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Abstract: Nanoparticles have proven to be an effective delivery system with few side effects 

for anticancer drugs. In this study, gemcitabine-loaded nanoparticles have been prepared by an 

ionic gelation method using chitosan and Pluronic® F-127 as a carrier. Prepared nanoparticles 

were characterized using dynamic light scattering, Fourier transform infrared spectroscopy 

(FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy, and trans-

mission electron microscopy. Different parameters such as concentration of sodium tripoly-

phosphate, chitosan, Pluronic, and drug on the properties of the prepared nanoparticles were 

evaluated. In vitro drug release was studied in phosphate-buffered saline (PBS; pH = 7.4). 

The cytotoxicity of the nanoparticles was assayed in the HT-29 colon cancer cell line. The 

mucoadhesion behavior of the nanoparticles was also studied by mucus glycoprotein assay. 

The prepared nanoparticles had a spherical shape with positive charge and a mean diameter 

ranging between 80 to 170 nm. FT-IR and DSC studies found that the drug was dispersed in 

its amorphous form due to its potent interaction with nanoparticle matrix. Maximum drug 

encapsulation efficiency was achieved at 0.4 mg/mL gemcitabine while maximum drug load-

ing was 6% obtained from 0.6 mg/mL gemcitabine. An in vitro drug release study at 37°C 

in PBS (pH = 7.4) exhibited a controlled release profile for chitosan–Pluronic® F-127 nano-

particles. A cytotoxicity assay of gemcitabine-loaded nanoparticles showed an increase in the 

cytotoxicity of gemcitabine embedded in the nanoparticles in comparison with drug alone. 

The mucoadhesion study results suggest that nanoparticles could be considered as an efficient 

oral formulation for colon cancer treatment.

Keywords: chitosan, nanoparticles, ionic gelation, gemcitabine, mucoadhesion, oral drug 

delivery, anticancer

Introduction
Cancer is one of the major causes of death in many industrialized countries and 

its incidence is continually increasing. The most common anticancer therapies are 

tumor removal, radiotherapy, and chemotherapy. Of these methods, chemotherapy 

is the most effective treatment for tumors. The challenges of anticancer treatment by 

chemotherapeutic agents include nonselective delivery of cytotoxic drugs to tumor 

sites that lead to severe side effects due to their effects on normal nontargeted organs 

and tissues.1–3

Nanoscale drug delivery systems have achieved advantages by overcoming the 

challenges of common cancer treatments.4 Nanoparticulate carriers perform as a vehicle 

protecting the therapeutic agent from the biological milieu and improve cellular uptake 

and accumulation inside tumor sites.5,6
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Recent anticancer research has focused on polymeric 

nanoparticles based on chitosan (Chi). Chi is a natural linear 

polycationic polysaccharide obtained by partial N-deacety-

lation of chitin. Chi has many advantages as a carrier in 

nanoparticulate drug delivery systems. It is nontoxic, bio-

compatible, and biodegradable and has been proven to control 

the release of drugs, proteins, and peptides. It is soluble 

in aqueous media, avoids the use of organic solvents, and 

doesn’t require further purification of nanoparticles.7 With the 

presence of free amine groups in its linear structure, Chi has 

a cationic nature and can interact with various crosslinkers 

to form nanoparticles. The disadvantages of using chemical 

crosslinkers such as glutaraldehyde are their toxicity for 

biological systems, especially if the unreacted crosslinkers 

are not completely removed from the prepared nanoparticles. 

To resolve the toxic effects of using chemical crosslinkers, 

Chi can be ionically crosslinked with multivalent anions like 

tripolyphosphate. This process, known as ionic gelation, has 

some advantages since it is a mild process resulting in nano-

particles with sizes less than 200 nm and has been proven to 

encapsulate different biological and active compounds.8–10

The positive charge of Chi caused by the primary amino 

groups in its structure is responsible for its mucoadhesive 

properties and therefore prolonging the residual time at the 

absorption site. Chi nanoparticles are expected to be appro-

priate carriers for oral absorption of drugs.11,12

Pluronic® F-127 (PF) is a hydrophilic nontoxic copo-

lymer widely used as a pharmaceutical excipient for its 

 stabilizing properties and capability to increase the solubility 

of drugs.13

Pluronic® F-127 is an A-B-A-type triblock copolymer 

consisting of polyoxyethylene (PEO) units (A) and polyoxypro-

pylene (PPO) units (B) with a thermoreversible gelation proper-

ty.14 With the increase in the temperature of PF aqueous solution, 

the PPO block tends to dehydrate and form a core with an outer 

shell of hydrated PEO chains that aggregate into spherical 

micelles.15–18 The micellar structure of this copolymer in an aque-

ous environment can be used for incorporation of hydrophilic 

and hydrophobic drugs19 and prolongs drug release.13,20,21

Gemcitabine (GC; 2′,2′difluorodeoxycytidine) is a 

pyrimidine antimetabolite that is broadly used for manage-

ment of a variety of solid tumors including colon, pancreatic, 

lung, breast, ovarian, and bladder. After energy-dependent 

uptake of GC into cells, it is phosphorylated into its active 

metabolite, gemcitabine triphosphate and diphosphate mainly 

via deoxycytidine kinase.22,23

The active metabolites are incorporated into a replicating 

DNA strand, blocking DNA polymerase activity and 

inhibiting DNA synthesis.24 Since GC is a water-soluble 

low-molecular-weight anticancer drug, it requires nucleoside 

transporters localized on the membrane to enter the cells.25,26 

 Different approaches (using different drug delivery systems) 

were performed to improve its delivery to  tumor sites. 

