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Abstract: Biomaterials and neurotrophic factors represent promising guidance for neural 

repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and 

neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was 

released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) 

and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 

14 days. Immunoreactivity against Map2 showed that most of the grafted cells (.80%) were 

differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination 

revealed the formation of synaptic structures and myelin sheaths in the coculture, which was 

also observed under electron microscope. Furthermore, under depolarizing conditions, these 

synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or 

FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased 

the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic 

activities, and myelination of neurites by the accompanying SCs. These results provide an 

experimental basis that supports transplantation of functional neural construction in spinal 

cord injury.
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Introduction
Spinal cord injury (SCI) is a common medical problem, which can result in axonal 

demyelination, loss of both sensory and motor neuron function, and even neuronal 

damage and death.1 SCI triggers a cascade of events, including infiltration macrophages, 

activation of resident glial cells, and formation of cavities in the injury site.2 The patho-

logical process of SCI is complicated and involves multiple factors from different cell 

types, which results in a lack of effective treatment of the disease. Initial experimental 

approaches, which aimed to restore neuronal circuits in SCIs, focused on the use of 

cultured neurons and supporting cells to replace damaged areas of the tissue.3

Schwann cells (SCs), the myelin-forming cells of the peripheral nervous system, 

play a crucial role in nerve regeneration through production of neurotrophic growth 

factors and excretion of extracellular matrices.4,5 These features are suggestive of 

SCs’ therapeutic potential for spinal cord repair.3,6–8 It has been demonstrated that an 

SC-loaded scaffold can promote limited axonal regeneration, and modestly improve 

hind limb motor function.6,8 Nevertheless, keeping grafted SCs alive within the SCI 

site remains a challenge.6

Stem cell-based therapy for SCI has also attracted much attention since the 

discovery of neural stem cells (NSCs) in mammals.9,10 Implantation of cultured 
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NSCs was shown to enhance neuroprotection, stimulate 

neuroplasticity, and rescue neuronal loss in an experimental 

SCI model.11–13 However, effectiveness of NSC transplanta-

tion in CNS trauma remains limited for two reasons: firstly, 

grafted NSCs rarely differentiate into mature neurons in 

spinal cord lesions,14,15 and secondly, NSCs survive poorly 

when transplanted, which attenuates their effect on the 

restoration of neural circuits.16,17 Therefore, in order to 

adequately evaluate the therapeutic potential of NSCs in 

bridging a lesion gap in SCI, it is necessary to investigate 

regimens that further augment the survival and differentia-

tion of transplanted NSCs.

Neurotrophins (NTs) play important roles in neuronal 

survival, differentiation, and neurite outgrowth.18 NSCs 

transfected with NT-3,19 or seeded into the NT-3-chitosan 

carriers,13,20 yield a high percentage of differentiation toward 

neurons. Here, we engineered an NT-3-loaded poly-(lactic 

acid-co-glycolic acid) (PLGA) carrier, and tested whether 

coseeding NSCs and SCs into an NT-releasing scaffold 

system would permit grafted cells to survive, differentiate 

into neurons, myelinate, and then form a functional construct. 

Any such functional neural construction may be particularly 

useful as engineered nerve tissue replacement for SCI.

Materials and methods
Preparation of PLGA scaffold
A macroporous PLGA scaffold was synthesized with a 

75:25 monomer ratio (D,L-lactide: glycolide) by ring-

opening polymerization using Sn (Oct)
2
 as a catalyzer, and 

dodecanol as an initiator. The average molecular weight of 

the PLGA copolymer was 1.22 × 105 (Mn GPC). To obtain 

different pore sizes, polymer concentration was employed 

from 2.5% to 20%. Sodium chloride as a porogen was added 

into the polymer solution with PLGA/NaCl in a weight 

ratio of 1:9. The PLGA scaffold formed pores of varying 

sizes, ranging from a few µm up to 200 µm that were suit-

able for seeding neurospheres with diameters of 100 µm 

to 300 µm. PLGA rods with longitudinal parallel-channels 

were f abricated by an injection molding, combined with 

thermally-induced phase separation. The lumens of the mold 

were pretreated with chlorotrimethylsilane, and were placed 

into the freezer at -40°C for at least 1 hour. A 5% (w/v) 

PLGA solution in 1,4-dioxane was rapidly injected into the 

cold mold with a syringe. Injection pressure at the port of 

the syringe was maintained by keeping it completely frozen 

until its introduction into the polymer solution. The mold was 

then placed in the freezer at -40°C for another 2 hours. The 

scaffold was then lyophilized under 0.940 mbar at 0°C for 

at least 4 days. The polymer scaffold was then trimmed into 

a rod shape 2 cm in length and 5 mm in diameter.

NSCs preparation and identification
Whole hippocampi aged 3–5 days from Sprague–Dawley 

(SD) rat pups were dissected and dissociated in Hanks’ 

 balanced salt solution (HBSS). After centrifuging at 

1000 rpm for 5 minutes, the supernatant was removed. The 

pellet was resuspended in 5 mL basal medium including: 

 Dulbecco’s modified Eagle’s medium (DMEM)/F12 at a 

ratio of 1:1, containing B27 supplement 20 µL/mL (Gibco, 

Carlsbad, CA) and basic fibroblast growth factor 20 ng/mL 

(Invitrogen, Carlsbad, CA). Cells were then plated onto 

75-mL culture flasks, with fresh medium every 3 days. 

