep Disturbance
Hypothalamic Suprachiasmatic Nuclei
Neural inflammation during sepsis may impair the light responsiveness of hypothalamic suprachiasmatic nuclei (SCN), 
which serves as the primary circadian pacemaker. Palomba et al demonstrated that weekly administration of LPS 
impaired the light responsiveness of the SCN, as measured through c-FOS induction.38 Furthermore, LPS showed an 
acute and long-lasting effect in SCN region. Acutely, 24 hours after LPS treatment there is a marked upregulation of SCN 
EGR-1, and an upregulation of F4/80+ microglia with activated morphology. The activation in SCN regions could 
persisted for a long period since the SCN harvested 3 month after LPS stimulation showed a persistent upregulation of 
the microglial markers CD-11b and F4/80, indicating that the SCN responds to peripheral inflammation and stimuli and 
induce sleep disorders during sepsis.39

Clock Genes
At the molecular level, there is a profound correlation between disturbances in clock genes and immune alterations.16 

During sepsis, the expression patterns of clock genes and the broader transcriptome become aberrant.40 Diaz et al 
conducted a study on the circadian rhythms of 11 patients in a neurointensive care unit and observed that after one week, 
the circadian rhythm of the clock gene CLOCK was disrupted.41 Furthermore, research has extracted blood from patients 

Table 1 Overview of Clinical Studies on the Impact of Sepsis on Sleep

Study Design Subjects Assessment tool Result

In-Ae Song 202134 Retrospectively 

data analyses

45,826 survivors of 

sepsis

ICD-10 codes of G47* 

(G47.0: primary 

insomnia, and G47.1–9) 
in the NHIS database

2935 (6.4%) were newly diagnosed with 

a sleep disorder within 1 year after the 

date of sepsis diagnosis.

Cynthia Y Huang 201935 Prospective, 

observational 
online 

international 

survey

827 survivors of sepsis 

within the last year from 
41 countries

Likert Scale 7 days before survey: Survivors reported 

anxiety, depression, fatigue, sleep issues 
ranging from ‘never’ to ‘always’.

Kimberly R. Boer 200836 Prospective 

cohort

107 abdominal sepsis 

patients

IES-R, PTSS-10, BDI-II Up to 38% of abdominal sepsis patients 

show PTSD symptoms, possibly linked to 

sleep issues.
Matthew B Maas 202037 Prospective 

cohort

112 critically ill patients 

(53 with sepsis and 59 

with ICH)

wrist actigraphy, 

melatonin profile

Critically ill patients rapidly enter a state of 

behavioral quiescence proportionate to 

their illness severity with concomitant 
disturbance of rest-activity rhythms within 

the circadian.

Y Boyko 2018 Descriptive 
study

16 patients with severe 
sepsis

PSG Half of the patients in the severe sepsis 
group had atypical sleep.

N S Freedman 200132 Cross-sectional 

study

22 patients were in the 

ICU for primarily 
medical problems (5 

patients with sepsis)

PSG All 22 patients demonstrated sleep-wake 

cycle abnormalities.

Abbreviations: NHIS, National Health Insurance Service; ICU, intensive care unit; PSG, polysomnography; PSQI, Pittsburgh Sleep Quality Index; IES-R=Impact of Events 
Scale–Revised; PTSS-10=the Post-Traumatic Symptom Scale 10, BDI-II=Beck Depression Inventory II.
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with sepsis and isolated CD14-positive cells, finding that the rhythmic expression of positive regulators, such as CLOCK 
and ARNTL, is weakest in septic patients, whereas the rhythmic expression of negative regulators, including NR1D1, 
NR1D2, and CRY2, is most pronounced. Additionally, compared to healthy individuals, patients with septic shock 
exhibit suppressed expression of the clock genes CRY1, NR1D1, NR1D2, DBP, and PER2, while CRY2 expression is 
significantly upregulated.42

Melatonin
Melatonin, a hormone predominantly produced by the pineal gland, plays a pivotal role in regulating the sleep-wake 
cycle.43 However, growing evidence indicates that the circadian rhythm of melatonin secretion is disrupted during severe 
sepsis.44–47 Numerous studies have demonstrated that septic patients often exhibit aberrations in melatonin production 
and other circadian rhythm biomarkers, ranging from decreased amplitude to complete abolition of rhythm.48 