Formulations such as prodrug conjugates, liposomes, poly-

meric nanoparticles, and nanoconjugates were designed in 

order to protect GC from rapid metabolization, overcome 

drug resistance, target drug delivery, and improve efficacy 

via different routes of administration.27–32

As most anticancer drugs are available in injectable forms, 

improving the feasibility of oral administration of an antican-

cer drug would offer the advantages of oral routes especially 

for drugs such as GC that have low systemic exposure fol-

lowing oral administration. The drug-carrying combination 

of Chi and PF offer promising combinations by modifying 

the controlled drug release profile using PF with protection 

and transfection-enhancing effects using Chi.

To our knowledge, no study was done on GC nanopar-

ticles prepared by ionic gelation using the combination of 

Chi and PF as carriers. By using Chi as a mucoadhesive 

polymer, we expect this system to be more cytotoxic than 

pristine drug by delivering the nanoparticles to HT-29 colon 

carcinoma cell line.

Materials
Gemcitabine was obtained from Cipla (Mumbai, India). 

Medium-molecular-weight Chi with a degree of deacetyla-

tion of about 89% was purchased from Primex (Karmoy, 

Norway). Sodium nitrite (NaNO
2
), PF, sodium tripolyphos-

phate (TPP), hydrochloric acid, glacial acetic acid, sodium 

hydroxide (NaOH), mucin, basic fuchsin, periodic acid, 

sodium metabisulfite, ethyl cellulose, Carbomer 940, and 

potassium hydrogen phosphate were all purchased from 

Merck (Darmstadt, Germany). 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide) (MTT) was purchased 

from Sigma-Aldrich (St Louis, MO). The HT-29 cell line was 

obtained from Pasteur Institute (Tehran, Iran). All chemicals 

were of analytical grade.

Methods 
Preparation of nanoparticles
Preparation of low-molecular-weight chitosan
To obtain a low-molecular-weight Chi, medium molecular 

weight Chi was depolymerized according to the method 

described by Moghaddam et al.33 Briefly, Chi (400 kDa) 

was dissolved in acetic acid (6% v/v) to obtain a solution of 

2% v/v Chi in acetic acid. Low-molecular-weight Chi was 
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obtained after addition of 10 mL of NaNO
2
 (7.0 mg/mL) to 

the dissolved Chi at room temperature under magnetic stir-

ring. After 1 hour, the depolymerized Chi was precipitated 

by raising the pH to 9.0 by adding NaOH (4 N). The white-

yellowish solid was filtrated, washed with acetone three times, 

and dissolved in a minimum volume of 0.1 N acetic acid. 

Purification was carried out by subsequent dialysis against 

purified water (Sigma dialysis tubes, molecular weight 

cutoff 12 kDa; Sigma Aldrich). The dialyzed product was 

lyophilized using a freeze dryer (Alpha 2–4 LD plus; Christ, 

Osterode am Harz, Germany). The yellowish lyophilized 

product was then stored at 4°C until further use. The average 

molecular weight of the prepared Chi was determined by gel 

permeation chromatography (Agilent Technologies, Santa 

Clara, CA) using plulane according to the method used in 

our lab by Akhlaghi et al.34

The preparation of Chi nanoparticles was achieved via the 

ionic gelation method reported by Calvo et al.8 A Chi solution 

(0.1% w/v) was obtained by dissolving low-molecular-weight 

Chi in 1% v/v acetic acid. Chi nanoparticles were prepared 

spontaneously upon addition of various concentrations of 

TPP (0.015%, 0.02%, 0.025%, and 0.03% w/v) to Chi solu-

tion under gentle magnetic stirring at room temperature 

for 1 hour. In all cases, the volume ratio of Chi:TPP solu-

tion was 2:1. Finally the opaque suspension was assigned 

as nanoparticles.8 This zone was obtained at TPP solution 

ranging 0.015%–0.025% w/w. PF was incorporated into 

nanoparticles by adding 0.025% w/v TPP solution to Chi 

aqueous solution containing different concentrations of PF 

(10%, 15%, 20% w/w).