 Cultured cells typically grew as suspending neurospheres 

and were passaged once per week.

SCs culture and purification
Cultured SCs were obtained from 3-day-old SD rats as 

described above.12 Sciatic nerves were harvested with 

0.25% trypsin for 15 minutes at 37°C followed by 0.16% 

collagenase (both trypsin and collagen; Sigma-Aldrich, St 

Louis, MO) for 20 minutes. Following harvest, cells were 

centrifuged at 1000 rpm for 5 minutes, resuspended in 

DMEM/F12 with 10% fetal bovine serum (FBS) (Invitrogen) 

and plated on poly-L-lysine 0.01% (Sigma-Aldrich)-coated 

plates at 1 × 105 cells/mL. The following day, these cells 

were treated with cytosine arabinoside (1 × 10-5 M; Sigma-

Aldrich) for 24–48 hours to rapidly remove fibroblasts. Cells 

were fed every 3–4 days and passaged every week. The 

purity of cultured SCs was  determined by immunostaining, 

using an antibody against the SC marker S-100, with DAPI 

(4’,6-diamidino-2-phenylindole; Invitrogen) as a counter 

stain. Purity of the SC cultures used for implantation in this 

study was at least 90%.

Preparation of NT-3-loaded PLGA 
carriers
Silk fibroin (SF), a fibrous protein biopolymer derived from 

the silkworm Bombyx mori, is widely used in protein-delivery 

systems.25,26 SF was prepared as described.25 Briefly, cocoons 

from B. mori were boiled in ultrapurified water (UPW) con-

taining 0.02 M Na
2
CO

3
, rinsed thoroughly with distilled water 

to extract the glue-like sericin proteins and wax, and then dis-

solved in 9M LiBr at 55°C to obtain a 10% aqueous SF (w/v) 

solution. Then, 10% aqueous SF solution was dialyzed with 

UPW and diluted into 1%, 3%, or 6% SF solution. Recombinant 

human NT-3 (PeproTech, Rocky Hill, NJ) was embedded by  
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adding 10 mg NT-3 to 1mL SF solution (1%, 3%, or 6%, 

respectively). NT-3-SF solution was subsequently sterilized 

by 0.25 µm filter (Invitrogen). PLGA rods were cut into 

2 mm slices, sterilized in 70% alcohol for 10 minutes, rinsed 

with sterile phosphate-buffered solution (PBS; pH 7.4) for 

30 minutes, soaked in NT-3-SF solution, stirred at 0°C for 

6 hours, air-dried under laminar airflow overnight, and subse-

quently treated with 70% alcohol for 5 minutes to render them 

insoluble by SF physical induction of β-sheet formation. The 

NT-3-loaded PLGA carriers were then stored in a dessicator 

and rinsed with sterile PBS for 30 minutes before use.

Kinetics of NT-3 release  
from NT-3-loaded PLGA carriers
Five independent samples of medium supernatants from 

PLGA carriers with different SF concentrations were collected 

at 1, 3, 6, 12, and 24 hours, between 1 and 5 weeks after the 

initiation of the coculture. Enzyme-linked immunosorbent 

assay (ELISA) (Becton Dickinson, Franklin Lakes, NJ) was 

performed according to the manufacturer’s instructions, in 

order to determine the kinetics of NT-3 released from NT-3-

loaded PLGA carriers. Absorbance was measured at 450 nm 

using a plate reader (Model 680; Bio-RAD, Hercules, CA), 

and NT-3 concentration was determined by comparing the 

reading to the standard curve.

NSCs and SCs seeding in PLGA scaffolds
NSCs from neurospheres were dissociated mechanically and 

mixed with SCs after counting cells on a hemocytometer. 

Cells were then suspended in basic medium (DMEM/F12 

with 10% FBS), and seeded under three separate conditions: 

PLGA only, PLGA-SF (3% SF solution), and PLGA-SF-

NT-3 (3% SF solution with NT-3). In order to seed neuro-

spheres into the scaffold, we put 3.1 × 106 cells in 20 mL 

culture medium consisting of DMEM/F12 at a ratio of 1:1, 

10% FBS, and 50 µg/mL ascorbic acid (Sigma-Aldrich) on 

top of PLGA slice with Waterman filter paper (#1) beneath 

the slice to gently suck cells into the pores. Slices were incu-

bated in 35 mm culture dishes for 14 days, with the culture 

medium replaced every 2 days.

Live–dead staining
After 14 days of culture, PLGA slices were rinsed with 0.1 M 

PBS (pH 7.4) for 30 minutes, followed by staining in 2 mL 

0.1 M PBS containing 2 mM of calcein-AM and 4 mM ethid-

ium homodimer (EthD-III) (Live/Dead Assay Kit; Invitrogen) 

for 1 hour at 37°C. Slices were then fixed with 4% formal-

dehyde and cryosectioned into 20 µm  continuous sections. 

Five sections from the peripheral edge of the PLGA slices 

(peripheral sections) and five sections from the center of the 

slices (center sections) were used for comparison. Live cells 

stained with calcein-AM showed a green color, and dead cells 

stained with EthD-III showed a red color under fluorescent 

microscopy. Cell death rate was calculated by determining the 

percentage of EthD-1-positive cells over the total number of 

cells from five randomly selected fields in each section.