Additionally, research points to the severity of brain disorders and exposure to adrenergic agonist medications as 
significant factors contributing to disturbances in the melatonin rhythm.49

Inflammation
Animal studies have revealed that inflammatory cytokines potentially play a role in regulating sleep disturbances during 
sepsis. Notably, TNF-α and various proinflammatory cytokines, including IL-1, TNF, IFN-γ, IL-2, IL-6, and IL-15, are 
recognized for their ability to promote NREM sleep, whereas anti-inflammatory cytokines tend to have the opposite 
effect, suppressing NREM sleep.29,50–55 Furthermore, numerous studies have demonstrated that the upregulation of 
proinflammatory mediators by LPS can also influence the expression of clock genes.56–59 These findings highlight the 
intricate interplay between immune responses, inflammation, and circadian rhythms in sepsis-induced sleep disturbances.

ICU Environment
ICU patients frequently suffer from sleep deprivation, which is primarily attributed to environmental factors such as 
excessive noise and continuous lighting. Moreover, augmented patient care activities and invasive monitoring techniques 
contribute significantly to sleep disruption.60 Research has demonstrated that ICU patients experience severe sleep 
fragmentation, manifesting as a heightened arousal index, shortened sleep duration, and a reduced proportion of slow- 
wave sleep.61 Notably, patients with sepsis or those requiring mechanical ventilation in medical ICUs often exhibit 
minimal or no REM sleep, particularly within the first 1–2 postoperative days, potentially linked to the administration of 
high-dose opioids.62 However, there are also some contrary findings, which suggest that ICU conditions, such as 
prolonged exposure to high light levels, do not necessarily disrupt the circadian rhythms of septic patients, as nonseptic 
ICU patients display normal rhythmic expression of clock genes.63

The Impact of Sleep Disorders on the Outcome of Sepsis
Systemic Effects of Sleep Disorders in Humans
Sleep abnormalities can potentially trigger systemic disturbances via inflammatory and immunological alterations, 
oxidative stress, and changes in glucocorticoid levels. Following sleep deprivation, patients with sepsis often exhibit 
shorter latencies to the onset of fever, more severe febrile reactions, and prolonged recovery periods for physiological 
functions.64 A large number of studies have established a significant association between habitually shortened sleep 
duration and a range of adverse health outcomes, including obesity, diabetes mellitus, cardiovascular disease, neurop-
sychiatric symptoms, and pain. Furthermore, population-based studies have indicated an elevated risk of mortality among 
individuals with shortened sleep durations.65,66

The release of growth hormone, prolactin, melatonin, and leptin triggers the activation, proliferation, differentiation, 
and production of proinflammatory cytokines in immune cells. This synergistic action significantly potentiates the 
immune system’s response. Notably, in both humans and animals, peaks in the levels of proinflammatory factors and 
Th1 cytokines are observed during the early slow-wave sleep (SWS) phase, which dominates during certain stages of 
sleep across various tissues.67 Studies have also revealed the impact of alterations in signalling molecules, including 
melatonin, ROS, cortisol, epinephrine, norepinephrine, growth hormone, metabolites resulting from changes in the 
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intestinal microbiota, and adipokines derived from adipose tissue, all of which are associated with sleep, on immune cell 
function.68

Effect of Sleep Disorders on Encephalopathy in Sepsis
The brain serves as a pivotal mediator of the immune response and a prime target for pathophysiological processes in 
sepsis.69 Sepsis-associated encephalopathy (SAE), a diffuse brain dysfunction that occurs secondary to infection in the 
body without overt CNS infection,70 has been well recognized by physicians as one of the first organs affected by sepsis 
with clinical manifestations,71 and changes in mental status have been identified as a key indicator in three sepsis 
screening programs.72 Clinically, SAE is characterized by attention deficits, decreased concentration, and impairments in 
learning and memory.73 Systemic inflammatory processes can lead to blood‒brain barrier (BBB) dysfunction, enabling 
the infiltration of proinflammatory mediators into the CNS and subsequent inflammation throughout the brain. These 
pathophysiological alterations, including neuroinflammation, vascular changes, and tissue lesions due to metabolic 
failure, are observed in both animal models and humans.71