For preparation of GC-loaded nanoparticles, various 

concentrations of GC (0.2, 0.4, 0.6, 0.8 and 1.0 mg/mL) in 

0.025% w/w TPP solution were prepared. Nanoparticles 

were formed by adding this solution into Chi in an acetic 

acid solution.

The nanoparticles were separated from the aqueous 

medium by Amicon Ultra-15 centrifugal filters (Millipore, 

Billerica, MA) at 5000 g, at room temperature until removal 

of the nanoparticles from the preparation media (20  minutes). 

The nanoparticles were removed from the filter and sus-

pended in 2 mL of deionized water. This suspension was 

freeze-dried and stored at 4°C until use.

Characterization of Chi nanoparticles
Size measurements and determination  
of zeta potential
The mean diameter and size distribution of the nanoparticles 

were measured by dynamic light scattering using Zetasizer 

(Nano-ZS; Malvern Instruments, Malvern, UK). All 

 measurements were performed with a wavelength of 

633 nm at 25°C with an angle detection of 90°C. The zeta 

potential of freshly prepared nanoparticles was determined 

by laser  Doppler electrophoresis using Zetasizer (Malvern 

Instruments). Each sample measurement was repeated 

three times.

Evaluation of drug encapsulation and loading capacity
The loading capacity (LC) and encapsulation efficiency (EE) 

were measured indirectly by measuring the amount of remain-

ing drug in the medium collected at the bottom of the falcon 

using UV spectrometry (CE7500; Cecil, Cambridge, UK) at 

274 nm. Each sample was measured in triplicate.

The following equations were used to evaluate the LC 

and EE of the nanoparticles:36

 EE
Total GC

(%) =
−

×
Free GC

Total GC
100   (1)

 LC
Total GC Free GC

Nanoparticle weight
(%) =

−
×100   (2)

Scanning electron microscopy
The surface morphology of the freshly prepared nanoparticles 

was observed using a scanning electron microscope (XL 30; 

Philips, Eindhoven, The Netherlands). Nanoparticles were 

dried on an aluminum disk at room temperature. The fixed 

nanoparticles were coated with gold using a sputter coater 

(SCD 005; Bal-Tec, Balzers, Liechtenstein).

Transmission electron microscopy
Transmission electron microscopy (TEM; CEM 902A; 

Carl Zeiss, Oberkochen, Germany) was used to exam-

ine and compare the topography of the nanoparticles. 

 Freeze-dried nanoparticles were suspended in deionized 

water before observation.

Fourier transform infrared spectroscopy
Fourier transform infrared (FT-IR) spectra were analyzed 

using a Nicolet FT-IR Spectrometer (Magna IR 550; Madison, 

WI) at 4 cm–1 resolution. The freeze-dried nanoparticles were 

mixed with KBr and pressed to a plate to investigate the chemi-

cal reactions between the drug and nanoparticle matrix.

Differential scanning calorimetry
Differential scanning calorimetry (Mettler Toledo, DSC 823e, 

Greifensee, Switzerland) was used to determine the physical 
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status of GC in nanoparticles. An appropriate amount of sam-

ples (5–10 mg) were sealed in aluminum pans and scanned 

in a temperature range of 0 to 550°C with a heating rate of 

20°C/minute. Inert atmosphere was maintained by purging 

nitrogen with a flow rate of 360 cm3/minute.

In vitro drug release
Four milligrams of nanoparticles were dispersed in a freshly 

prepared phosphate-buffered saline (PBS; pH = 7.4) as a 

release medium in a dialysis membrane sac (mw cut-off 

12 kDa; Sigma Aldrich). The enclosed dialysis sac was 

immersed in a beaker containing 50 mL of the release 

medium. The beaker was placed in a shaking incubator at 

37°C under mild agitation (90–100 rpm). For each sample, 

5 mL of the release medium was withdrawn at predetermined 

time intervals and replaced by the same medium at the same 

condition. The samples were analyzed for drug content by 

ultraviolet spectrometry as described above.

Mucoadhesion studies
Mucoadhesion studies of Chi and Chi–PF nanoparticles were 

performed by mucus glycoprotein assay. Periodic acid/Schiff 

colorimetric method was used for determining the amount 

of free mucin to estimate the amount of adsorbed mucins on 

the nanoparticles. Schiff reagent was prepared by adding 1 g 

basic fuchsin to 100 mL water. Twenty microliters of HCl 

(2M) was added to the prepared fuchsin solution following 

addition of 0.1 g sodium metabisulfite to the Schiff reagent, 

and the final solution was incubated at 37°C until alteration 

of the color from brown to orange. Periodic acid reagent was 

freshly prepared by adding 10 µL of 50% v/v periodic acid 

solution to 7.0 mL of 7% v/v acetic acid solution. Standard 

solutions of mucin (0.25, 0.5, 0.75, and 1.0 mg per 2.0 mL) 

were used to prepare standard calibration curves. After add-

ing 0.20 mL periodic acid reagent to the samples, the samples 

were incubated at 37°C in a water bath for 2 hours. Then, 

at room temperature, 0.20 mL Schiff reagent was added to 

the samples. After 30 minutes the absorbance of the solution 

was recorded at 556 nm in an ultraviolet spectrophotometer. 