Immunocytochemistry
Differentiation and synaptogenesis were determined using 

immunocytochemistry (ICC) staining of cryosections, fol-

lowing standard protocol. Antibodies used in this section 

included rabbit anti-γ-aminobutyric acid and rabbit anti-

glutamate, both at ratios of 1:300, mouse anti-Map2, rabbit 

anti-TuJ-1, rabbit anti-5-HT, and rabbit anti-MBP, all at 

ratios of 1:500, and also rabbit anti-glial fibrillary acidic 

protein and mouse anti-O
4
, again, both at ratios of 1:1000 

(all from Sigma-Aldrich), as well as mouse anti-PSD95 and 

rabbit anti-synapsin, both at ratios of 1:500 (both from Cell 

Signaling Technologies, Beverly, MA), and finally rabbit 

anti-ChAT and rabbit anti-S100, both at a ratio of 1:500 (both 

from Chemicon International, Inc, Billerica, MA).

Western blotting
PLGA slices for cell coculture were triturated using a fire-

polished glass pipette with 0.25% trypsin in 0.03% EDTA, 

which was then rinsed three times. Cells were collected and 

lysed in RIPA buffer (1 × PBS, 1% NP40, 0.5% sodium 

deoxycholate, 0.1% sodium dodecyl sulfate [SDS], plus the 

protease inhibitor, phenylmethylsulfonyl fluoride). The pro-

tein concentration in cell lysates was determined by a BCA 

protein assay kit (Pierce Protein Research Products; Thermo 

Fisher Scientific Inc, Rockford, IL). Whole cell lysates 

were separated by 10% SDS-polyacrylamide gel, followed 

by the standard Western blotting protocol using antibodies 

against TuJ-1 and anti-GFAP. Lysates from neonatal rat 

brains were used as a positive control. Signal intensity of 

the blots was measured using TotalLab software (Nonlinear 

USA Inc, D urham, NC). All experiments were repeated three 

times, and the statistics were analyzed using SPSS software 

(version 11.5; SPSS, Chicago, IL).

Ultrastructural observation
PLGA scaffolds were f ixed in 2% glutaraldehyde for 

90 minutes, osmicated with 1% osmic acid for 1 hour, and 

then dehydrated with a gradient concentration of ethanol. 

Samples were coated with platinum and examined under the 
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scanning electron microscope (SEM; Philips XL30 FEG; 

Philips, Eindhoven, The Netherlands) at 10 kV.

In preparation for viewing under transmission electron 

microscope (TEM; Philips CM 10; Philips), the PLGA-SF-

NT-3 scaffold was fixed with 2.5% glutaraldehyde at 4°C for 

30 minutes, followed by osmication and dehydration. The 

scaffolds were then embedded in epon overnight, followed 

by polymerization at 60°C for 48 hours. Use of acetone or 

epoxypropane was avoided, since PLGA is destroyed by these 

organic solvents. Ultrathin sections were obtained using the 

Reichert-Jung Ultracut E ultramicrotome (C. Reichert AG, 

Vienna, Austria) and examined under TEM.

Detection of synaptic activity
Grafted cells were cultured for 14 days in different PLGA 

scaffolds. Cells were then loaded with 10 µM FM1-43 

[(N-3-triethylammonmpropyl)-4-(4-(dibutylamino)styryl)] 

or 10 µM FM4-64 [N-(3-triethylammoniumpropyl)-4-(6-

(4-(diethylamino)phenyl) hexatrienyl)pyridiniumdibromide] 

(both from Invitrogen) under high K+ (50 mM) concentration 

for 10 minutes.21,22 High K+ levels stimulated recycling of 

endocytic synaptic vesicles containing FM1-43 or FM4-64. 

Scaffolds were then rinsed three times (for 15–20 minutes 

each time) in medium without FM1-43 or FM4-64, to bring 

endocytic/exocytotic activities to base level. This also 

eliminated nonspecific labeling of cytoplasmic membranes, 

but kept synaptic vesicles labeled by FM1-43 or FM4-64. 

Cells were then unloaded by induction of depolarization 

with high K+ for the second time. Release of FM1-43-or 

FM4-64-labeled synaptic vesicles was imaged under fluo-

rescent microscopy, using a Zeiss LSM 710 laser scanning 

microscope (Carl Zeiss Shanghai Co, Ltd, Beijing, China).

Analysis of MBP-positive fiber
Myelin basic protein (MBP), a marker of myelin sheaths, is 

important in the process of myelination. MBP-positive fibers 

were examined by single or costaining of PLGA sections with 

Map2 and MBP and visualized under fluorescent microscopy. 

For each experimental group, at least five fields of each section 

(including four corners and one center) were imaged. MBP 

signal spinning longer than 10 µm was considered as indica-

tion of the presence of MBP fibers. The percentage of positive 

fibers of each group was determined relative to the sum of 

positive ones. All experiments were repeated three times.

Statistical analysis
For quantification of cell types in any given experiment, at 

least five random fields were selected and photographed under 

20× lens. The percentage of positive cells was determined 

relative to the total number of DAPI-labeled cell nuclei. We 

counted about 500 cells in every group. Statistical analyses 

were performed using ANOVA for Student’s t-test. A P-value 

smaller than 0.05 was considered statistically significant.