Chronic sleep deprivation has been linked to the promotion of neuroinflammation, synaptic loss, mood disorders, and 
cognitive impairments in various neurodegenerative and neurobehavioral diseases,74–77 similar to SAE. Sleep disorders 
may also contribute to the development of SAE. Sepsis is associated with several metabolic changes in the brain, such as 
ATP depletion, increased ROS production, and antioxidant consumption.78,79 As an important regulator of sleep, 
melatonin has been reported to increase the antioxidant activity of antioxidant enzymes by activating NRF2 and 
upregulating sirtuins, which have neuroprotective effects.80–82 Disruption of the BBB is among the primary etiologies 
of SAE. Wang et al83 showed that pretreatment with melatonin preserved the integrity of the BBB in mice with sepsis 
induced by LPS. Zhao et al84 reported that melatonin treatment in septic animals reduced the brain concentrations of 
proinflammatory cytokines, such as TNF-α and IL-1β. However, since melatonin is an antioxidant, whether it improves 
the prognosis of sepsis patients by regulating sleep quality remains unclear.

Effects of Sleep Disorders on Inflammatory and Immune Responses in Sepsis
Multiple studies have demonstrated an interactive relationship between sleep disorders and inflammatory or immunolo-
gical responses.68,74,85 Diseases characterized by an inflammatory component exhibit diurnal variations in their severity, 
with the circadian rhythm playing a pivotal role in modulating immune responses at various levels.86 Rats subjected to 
total sleep deprivation (TSD) exhibit compromised defenses against bacterial invasion. This leads to infection at critical 
levels, resulting in sepsis, hypothermia, and ultimately death. Notably, during the early stages of infection, rats are not 
susceptible to aerobic bacteria; thus, antibiotics cannot prevent the initial adverse effects of TSD. However, restoring 
sleep has been shown to reverse the deleterious effects of TSD.87 This reversal is attributed to the fact that sleep disorders 
lead to a decrease in the production of inflammatory and immunological factors, highlighting the intricate connection 
between sleep and immune function.

Multiple cytokines are involved in sleep deprivation-related systemic inflammation.88,89 In sleep-deprived mice, the 
expression of most proinflammatory regulators was significantly elevated, with IL-6 and IL-17A being the most notable 
Both cytokines have the potential to induce cytokine storms. Additionally, the levels of the proinflammatory chemokines 
CXCL1 and CXCL2 were markedly increased. These molecules are crucial for facilitating neutrophil recruitment and 
extravasation.90 Furthermore, the serum levels of chemokine (C-C motif) ligand 20 (CCL20), which can be upregulated 
by IL-17A,91 are also increased following sleep deprivation (SD). Chronic disruption of the circadian rhythm or long- 
term sleep restriction can increase the plasma expression of IL-6, TNF-α, and CRP.76,85,92,93 Post-septic SD elevates 
plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), reduces IL-10 plasma levels, amplifies 
spleen weight, and exacerbates inflammatory injury in the lungs, liver, and kidneys.94 Furthermore, normal sleep 
following vaccination has been demonstrated to potentiate the natural immune response against invading antigens, 
resulting in a notable increase in the proportion of T cells producing proinflammatory cytokines and Th1 cell factors (IL- 
2, IFN-γ, TNF-α) as a direct consequence of sleep.67 In patients hospitalized with sepsis, those experiencing short-term 
poor sleep quality exhibited significantly lower levels of plasma albumin, atrial natriuretic peptide (ANP), and lympho-
cyte counts, particularly T cells and NK cells, than did those with good sleep quality.95 Disrupted sleep increased the 
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baseline concentrations of inflammatory cytokines in blood, including interleukin-1β, interleukin-6 and tumor necrosis 
factor-α, and decreased interleukin-10. The imbalance between pro-inflammatory markers and anti-inflammatory IL-10 
may promote an excessive inflammatory response to acute sepsis, increasing mortality risk.96–99

Immune cells have also been reported to be affected by sleep disorders. Two consecutive days of SD reduced the 
absolute lymphocyte count (ALC) and the recovery of ALC after 3 days of SD. Additionally, sleep deprivation 
immediately following sepsis led to a decrease in plasma ANP levels within two days. Notably, subsequent analysis 
revealed a positive correlation between plasma ANP levels and the recovery of ALC, as well as between the counts of 
CD3+ T cells and CD3+ CD4+ cells in peripheral blood, on day 5. These findings suggest that short-term disturbances in 
sleep quality may hinder lymphocyte recovery in critically ill patients.95 Disrupted sleep was associated with increased 
circulating monocytes and natural killer (NK) cells. The accumulation of inflammatory monocytes and NK cells may 
induce a hyper-inflammation response, which is associated with an increased risk of acute sepsis and mortality.100 