A standard calibration curve was plotted to calculate the 

mucin content adsorbed to nanoparticles.37

To determine the mucoadhesion of the nanoparticles, 

10 mg of the nanoparticles (Chi and Chi–PF PF = 20% w/w) 

was dispersed in 6 mL of the mucin solution (0.5 mg/mL). The 

suspensions were incubated for 1 hour at 37°C while being 

shaken. In order to analyze unadsorbed free mucin, the sus-

pensions were then centrifuged (12,000 rpm for 5  minutes), 

and the supernatants analyzed by spectrophotometer at the 

visible wavelength of 555 nm. The rest of the procedure was 

the same as for the standard solutions. Ethylcellulose was 

used as negative control, and Carbomer 940 was used as 

positive control for comparison purposes. Both controls were 

assessed with the same procedure as described previously.

Cytotoxicity test
To assess the viability of HT-29 colon carcinoma against GC, 

blank nanoparticles (Chi, Chi–PF), and drug-loaded nanopar-

ticles were tested using MTT assay. The HT-29 cell line was 

seeded in 24-well plates at a density of 150,000 viable cells 

per well and incubated for 24 hours to allow cell attachment. 

The cells were then incubated for another 24 hours with blank 

nanoparticles (Chi, Chi–PF) and GC-loaded nanoparticles 

(GC-Chi, GC-Chi–PF). Cells were then washed in PBS, and 

200 µL of MTT solution (5 mg/mL) was added to each well. 

The plates were incubated for an additional 4 hours, and then 

the medium was discarded. Dimethyl sulfoxide (600 µL) was 

added to each well, and the solution was vigorously mixed to 

dissolve tetrazolium dye. Then 100 µL of the dissolved dye 

from each of the wells was transferred into 96-well plates. 

The absorbance of each well was measured by enzyme-linked 

immunosorbent assay reader (Anthous 2020; AnthosLabtec 

Instruments, Salzburg, Austria) at a test wavelength of 

570 nm against a standard reference solution at 690 nm. 

Nanoparticles were sterilized by membrane filtration (0.2 

µm) in a laminar hood before MTT assay.

Statistical analysis
Results are shown as mean ± standard deviation.  Statistical 

data analyses were performed using statistical software 

program (SPSS 16; SPSS Inc, Chicago, IL). Compari-

son between data was done using one-way analysis of 

variance with a P-value , 0.05 as the minimal level of  

significance.

Results and discussion
Mean diameter, size distribution,  
and zeta potential of nanoparticles
To obtain nanoparticles with sizes below 200 nm, nanopar-

ticles were prepared utilizing low-molecular-weight Chi 

(16–20 kDa).37 The nanoparticles were prepared by ionic 

gelation upon addition of TPP to Chi in acetic acid under 

gentle magnetic stirring at room temperature. TPP has five 

negative ionic charge points that interact with the posi-

tive amino groups of Chi in acetic acid solution. Different 

parameters influence the characters of the nanoparticles. 

These include pH,38,39 molecular weight of Chi,40 Chi and 
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TPP concentration, addition of a second polymer/copolymer, 

and addition of an active compound.8,9,35

Among these parameters, Chi and TPP are the most 

important factors that control the size of the prepared nano-

particles. Chi and TPP can form nanoparticles in specific 

moderate concentrations.8 Nanoparticles with smaller size 

have valuable characteristics such as improved drug delivery, 

longer circulation in blood, and lower toxicity.5,35

Table 1 shows the effect of increasing TPP concentration 

on particle size. It was observed that application of TPP with 

higher concentration can significantly increase the size of the 

particles (P , 0.002). This could be due to the increase in the 

amount of anionic groups in the preparation medium, which 

causes more electrostatic interaction with positive amino sites 

on Chi, reduction of the positive surface charge, and incre-

ments in nanoparticles size (P , 0.003). Zeta potential influ-

ences the stability of the nanoparticles through electrostatic 

repulsion.38,41 TPP concentrations higher than 0.03% w/v form 

aggregated solutions, which are not confirmed as nanopar-

ticles according to the report by Calvo et al.8

Table 2 demonstrates that the size of Chi nanoparticles 

increases as Chi concentration is increased. In all cases, 

TPP concentration was kept constant (0.025% w/v). The 

increased viscosity of higher Chi concentrations prevents 

effective ionic interaction between TPP and Chi solution, 

which increases nanoparticle size42 with increase in zeta 

potential (P , 0.007).