Results
Culture of NSCs and SCs
NSCs and SCs were isolated from the whole hippocampi and 

sciatic nerves of rat pups. Cells were observed under phase-

contrast microscope 14 days later. SCs displayed character-

istic morphology, with spindle-shaped bodies and bipolar 

processes (arrow in Figure 1A). To determine the purity 

of cultured SCs, cells were immunostained with antibody 

against S100, a marker for SC. Approximately 95% of the 

cells were S100-positive (Figure 1B). NSCs were assessed 

with nestin, a marker for neural precursors. Immunostain-

ing results demonstrated that almost two-thirds of cultured 

cells were nestin-positive (Figure 1C, data not shown), 

BA

C

E

15 kV ×200 100 µm PC-SEM PC-SEM20 µm×65010 kV

F

D

Figure 1 Schwann cells (SCs) and neural stem cells (NSCs) culture and 
identification. (A) SCs (arrow) were viewed under light microscopy; (B) Cell 
bodies (arrow) were stained with antibodies against S100 and nuclei were labeled 
by DAPI; (C) Neurospheres were stained with antibodies against nestin, a marker 
of NSCs; (D) Nuclei in the neurosphere were labeled by DAPI. Scale bar = 20 µm 
in (A–B) and 10 µm in (C–D); (E) SEM of a transverse section of PLGA scaffold 
shows one of the tubes (arrow). There are numerous pores with variable diameters 
between tubes; (F) A longitudinal section of PLGA was imaged under high SEM.
Note: The arrow points to the radial channel that extends from the scaffold tube.
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; SEM, scanning electron micro-
scope; PLGA, poly-(lactic acid-co-glycolic acid).
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and the nuclei were labeled by DAPI (Figure 1D). These 

NSCs and SCs were then grafted into the NT-3-loaded PLGA 

carriers.

The structure of PLGA scaffolds
To determine whether our PLGA scaffolds were able to form 

an optimal structural environment for the seeded NSCs, 

we examined the architecture of the scaffolds under SEM. 

The PLGA rods had an average length of 2 mm, and an 

 average diameter of 5 mm. Tubes in each rod were 0.5 mm 

in diameter (arrow in Figure 1E). Numerous pores with 

diameters from 200 µm to 300 µm were dispersed in the 

PLGA scaffold. High magnification SEM of a longitudinal 

PLGA section showed many channels (arrow in Figure 1F) 

radially extended from the tube, with many small pores 

distributed in their walls.

Bioactivity of NT-3 released  
from PLGA carriers
To determine whether bioactive NT-3 can be released 

from PLGA scaffolds, we monitored levels of NT-3 in the 

medium after 1 hour to 4 weeks of culture by ELISA in each 

of the three different groups. In the PLGA-3% SF solution 

group, NT-3 release from NT-3-loaded PLGA carriers was 

t riphasic, consisting of a typical burst of release within the 

first 6 hours, followed by a period of slow increase until day 

18, and finally a stable rate until day 35 (Figure 2A). On the 

other hand, in the PLGA-1% SF solution group, the release 

rate of NT-3 reached a peak on day 7, and thereafter began to 

decline (Figure 2B). In the PLGA-6% SF solution group, the 

release curve of NT-3 was similar to that of the PLGA-3% SF 

solution group, except for a lower level of NT-3 (Figure 2C). 

By day 35, the cumulative release of NT-3 was obviously 

highest in the PLGA-3% SF solution group. There was no 

significant difference between the PLGA-1% and -6% SF 

solution groups in the total of NT-3 released (Figure 2D). 

Taken together, these results suggest that NT-3-loaded PLGA 

carriers are an efficient way of releasing bioactive NT-3, 

and embedding NT-3 in the PLGA-3% SF solution not only 

permitted the release of more NT-3, it also ensured a stable 

and constant supply of NT-3.

Survival and differentiation of NSCs  
in NT-3-loaded PLGA carriers
To detect whether NSCs and SCs were viable in NT-3-

loaded PLGA carriers, cells grafted into the carriers were 

cultured for 14 days, and stained with calcein-AM and 

EthD-III. Viable cells exhibited green fluorescence (see 

stars in Figure 3A–C), which was generated by esterase 

hydrolysis of membrane-permeable, calcein-AM. Dead 
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Figure 2 Secretion of NT-3 from NT-3-PLGA carriers loaded with three different SF solutions groups for at least 4 weeks. Daily release of NT-3 was examined by ELISA 
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different groups after at least 4 weeks.
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Abbreviations: NT-3, neurotrophin-3; PLGA, poly-(lactic acid-co-glycolic acid); SF, silk fibroin; ELISA, enzyme-linked immunosorbent assay.
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cells were marked by red fluorescence (see arrows in 

Figure 3A–C) from a membrane-impermeable EthD-III. 

Percentages of dead cells were not significantly differ-

ent between either the peripheral or central sections of 

the scaffolds in the PLGA-only group (2.37% ± 0.63% 

periphery; 2.54% ± 0.68% center), the PLGA-SF group 

(2.91% ± 0.72%; 2.41% ± 0.65%) and the PLGA-SF-

NT-3 group (2.36% ± 0.61%; 2.75% ± 0.74%; P . 0.05) 

(Figure 3D). These findings suggest that the survival of 

grafted cells is unaffected by their location or the nature of 

any extracellular matrix like SF.