Interrupted sleep increased circulating T cell levels at night, possibly due to altered lymph node migration of T cells. If 
the timely migration of T cells to lymph nodes is disrupted, it may impair the initiation of adaptive immune responses 
against infection and exacerbate sepsis and mortality in patients.101,102

Moreover, sleep disorders significantly modulate the molecular expression patterns of circadian rhythms, such as 
BMAL1, CLOCK, and REV-ERBα, which play crucial roles in regulating fundamental immune responses. For instance, 
the heterodimer BMAL1:CLOCK modulates TLR9 expression and suppresses the expression of inflammatory cytokines 
such as IL-6 and the monocyte chemoattractant protein CCL2.103 Numerous studies have shown that mice with Clock 
gene knockout exhibit enhanced survival rates after sepsis induction and increased resilience to septic shock.104–109 

Therefore, sleep disruption and inadequate rest can modulate the expression of circadian rhythm genes involved in 
regulating the immune response to infection or stress.

Effect of Sleep Disorders on the Cardiopulmonary Function During Sepsis
It has been suggested that diminished REM sleep may serve as an adaptive response to sepsis-induced stress.110 During 
sleep, the cardiovascular system undergoes significant modifications, including dynamic fluctuations in blood flow and 
electrical activity. These alterations have been associated with life-threatening arrhythmias and ischemic events, 
particularly in patients with preexisting cardiac conditions.25 During the NREM phase, heart rate increases significantly, 
correlating with augmented venous return during inspiration, while a decrease in heart rate is observed during expiration, 
coincident with diminished venous return.111 REM sleep, on the other hand, is marked by heightened cardiopulmonary 
variability and hemoglobin oxygen saturation, which may exacerbate hemodynamic instability in already unstable 
patients.61 The literature on the impact of sleep deprivation on the respiratory system in critically ill patients is scarce. 
However, available evidence suggests that prolonged and continuous sleep disruptions, which are characteristic of ICU 
patients, may have deleterious effects on respiratory function.112–115 This is particularly pertinent in individuals with 
preexisting lung conditions and those facing challenges in weaning from mechanical ventilation. At the molecular level, 
disturbances in normal circadian rhythms have been shown to influence the severity of sepsis-related inflammation, 
trigger inflammatory responses in obstructive lung disease patients, prolong apnea episodes in obstructive sleep apnea 
patients, and increase cancer risk.24

Clinical Studies Investigating the Role of Sleep Intervention in Sepsis
Given the established correlation between sepsis and circadian rhythms, time-based therapeutic approaches have 
garnered increasing attention. ICU patients with sepsis often exhibit alterations in their circadian rhythms and sleep 
patterns, prompting the investigation of phototherapy as a means to modulate these rhythms. Notably, in septic animals, 
exposure to bright blue light has been demonstrated to enhance bacterial clearance, attenuate systemic inflammation, and 
minimize organ damage.116 Melatonin has emerged as a promising natural agent for treating sepsis and its associated 
complications. Due to its antioxidant potential, anti-inflammatory properties, ability to maintain blood-brain barrier 
integrity, and ability to restore mitochondrial homeostasis, melatonin is a potential prophylactic or therapeutic agent for 
sepsis patients.117,118

Nature and Science of Sleep 2024:16                                                                                               https://doi.org/10.2147/NSS.S485920                                                                                                                                                                                                                       

DovePress                                                                                                                       
1671

Dovepress                                                                                                                                                      Guo et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Despite the well-established correlation between sleep and sepsis, clinical trials examining sleep interventions are 
lacking. The intervention measures regulating sleep in septic patients are mainly focused on melatonin treatment, as 
outlined in Table 2. A recent trial demonstrated that the intravenous administration of 60 mg/day of a melatonin 
formulation was beneficial for septic patients. Specifically, it reduced mortality to zero and decreased hospital stays by 
40%.119 Compared to placebo-treated patients, those receiving melatonin showed a decrease in redox status over the five- 
day treatment period. The melatonin group also exhibited improved procalcitonin levels and a significantly reduced 
neutrophil-to-lymphocyte ratio, leading to better disease progression.120 Studies have indicated that the route of 