We prepared nanoparticles containing PF with the inten-

tion to make nanoparticles with a controlled release profile.13 

The addition of PF results in decreased size (P , 0.036), 

which can be attributed to the formation of a rigid gel leading 

to lesser water uptake. Slighter swelling causes a reduction 

in the mean diameter of the particles in aqueous medium 

(Table 3).43 Since there is no significant change in zeta poten-

tial by increasing concentrations of PF (P , 0.586), it can be 

concluded that PF is mostly incorporated inside the nanopar-

ticle matrix. This may be due to the PF concentration. In the 

concentrations utilized in this study, conformational change 

in the copolymer molecule occurs and gives rise to a close-

packed monomolecular unit with the poly(oxypropylene) 

hydrophobic core surrounded by poly(oxyethylene) units or 

the formation of multimolecular aggregates that are trapped 

inside the nanoparticle matrix.44 In this case, PF does not 

seem to be attached to the surface of the nanoparticles, thus 

it does not influence the surface charge of the particles.

GC-loaded nanoparticles were prepared upon addition of 

GC in 0.025% w/v TPP into 0.1% w/v Chi or Chi–PF in acetic 

acid solution. To determine the effect of GC concentration 

on particle size, various concentrations of GC in 0.025% 

w/v TPP solution were applied. Table 4 shows that generally 

addition of GC increases the size of Chi nanoparticles, but 

does not significantly affect their zeta potential (P , 0.865). 

The effect of GC concentration on particle size is more 

significant when the concentration rises from 0.4 to 0.6 mg/

mL (P , 0.002).

In general, GC-loaded Chi-PF nanoparticles size did 

not grow significantly at concentrations up to 0.4 mg/

mL (P , 0.586), but there was a change in size when the 

concentration of GC was increased from 0.4 to 0.6 mg/mL 

(P , 0.021), and the size remains constant at concentrations 

above 0.6 mg/mL of GC in TPP solution (Table 5). GC is a 

low-molecular-weight anticancer drug. Therefore it may not 

be possible to severely increase the GC particle diameter until 
Table 1 Effect of TPP concentration on mean diameter and zeta 
potential of Chi nanoparticles

TPP  
concentration  
(%w/v )

Mean  
diameter  
(nm)

Polydispersity  
index

Zeta  
potential  
(mv)

0.015   80 ± 5.65 0.230 ± 0.36  35.2 ± 0.62
0.02   109 ± 2.82 0.208 ± 0.50 29.85 ± 1.49
0.025   113 ± 5.29 0.186 ± 0.027  26.2 ± 1.76
0.03 166.6 ± 8.08 0.194 ± 0.018 18.13 ± 0.55

Note: Chi = 0.1% w/v.
Abbreviations: Chi, chitosan; TPP, sodium tripolyphosphate.

Table 2 Effect of Chi concentration on mean diameter and zeta 
potential of Chi nanoparticles

Chi  
concentration  
(%w/v)

Mean  
diameter  
(nm)

Polydispersity  
index

Zeta  
potential  
(mv)

0.2 148 ± 1.67 0.261 ± 0.026 35.8 ± 0.54
0.4 242 ± 2.56 0.358 ± 0.047 38.2 ± 1.25
0.6 256 ± 1.45 0.312 ± 0.029 44.1 ± 2.31
0.8 328 ± 3.32 0.379 ± 0.034 45.6 ± 0.76
1 452 ± 5.43 0.433 ± 0.053 46.9 ± 2.46
1.2 584 ± 3.47 0.486 ± 0.041 49.8 ± 1.78

Note: TPP = 0.025% w/v.
Abbreviations: Chi, chitosan; TPP, sodium tripolyphosphate.

Table 3 Effect of PF concentration on mean diameter and zeta 
potential of Chi nanoparticles

PF (%w/w) Mean diameter PdI Zeta potential

10 128 ± 2.64 0.165 ± 0.002 25.46 ± 0.75
15 117 ± 3.0 0.221 ± 0.068 23.86 ± 1.8
20 107 ± 3.29 0.148 ± 0.007 23.46 ± 1.2

Notes: Chi = 0.1% w/v, TPP = 0.025% w/v.
Abbreviations: Chi, chitosan; PdI, Polydispersity Index; PF, Pluronic F®127; TPP, 
sodium tripolyphosphate.
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of the Chi. The small molecular structure of GC cannot 

overcome the hindrance effect of PF, therefore incorpora-

tion of PF leads to reduced EE and therefore lower LC in 

comparison with Chi nanoparticles. The same results were 

reported by Wu et al when poly(ethylene glycol) (PEG) was 

added prior to gelation of Chi with TPP. Addition of PEG 

led to a lower encapsulation of ammonium glycyrrhizinate 

into the nanoparticles.45

Morphology of nanoparticles
SEM micrographs (Figure 1) of Chi and Chi–PF nanopar-

ticles loaded with GC, show that particles are spherical and 

uniform. TEM images of the nanoparticles also confirms the 

spherical shape. In Chi–PF nanoparticles, darker spots were 

observed inside the spherical matrix of the nanoparticles 

(Figure 2B), while they are not seen in Chi nanoparticles 

(Figure 2A). As both NP formulations prepared for TEM 

imaging were loaded with GC, thus, these darker spots are 

responsible for the contrast observed between Chi and PF. 