To determine the differentiation of seeded NSCs in 

the NT-3-loaded PLGA carriers, we stained cells with 

differentiation markers, and found that the NSCs differ-

entiated into all three major CNS cell types: neurons (see 

arrow in Figure 4A–C; green), astrocytes (Figure 4A–C 

and the stars in Supplementary Figure S1A–C; red), and 

oligodendrocytes (see arrow in Supplementary Figure 

S1A–C; green). At day 14, 15.28% of 587 counted cells 

were Map2-positive in the PLGA-only group (Figure 4A, 

and Table 1), as were 21.37% of 603 in the PLGA-SF 

group (Figure 4B), and 81.15% of 623 in the PLGA-SF-

NT-3 group (Figure 4C and D). The percentage of GFAP-

positive cells was the lowest in the PLGA-SF-NT-3 group, 

compared with others ( Figure 4D). Protein levels of Map2 

or GFAP were determined using Western blotting. As 

shown in Figure 4E–H, expression of TuJ-1, the marker 

of neurons, was significantly higher in the PLGA-SF-

NT-3 group (P , 0.05; Figure 4E and F), but the level 

of GFAP was lower than in the other groups (P , 0.05; 

Figure 4G and H).

Taken together, the microenvironment in our scaffolds 

not only permitted grafted cells to survive, but also improved 

neuronal differentiation when NSCs and SCs were coseeded 

into NT-3-loaded PLGA carriers.

Synaptogenesis of NSCs
Double-immunostaining for synapsin-I and postsynaptic 

density-95 (PSD95) markers for pre- and postsynapse was 

used to determine whether NSCs and SCs in the NT-3-loaded 

PLGA carriers had developed synapses. PSD95 was mainly 

detected in the cell bodies, and synapsin-I was expressed 

in both perikaryon and neurites. As shown in Figure 5, 

there were three patterns of PSD95 (arrow) and synapsin-I 

(star) distribution: (1) cells positive for either PSD95 or 

synapsin (Figure 5A–C); (2) cells positive for both PSD95 

and synapsin-I (Figure 5C); (3) cells with positive PSD95-

staining in the body, but receiving synapsin-positive neurites, 

or extending neurites with positive synapsin (Figure 5C). 

In the PLGA-SF-NT-3 group, the percentage of PSD95- or 

synapsin-positive cells (21.45% and 28.31%, respectively) 

was significantly higher compared to other groups (P , 0.05; 

Figure 5D). Interestingly, there were more cells positive 

for synapsin-I than cells expressing PSD95. These results 

indicate that neurons are able to form synapses in PLGA-

SF-NT-3 scaffolds.
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were labeled green and dead cells were marked by red fluorescence. The arrows point to dead cells in (A) PLGA only; (B) PLGA-SF; and (C) the PLGA-SF-NT-3 group. 
The stars mark living cells; (D) Percentage of dead cells in the periphery and center of PLGA slices.
Note: Scale bar = 20 µm in A–C.
Abbreviations: NSCs, neural stem cells; SCs, Schwann cells; EthD, ethidium homodimer; NT-3, neurotrophin-3; PLGA, poly-(lactic acid-co-glycolic acid); SF, silk fibroin.
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To further examine the formation of intercellular synapses 

among grafted cells, TEM was performed on the PLGA-cell 

constructs. Three PLGA slices were taken from each experi-

mental group, and 5–6 random fields were taken in each sample 

under TEM. TEM showed that both neurons and glial cells had 

distinguishing morphological features. In general, neurons 

have nuclei with a lower electron density and well-demarcated 

nucleoli. Figure 5E shows a typical neuron extending neurites 

from soma, and connecting to a neurite from another cell. 

Under higher magnification (Figure 5F), this connection 
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Figure 4 Differentiation detection of grafted NSCs. Cells were immunostained with markers for neurons in PLGA only. (A) PLGA-SF; (B) PLGA-SF-NT-3; (C) group (Map2; 
arrows in (A–C) green), astrocytes (GFAP; stars in A–C = red). The nuclei were labeled by DAPI (=blue); (D) Compared with other groups, cells expressing Map2 in the 
PLGA-SF-NT-3 group were significantly higher than any other groups (P , 0.05; n = 3 for each group). Cells positive for GFAP were much less. By contrast, astrocytes were 
abundant in both the PLGA and PLGA-SF groups. Scale bar = 20 µm in (A–C). Cells collected from the slices were lysed, and proteins were extracted for Western blotting 
analysis; (E) Levels of TuJ-1 expression appeared higher in the PLGA-SF-NT-3 group than those in the PLGA, or PLGA-SF groups. Proteins extracted from the rat brain 
were used as a positive control (brain); (F) Quantification of TuJ-1 blot normalized against GAPDH. (P , 0.05; n = 3 for each group); (G) Western blotting against GFAP; 
(H) Quantitative analysis showed that the level of GFAP in the PLGA-SF-NT-3 was lower than that of any other groups (P , 0.05; n = 3 for each group). Stars in (D), (F), 
and (H) indicate P , 0.05 when PLGA-SF-NT-3 versus PLGA or PLGA-SF.
Abbreviations: NSCs, neural stem cells; PLGA, poly-(lactic acid-co-glycolic acid); SF, silk fibroin; NT-3, neurotrophin-3; Map2, microtubule-associated protein 2; GFAP, glial 
fibrillary acidic protein; DAPI, 4′,6-diamidino-2-phenylindole; TuJ-1, neuron-specific class III beta-tubulin; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase.
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showed typical synaptic features, including specialized high-

density pre- and postsynaptic membrane, synaptic cleft, and 

vesicles on its terminal (arrow in Figure 5F). These results 

were consistent with that of double-immunohistochemistry, 

and suggest that synaptic formation is likely to be optimal 

in the presence of NT-3, which is released from both NT-3-

loaded PLGA scaffold and SCs.