Table 2 Overview of Clinical Studies Examining the Impact of Melatonin Therapy on Sepsis

References Subjects Intervention Control Design Outcome (melatonin vs 
control)

Mansilla-Rosello 2022120 29 patients with 

severe sepsis

IV melatonin dose of 60  

mg per day for 5 days

IV 

Placebo 

per day

Randomized 

controlled trial

Mortality: 20.0% vs 35.7% (p < 

0.001) 

The SOFA score: reduced in 
melatonin group (p<0.001)

Taher 2022125 40 patients with 

early septic shock

50 mg melatonin per day 

for 5 days

Placebo 

per day

Randomized 

controlled trial

Ventilator-free days: 16.90±9.24 

vs 10.00±10.94 over the 28-day 
(p=0.035) 

The mean reduction in the 

required dose of vasopressor: 6.2 
±5.12 vs 3.20±3.95 (p=0.045) 

Vasopressor-free days: 12.75±7.43 

days vs 10.15±6.12 days (p=0.046)
Gitto 2001126 30 septic infants Melatonin orally in two 

doses of 10 mg each

Blank Randomized 

controlled trial

MDA + 4-HAD: significant 

reduction to the levels in the 

normal controls at both 1 and 
4 h (p < 0.05) 

Mortality: 0 vs 3
Frargy M 2015127 50 infants with 

neonatal sepsis

20 mg melatonin orally for 

3 days

blank Prospective 

clinical trial

Sepsis score: significant 

improvement but difference after 

24 h(p=0.008), 48 h(p=0.006) and 
72 h(p=0.002)

EI-Gendy 2016128 40 neonates with 

neonatal sepsis

20 mg melatonin orally for 

2 days

blank Prospective 

nonrandomized 
nonblind case– 

control study

Clinical condition, hs-CRP, and 

serum parameters: significant 
improvement in intervention 

group than control group

Aisa-Alvarez 2023129 131 patients with 
septic shock

50 mg melatonin per day 
for 5 days

blank Randomized 
clinical trial

The SOFA score decreased: 75% 
vs 33% (p=0.0001) 

melatonin diminished lipid 

peroxidation (LPO) (p = 0.01) and 
improved total antioxidant 

capacity (TAC) (p = 0.04).

Aisa-Alvarez 2020123 97 patients with 
septic shock

50 mg melatonin for 5 
days

No 
treatment

Randomized 
clinical trial

Lipid-peroxidation: reduced 
(p=0.04) 

Procalcitonin levels: reduced 

(p=0.04) 
multiple organ failure (MOF): 

decreased (p=0.007)

Pérez-Torres 2023130 131 patients with 
septic shock

50 mg melatonin for 5 
days

Standard 
therapy

Randomized 
clinical trial

IL-6, IL-8, MCP-1, and IL-10 levels: 
statistically significantly reduced 

The SOFA score: reduction from 

8 to 2 vs remained high
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melatonin administration affects its levels and those of its main metabolite, potentially influencing its therapeutic 
effects.121 These studies demonstrated that melatonin supplementation might be useful in treating sepsis. However, in 
adult patients with sepsis, the efficacy of melatonin is influenced by circadian rhythms, resulting in differential effects.122 

Specifically, melatonin does not exert a significant impact on sepsis-induced inflammation or oxidative damage compared 
to the effects of a placebo on nighttime endotoxemia.123 Conversely, in sepsis induced during the daytime, melatonin was 
reported to significantly reduce the release of proinflammatory markers such as IL-1β.124

Conclusion
Sleep disturbances are frequently observed in patients with sepsis, and accumulating evidence has established 
a bidirectional relationship between sleep and the immune system. Immune activation can disrupt sleep patterns, while 
sleep, in turn, modulates host immunity. However, the molecular mechanisms underlying sleep disruption and circadian 
rhythm disorders in sepsis remain incompletely understood. Although clinical studies directly investigating the impact of 
sleep interventions on sepsis prognosis are limited, multiple trials have demonstrated the beneficial effects of blue light 
and melatonin on sepsis. These findings suggest that sleep regulation may represent a promising therapeutic strategy to 
improve the outcome of sepsis patients.
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