This micrograph proves the incorporation of PF inside the 

nanoparticle matrix and disproves the attachment of PF on 

the nanoparticle surface.

Interaction between gC  
and nanoparticle matrix
FT-IR spectrometry was used to find out the nature of inter-

action between GC, Chi, or TPP. Various physicochemical 

interactions between GC, Chi, PF, and TPP can alter the 

Table 5 Effect of gC concentration on the mean diameter and 
zeta potential of Chi–PF nanoparticles

GC  
concentration  
(mg/mL)

Mean  
diameter  
(nm)

PdI Zeta  
potential  
(mv)

– 107 ± 3.29 0.210 ± 0.011 23.50 ± 1.32
0.2 102 ± 1.92 0.167 ± 0.028 25.42 ± 0.87
0.4  98 ± 1.43 0.193 ± 0.015  24.9 ± 2.10
0.6 115 ± 2.12 0.167 ± 0.023  25.3 ± 0.65
0.8 109 ± 3.10  0.22 ± 0.031  24.7 ± 1.98
1 111 ± 1.64 0.154 ± 0.018 25.12 ± 1.57

Note: PF = 20% w/w.
Abbreviations: Chi, chitosan; gC, gemcitabine; PdI, Polydispersity Index; 
PF, Pluronic F®127.

Table 4 Characterization of Chi nanoparticles by varying gC concentration

GC (mg/mL) Mean diameter (nm) PdI Zeta potential (mv) EE (%) LC (%)

–   113 ± 5.29 0.186 ± 0.027  26.2 ± 1.76 – –
0.2  123.5 ± 3.53 0.143 ± 0.026  25.9 ± 0.71 63.68 ± 0.21 3.94 ± 0.40
0.4 130.66 ± 3.21 0.211 ± 0.031 25.46 ± 1.15 71.07 ± 0.39 5.26 ± 0.42
0.6   154 ± 4.58 0.157 ± 0.066 24.75 ± 0.77 67.25 ± 1.89 6.01 ± 0.28
0.8   157 ± 6.2 0.199 ± 0.043  24.4 ± 1.69 65.44 ± 1.13 5.48 ± 0.47
1 156.33 ± 4.04 0.310 ± 0.056 24.06 ± 2.05 63.79 ± 2.88 5.56 ± 0.53

Notes: Chi = 0.1% w/v, TPP = 0.025%.
Abbreviations: Chi, chitosan; EE, encapsulation efficiency; GC, gemcitabine; LC, loading capacity; PdI, Polydispersity Index; PF, Pluronic F®127; TPP, sodium 
tripolyphosphate.

Table 6 Encapsulation efficiency and loading capacity of Chi–PF 
with different PF concentrations

PF (%w/w) EE (%) LC (%)

10 68.47 ± 1.97 5.43 ± 0.12
15 63.67 ± 0.78 4.85 ± 0.35
20 56.22 ± 1.56 4.33 ± 0.26

Notes: gC = 0.6 mg/mL, Chi = 0.1% w/v, TPP = 0.025% w/v.
Abbreviations: Chi, chitosan; EE, encapsulation efficiency; GC, gemcitabine; LC, 
loading capacity; PF, Pluronic F®127.

it reaches its maximum capacity inside the nanoparticles. 

GC concentration did not influence the zeta potential of the 

prepared nanoparticles (P , 0.944).

Nanoparticle encapsulation efficiency  
and loading capacity
The effect of different concentrations of GC on the EE and 

LC of Chi nanoparticles was determined. The observed 

results did not show a significant change in EE of nanopar-

ticles (P , 0.1), but maximum EE (71%) was achieved at 

0.4 mg/mL of GC concentration (Table 4). While maximum 

LC was observed at 0.6 mg/mL of GC in TPP solution, the 

increase in drug concentration from 0.4 mg/mL to 1 mg/mL 

did not significantly affect the LC (P , 0.228).

To determine the effect of PF incorporation on the EE 

and LC of the nanoparticles, 0.6 mg/mL of GC in TPP was 

added to different amounts of PF (10%, 15%, 20% w/w) 

in Chi in acetic acid solution. Augmentation of PF reduced 

EE (P , 0.024), but did not significantly influence the LC 

of the nanoparticles (P , 0.126) (Table 6). As analysis of 

FT-IR spectrum shows, GC interacts via a hydrogen bond 

and electrostatic interaction with the free positive amine 

groups available inside the nanoparticles. PF competes with 

GC in interacting with Chi by occupying the functional sites 
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absorption peaks or broaden them. Nanoparticles are formed 