Synaptic activity of differentiated NSCs
Due to the presence of synaptic structures in the PLGA-SF-

NT-3 group, we then decided to test whether these synaptic 

structures were functional. Cells cultured in the scaffold 

for 14 days were preloaded with FM1-43 or FM4-64, 

which stained recycling synaptic vesicles from endocytosis 

under depolarizing conditions (50 mM [K+]).21,22 In order 

to eliminate nonspecific labeling on the plasma membrane 

of neuronal cell body, cells in the PLGA scaffolds were 

rinsed extensively with PBS after the preloading process. 
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Figure 5 Synaptic formation of culture cells in the NT-3-PLGA carriers. Cells were immunostained with antibodies against pre- and postsynaptic markers (PSD95 versus 
synapsin). Nuclei were labeled by DAPI (blue). (A) Only a few cells expressed synapsin (stars in A–C = green) and PSD95 (arrows in A–C = red) in the PLGA group. PSD95 
was localized in the cell body; whereas synapsin was expressed in both the cell body and neurite; (B) Synapsin- or PSD95-positive cells were sparse in the PLGA-SF group; 
(C) In the PLGA-SF-NT3 group, the cells expressed (1) cells positive for either PSD95 or synapsin; (2) cells positive for both PSD95 and synapsin; (3) cells with positive 
PSD95-staining in the body, but receiving synapsin-positive neurites extending from another cell; (D) Cells with staining of PSD95 and synapsin were manually counted. 
Compared with other groups, positively stained cells (Synapsin+ or PSD95+) in the PLGA-SF-NT3 group were significantly higher than any other groups (P < 0.05; the star in 
D indicates P , 0.05 when PLGA-SF-NT-3 versus PLGA or PLGA-SF); (E) Under transmission electron microscopy (TEM), a neuron was identified in PLGA-SF-NT-3 group. 
Note the neurite extending from the soma of one cell and connecting to a neutrite of another cell. (F) High magnification TEM of synapse formation in cultured cells, revealing 
specialized high-density pre- and postsynaptic membrane, synaptic cleft, and vesicles in its terminal.
Note: Scale bar = 20 µm in A–C, 200 nm in F.
Abbreviations: NT-3, neurotrophin-3; PLGA, poly-(lactic acid-co-glycolic acid); PSD95, postsynaptic density-95; DAPI, 4′,6-diamidino-2-phenylindole; SF, silk fibroin.

Table 1 Comparison of cell-types (mean ± SD %) among different 
groups

Groups n Map2 GFAP O4

PLGAa 3 15.28 ± 2.75 76.57 ± 3.56 7.53 ± 1.36
PLGA-SFb 3 21.37 ± 3.89 71.21 ± 4.75 6.41 ± 2.04
PLGA-SF-NT-3c 3 81.15 ± 4.99 11.35 ± 4.86 7.12 ± 1.83

Notes: One-way analysis of variance was used to show the statistical difference. 
Map2: P , 0.05 a versus b; a versus c; b versus c; GFAP: P , 0.05 a versus c; b versus c; 
P . 0.05 a versus b; O4: P . 0.05 a versus b; a versus c; b versus c. a, b, and c in 
the table represent PLGA,  PLGA-SF, and PLGA-SF-NT-3 group, respectively.
Abbreviations: Map2, microtubule-associated protein; GFAP, glial fibrillary acidic 
protein; PLGA, poly-(lactic acid-co-glycolic acid); SF, silk fibroin; NT-3, neurotrophin-3.
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A second depolarization was then induced by raising the 

K+ concentration, which led to the release of FM1-43 or 

FM4-64 by exocytosis (Figure 6). At the beginning of 

K+ stimulation, plenty of fluorescent puncta (FM1-43 or 

FM4-64) appeared in the neurites, particularly at the sites 

where neurites crossed over each other in the PLGA-SF-

NT-3 group (see arrow in Figure 6A and E). By contrast, 

barely detectable fluorescent puncta appeared in the 

PLGA-only group after preloading (Figure 6C), suggesting 

dramatically reduced endocytosis of puncta in this group. 

When cells were subjected to continuous stimulation for 

3 minutes, fluorescent puncta disappeared or reduced in 

intensity in many neurites in the PLGA-SF-NT-3 group (see 

arrows in Figure 6B, and F). However, in the PLGA-only 

group, fluorescence intensity and distribution remained 

unchanged (Figure 6D).

To quantitatively track the changes of fluorescence 

intensity, we next used fluorescence microscopy to continu-

ously record preloaded cells for 5 minutes in the PLGA-SF-

NT-3 group. A decline in FM1-43 intensity was observed in 

several waves during this process (Figure 6G). These results 

suggest that synaptic vesicles in our cultured neurons are 

able to fuse with the plasma membrane, with their contents 

diffusing into the pericellular compartment.21,22 By contrast, 

neuronal cell bodies used as an experimental control showed 

no apparent change of fluorescence over time (see arrow in 

Figure 6G).