in an aqueous acidic medium, which leads to a positive charge 

for Chi due to the existence of a primary amino group on 

its molecular structure that can form an electrostatic inter-

action with TPP. In addition, by the existence of fluorine, 

hydrogen, oxygen, and nitrogen atoms in GC molecular 

structure (Figure 3), we expect hydrogen bonding between 

GC and nanoparticle matrix. In the spectra of pure Chi in 

Figure 4C, the vibrational band at 1638.3 cm-1 represents 

the primary amino group in Chi, while the stretching bands 

at 1073.9 cm-1, 1429.7 cm-1, and 3442.4 cm-1 are due to the 

C–O, C–H, and hydroxyl groups present in Chi, respec-

tively. Two peaks at 2918.7 cm-1 and 2852.8 cm-1 show the 

stretching band of methylene in Chi structure. For blank 

Chi nanoparticles (Figure 4B), the amino band is shifted to 

1550.3 cm-1, which indicates the ionic interaction between 

TPP and NH
2
 of Chi. The broad band with a maximum at 

3370.8 cm-1 represents hydrogenic bonds between hydroxyl 

groups in Chi with TPP. These interactions lead to a decrease 

in Chi solubility and nanoparticle formation. In the case of 

GC (Figure 4D), there is a characteristic peak at 1743.7 cm-1, 

which corresponds to the ureido group in GC molecular 

structure (Figure 3D). A peak at 3440.8 cm-1 is due to the 

overlapped hydroxyl and amino bands in this area. When GC 

was loaded in Chi nanoparticles (Figure 4A), a small band 

at 1735.7 cm-1 appeared. On the other side, the free amino 

band at 1638.3 cm-1 vanished and the peak at 1436.6 cm-1 

broadened. Therefore a strong interaction between GC 

and amino groups of Chi has occurred. The broad band at 

3000–3500 cm-1 indicates the strong hydrogen bond between 

drug and nanoparticle matrix. For PF (Figure 5B), a strong 

stretching band at 2870 cm-1 represents the stretching 

vibrational band of methylene group. As in blank Chi–PF 

nanoparticles (Figure 5A), this peak remains and confirms 

the incorporation of PF in Chi–PF nanoparticles. For GC-

loaded Chi–PF nanoparticles (Figure 5C), the ureido peak 

exists, which authenticates the encapsulation of GC in the 

nanoparticle matrix. In GC-loaded Chi–PF nanoparticles, the 

primary amino peak of Chi at 1560 cm-1 in blank nanopar-

ticles was shifted to 1443.1 cm-1. The same peak exists in 

GC-loaded Chi nanoparticles (Figure 4A). This may prove 

the potent interaction of the amino group of Chi with the 

drug. One possible mechanism can be the ionic interaction 

between GC and NH
2
 of Chi in addition to the hydrogen bond. 

Electron resonance between NH
2
 and the C = O functional 

group inside the pyrimidine structure of GC in TPP solution 

(pH = 9), leads to a negative charge on carbonyl group in 

the molecular structure of GC. This negative charge interacts 

A

Acc.V   Spot magn     Dot   WD
17.0 kV 1.0   60000x    SE   9.1  S8

B

200 nm Acc.V   Spot magn     Dot   WD
17.0 kV 1.0   60000x   SE   6.0   S6

200 nm

Figure 1 SEM micrographs of gC-loaded (A) Chi nanoparticles (B) Chi–PF nanoparticles.
Abbreviations: Chi, chitosan; gC, gemcitabine; PF, Pluronic F®127; SEM, scanning electron microscopy.

A B

150 nm 150 nm

Figure 2 TEM micrographs of gC-loaded (A) Chi nanoparticles (B) Chi–PF nanoparticles.
Abbreviations: Chi, chitosan; gC, gemcitabine; PF, Pluronic F®127; TEM, transmission electron microscopy.
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were examined with DSC. As shown in Figure 6D, the melt-

ing point of drug alone is observed with a sharp peak at 

291.61°C. In blank Chi nanoparticles (Figure 6B), there was 

a broad endothermic peak at 130.22°C and an exothermic 

peak at 298.82°C. In blank Chi–PF nanoparticles (Figure 6F), 

an endothermic peak at 57.01°C and an exothermic peak at 

419°C appeared. Blank nanoparticles of Chi and Chi–PF 

physically mixed with GC (Figure 6C and E, respectively) 

show similar endothermic peaks at the same temperature. In 

both cases, no melting peak was observed when GC-loaded 

Chi nanoparticles (Figure 6A) and GC-loaded Chi–PF 

nanoparticles (Figure 6G) were studied. It can be concluded 

that the drug is incorporated in its amorphous or disordered 

crystalline phase inside the nanoparticle matrix.