Myelination of grafted cells
To determine whether neurites become myelinated by 

coseeded SCs in the PLGA scaffolds, we performed 

respective double-immunostaining for Map2 and MBP, 

the markers for neuron and myelin sheaths. As shown in 

Figure 7, MBP-positive fibers (arrows in Figure 7A–C; 

green) costained with neurites (red) were evident in our 

coculture system. The percentage of MBP-positive fibers 

was significantly higher in the PLGA-SF-NT-3 group, 

compared with others (P , 0.05; Figure 7D). This finding 

indicates the development of robust myelin structures in 

the PLGA-SF-NT-3 group. Furthermore, EM images of 

cultured neurons clearly reveal the presence of a myelin 

sheath (Figure 7E), which as seen is typically composed 

of several layers wrapping around axons in the PLGA-SF-

NT-3 group (Figure 7F).

Discussion
Repairing neuronal circuits after SCI remains a significant 

challenge, due to the permanent disruption of descending/

ascending pathways caused by host cell death and tissue 

disorganization, including demyelination. Although resident 

endogenous NSCs exist on the central canal lining of the 

adult spinal cord,23 their recruitment is limited in response 

to injury.24 Exogenous NSCs transplantation was proposed 

to be a strategy for spinal cord regeneration.3,12,21 However, 

whether these grafted cells are able to survive, differentiate 
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Figure 6 Release of synaptic vesicles during depolarization by high [K+]. (A) In the PLGA-SF-NT-3 group, FM1-43 fluorescent puncta were particularly concentrated at sites 
where neurites crossed over (see arrows) under stimulation of high [K+] (50 mM); (B) After 3-minute stimulation by the high [K+], fluorescence intensity of these puncta 
was weakened or disappeared; (C) By contrast, uptake of the fluorescent signal into the cells in the NSCs group was only minimal, and showed weak fluorescence prior to 
three-minute stimulation; (D) Fluorescence intensity remained unchanged after the stimulation period; (E) FM4-64 fluorescent puncta before; and (F) after stimulation of 
high [K+]; (G). FM1-43 fluorescence was tracked on the cells in the PLGA-SF-NT-3 group, which was continuously depolarized for 5 minutes. Recording from the cytoplasm 
was used as a control, and showed no significant change over the 5-minute period (arrow in G).
Abbreviations: PLGA, poly-(lactic acid-co-glycolic acid); SF, silk fibroin; NT-3, neurotrophin-3; NSCs, neural stem cells; FM1-43, [(N-3-triethylammonmpropyl)-4-
(4-(dibutylamino)styryl)]; FM4-64, [N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl) hexatrienyl)pyridiniumdibromide].
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Figure 7 Formation of myelin sheath in the coculture system. NSCs and SCs in the cells/PLGA were cultured for 14 days, and immunostained with antibodies against neuron 
and myelin sheath markers (Map2 = red versus MBP = green). Nuclei were labeled by DAPI (blue). (A) Arrow indicates segments of neuronal axons wrapped by (MBP-
positive) myelin sheath in PLGA; (B) the PLGA-SF group; and (C) PLGA-SF-NT-3 group, respectively; (D) Abundance of MBP-positive fibers in the PLGA-SF-NT-3 group 
compared with other groups (P , 0.05; n = 3 for each group); (E) TEM showing formation of the myelin sheath in the PLGA-SF-NT-3 group; (F) Typical, characteristic sheath 
composed of several layers wrapped around axons. 
Note: Scale bar = 20 µm in (A–C), 200 nm in (F).
Abbreviations: NSCs, neural stem cells; SCs, Schwann cells; PLGA, poly-(lactic acid-co-glycolic acid); SF, silk fibroin; NT-3, neurotrophin-3; Map2, microtubule-associated 
protein 2; MBP, myelin basic protein; TEM, transmission electron microscopy.

into neurons, form myelin structures, and then re-establish a 

functioning neuronal network, remains unknown.

In this study, we cocultured NSCs and SCs in 

NT-3-loaded PLGA carriers, and systemically investigated 

the survival and differentiation of cultured cells in relation 

to the nature of the scaffold matrix. Recent approaches 

employed for neuronal culture have aimed at embedding or 

encapsulating neurotrophic factors into a polymer13,20,21 or 

protein matrix25 to treat SCI. SF has already exhibited excel-

lent biocompatibility both in vitro25,26 and in vivo,27 good 

mechanical properties,28 and a slow rate of biodegradation. 

Embedding NTs into SF is considered a viable strategy for 
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long-term NT release.25 Our study exhibited excellent release 

of NT-3 from NT-3-loaded PLGA carriers. We found that 

NT-3 release persists for longer than 4 weeks. This is consis-

tent with recent studies reporting that bioactive NT-3 can be 

detected from 1 hour to 4 weeks due to its embedding into 

chitosan carriers.13,20 Our experiment not only demonstrates 

a stable and constant rate of NT-3 release, it also provides a 

suitable concentration of SF solution for the embedding of 

neurotrophic factors.