In vitro release profile
We used different formulations containing PF (10%, 15%, 

and 20% w/w) to investigate the drug-release behavior of 

GC-loaded Chi–PF nanoparticles. The results were com-

pared with GC-loaded Chi nanoparticles. The percentage 

of cumulative release was 85.86%, 79.58%, 71.23%, and 

57.74% for Chi and Chi–PF nanoparticles incorporated with 

10%, 15%, and 20% w/w PF after 72 hours, respectively. All 

formulations show an initial drug-release burst up to 6 hours 

continued by a steady-state release. The release medium 

easily penetrates into the tortuous paths on the peripheral 

surface of the nanoparticle matrix and dissolves the drug. The 

dissolved drug rapidly diffuses into the release medium near 

the surface of the nanoparticles, and exhibits a rapid burst 

release. Although our intention was to achieve a controlled 
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Figure 3 Schemes for (A) chitosan, (B) Pluronic®, (C) sodium tripolyphosphate, 
and (D) gemcitabine.
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Abbreviations: Chi, chitosan; gC, gemcitabine; PF, Pluronic F®127.

with the positive amino group of Chi in acetic acid solution 

when mixed together to form nanoparticles.

Physical status of gC in nanoparticles
To confirm the physical state of the drug in nanoparticles, 

drug alone, blank nanoparticles of Chi and Chi–PF, and 

drug-loaded nanoparticles of the mentioned formulations 
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release profile by PF augmentation (Figure 7), incorporation 

of PF led to a lower release rate for Chi–PF nanoparticles in 

comparison with Chi nanoparticles. This might be due to the 

presence of PF, which has inhibited some of the paths for drug 

release. In addition, studies observed that PF solutions show 

a thermoreversible gelation property at concentrations higher 

than 15%–20% w/w. This copolymer is liquid at 4°C–8°C. 

At body temperature, this polymer aggregates into micelles 

forming a semisolid gel with a dehydrated core of PPO sur-

rounded by hydrated PEO. This micellar nature prolongs the 
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Figure 5 Fourier transform infrared spectra of (A) blank Chi–PF nanoparticles, (B) PF, (C) gC-loaded Chi–PF nanoparticles, and (D) gC.
Abbreviations: Chi, chitosan; gC, gemcitabine; PF, Pluronic F®127.
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release rate of GC. As discussed previously, the higher the 

PF concentration, the more rigid gel forms, therefore leading 

to a lower release rate.46

Mucoadhesion study
The mucoadhesive behavior of Chi and Chi–PF nanoparticles 

were studied through mucus glycoprotein assay. Results are 

reported as mucoadhesion percentages in Figure 8; both 

formulations show high mucoadhesion in comparison with 

negative control. Incorporation of PF did not show a signifi-

cant change in mucoadhesiveness. High mucoadhesivity of 

the nanoparticles is attributed to the hydrogen bond and ionic 

interaction of the positive charge of Chi amino groups with 

mucin chains.47 Aghaei Moghaddam et al reported higher 

mucoadhesion for smaller particles than for larger parti-

cles.33 The small nanoparticle size provides a large surface 

area and increase in mucin adsorption, which leads to a high 

mucoadhesive property for the nanoparticles.

Cytotoxicity assay
The cytotoxicity of blank and GC-loaded Chi and Chi–PF 

nanoparticles and drug alone was assessed by MTT assay 

on the HT-29 colon carcinoma cell line. Blank nanopar-

ticles and drug alone have no toxic effect on applied cells, 

but this effect was observed for GC-loaded nanoparticles 

(Figures 9A and 9B). There was no noticeable difference 

between the cytotoxic effect of GC-loaded nanoparticles 

prepared with Chi alone and Chi–PF (half-maximal con-

centration against 18.10 µM and 17.47 µM, respectively). 

Therefore, it can be concluded that incorporation of PF does 

not influence the cytotoxicity of the nanoparticles. GC is a 

hydrophilic anticancer drug that needs membrane transport-

ers to enter the cells.29 Cells can uptake nanoparticles by 

endocytosis48 mediated by a clathrin-mediated process.49 

Therefore nanoparticles can act as drug delivery systems 

that facilitate drug entrance into the cells. HT-29 is a mucin-

producing cell line.50,51 As discussed previously, Chi and 

Chi–PF nanoparticles showed highly mucoadhesive prop-

erties, therefore GC-loaded Chi nanoparticles can interact 

with the mucin produced by HT-29 cell line and can become 

localized on the cell surface. Other studies have reported 

improved uptake of mucoadhesive Chi nanoparticles by the 

HT-29 cell line.52 The release of GC from the adhered nano-

particles increases the availability of the drug for membrane 

transport and increases the accumulation of the drug inside 

the cells.28 Both mechanisms described could be responsible 

for increased cytotoxicity of GC-loaded nanoparticles.
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Conclusion
GC-loaded nanoparticles were prepared by a mild process 

without using organic solvents. A particle size of less than 

200 nm and high encapsulation efficiency demonstrated 

good mucoadhesion properties. GC-loaded nanoparticles 

could be considered as a good candidate for oral delivery of 

the anticancer drug. This hypothesis is partially proven by 

a cell culture study on the HT-29 colon carcinoma cell line. 

However other studies should be performed to improve the 

efficacy of these nanoparticles.
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