Different NT-3 release profiles were observed when 

equal amounts of NT-3 were embedded into three different 

concentrations of SF solution. This may be due to the strong 

interaction between NT-3 and SF, owing to the opposite 

charge of two proteins. The fact that cumulative NT-3 release 

is highest in the case of the 3% SF solution may be due to 

the stronger interaction between NT and SF in the 6% SF 

solution, whereas in the 1% SF solution, much less NT was 

sequestered in the first place. Thanks to the constant release 

of NT, our data showed excellent survival of grafted cells 

(dead cells were ,4%), and demonstrated a uniform sur-

vival rate in both the peripheral and central sections of the 

slices from the three scaffold types. Taken together, these 

findings suggest a promising NT-3 delivery system, which 

will benefit both neural survival and the differentiation of 

grafted cells.

Our data clearly showed that the majority of NSCs dif-

ferentiated into neurons in NT-3-loaded PLGA carriers. 

More importantly, these neurons also exhibited synaptic 

plasticity, formed synapses and myelin sheaths with SCs, 

and established a functional neural construction in vitro. 

This premise is supported by several lines of evidence. 

(1) morphology of synaptic structures and myelination was 

observed by the use of TEM and double-immunostaining; 

(2) the synaptic structures were excitable when subjected to 

external stimuli (ie, a high K+ concentration). We found that 

synaptic vesicles tracked by fluorescence dye (FM1-43 or 

FM4-64) were released upon depolarization.

Neuronal differentiation is a prerequisite for construct-

ing a neural network in vitro. In our study, NSCs showed 

different degrees of differentiation in the three coculture 

conditions. In the PLGA-SF-NT-3 group, the percentage 

of Map2-positive cells was higher than in the other groups 

(81.15% versus 15.28% and 21.37%, respectively). On the 

contrary, the percentage of GFAP-positive cells was lower. 

These findings are further supported by the blot detection of 

TuJ-1 and GFAP. Similar results have also been reported in 

others’ earlier works.13,20

Furthermore, it is well-known that extracellular matrix 

(ECM) components play a role in the differentiation of 

NSCs into neurons.29,30 Our data showed that the rate of 

Map2-positive cells was higher in the PLGA-SF group than 

in the PLGA-only group. These results not only demonstrated 

the known function of NT-3 in neuronal survival and differ-

entiation, but also suggested that SF may contribute to the 

differentiation of neurons.

The presence of double-immunostaining on cultured cells 

showed a robust signal against synaptic markers, synapsin 

and PSD95. Percentages of either synapsin- or PSD95-

positive cells were highest in the PLGA-SF-NT-3 group. 

This suggests that abundant synaptic connections are formed 

inside PLGA scaffolds, which is also consistent with the 

role of NTs in synaptic formation.18 Furthermore, electron 

microscopy studies showed the presence of mature synapses, 

including specialized, high-density pre- and postsynaptic 

membrane, synaptic cleft, and vesicles in its terminal.

To test whether these synaptic connections are func-

tional, we used two different fluorescent dyes, FM1-43 and 

FM4-64, to specifically label synaptic vesicles under high K+ 

depolarization conditions,31,32 and followed the fluorescent 

intensity of neuritis during a second depolarization. We 

observed that the fluorescent intensity of FM1-43-labeled 

neuritis during exocytosis gradually decreased, and fluores-

cent puncta disappeared at sites where neurites crossed over. 

Similar observations were also made by FM4-64 labeling. 

By contrast, the rate of FM1-43 fluorescent puncta uptake 

into NSCs was only minimal, and its intensity did not change 

during depolarization. Taken all together, these results sug-

gest that the coseeding of NSCs and SCs into NT-3-loaded 

PLGA carriers produces abundant synaptic connections, 

and these synaptic connections show activity in response to 

external stimuli.

Axon myelination facilitates neuronal performance 

by increasing the speed of neuronal conductance. Some 

studies also support the key role of remyelination in pro-

moting neuronal survival after injury to adult CNS.33 In 

the present study, abundant myelin sheaths were identified 

by double-immunostaining in the PLGA-SF-NT-3 group, 

but not in the control groups. Furthermore, the formation 

of myelin structure was also supported by EM analysis, 

which revealed robust myelinated axons in the PLGA-SF-

NT-3 group.

Conclusion
In the present study, we successfully constructed a pro-

tein delivery system in vitro, which releases bioactive 

NT-3 stably and constantly. Coseeding NSCs and SCs into 

these NT-3-loaded PLGA carriers not only permitted sur-

vival of grafted cells, but also promoted the differentiation 
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of NSCs into neurons. These neurons developed synaptic 

connections, exhibited synaptic activities, and became 

myelinated by coseeded SCs on their neurites. These findings 

provide functional neural constructs to serve as potential 

conduits in neural repair. Our ongoing study will now focus 

on the evaluation of new construction in an in vivo model 

of SCI, to promote the recovery of both motor and sensory 

functions.
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Figure S1 NSCs and SCs were cultured in the scaffold for 14 days. Cells were immunostained in (A) PLGA only; (B) PLGA-SF; (C) PLGA-SF-NT-3 group with markers for 
astrocytes (GFAP; star; red), and oligodendrocytes (O4; arrow; green). Nuclei were stained by DAPI (blue); (D) Cells with staining of O4 were manually counted. There was 
no statistical difference among groups (P . 0.05; n = 3 for each group).
Note: Scale bar = 20 µm in A–C.
Abbreviations: NSCs, neural stem cells; SCs, Schwann cells; PLGA, poly-(lactic acid-co-glycolic acid); SF, silk fibroin; NT-3, neurotrophin-3; GFAP, glial fibrillary acidic 
protein; DAPI, 4′,6-diamidino-2-phenylindole.
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