RAPID COMMUNICATION

Characterization of a Novel Sequence Type (ST) 6758 Klebsiella Pneumoniae and the Role of IncX3 Plasmid in the Transmission of bla_{NDM}

Yawen Zhang*, Qiao Li*, Lirong Li, Hao Guo 6, Fang He 6

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People's Republic of China

*These authors contributed equally to this work

Correspondence: Fang He, Email hetrue@163.com

Purpose: Carbapenem-resistant *Klebsiella pneumoniae* (CRKP) has emerged as a significant public health threat, particularly as a superbug responsible for nosocomial infections. In this study, we report a novel sequence type 6758 of K. *pneumoniae* harboring the $bla_{\text{NDM-1}}$ gene.

Material and Methods: Antimicrobial susceptibility testing was conducted according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). The complete genome sequence of the strain was determined using the Illumina NovaSeq 6000 platform and long-read MinION sequencer. Genomic features and resistance mechanisms of the strain were further comprehensively analysed using various bioinformatics approaches.

Results: Antimicrobial susceptibility testing revealed that this strain exhibited resistance to multiple antimicrobials, including ceftazidime, ceftriaxone, cefazolin, cefepime, imipenem, meropenem, ampicillin/sulbactam, and sulfamethoxazole/trimethoprim. The genome analysis identified sixteen resistance genes. The $bla_{\text{NDM-1}}$ carbapenemase gene is located on a 47,823 bp IncX3-type plasmid (pNDM-CRKP331). A total of 41 *K. pneumoniae* strains carrying similar IncX3-type plasmids were retrieved from the NCBI database, representing 20 sequence types (STs) across 11 countries. The most common resistance gene carried by these IncX3-type plasmids is bla_{NDM} , and all these plasmids contain only the bla_{NDM} gene. The bla_{NDM} -carrying IncX3-type plasmids are widely prevalent in *K. pneumoniae* in China, spanning 15 STs. **Conclusion:** In summary, our study reports the first genome sequence of an ST 6758 *K. pneumoniae* strain containing the class B β-lactamase $bla_{\text{NDM-1}}$ isolated from a clinical sample. Given the global emergence of bla_{NDM} , measures should be taken to prevent the spread of these bla_{NDM} -carrying IncX3-type plasmids. Our findings contribute to the understanding of the transmission mechanisms of bla_{NDM} in *K. pneumoniae*.

Keywords: carbapenem-resistant *Klebsiella pneumoniae*, *bla*_{NDM-1}, whole-genome sequencing, IncX3 type plasmid, ST6758

Introduction

Klebsiella pneumoniae, as one of the most prevalent Gram-negative pathogens, is a significant source of both community-acquired and nosocomial infections.^{1,2} The widespread use of antibiotics has led to the emergence of multidrug resistance (MDR) in *K. pneumoniae*, particularly the rise of carbapenem-resistant *K. pneumoniae* strains (CRKP). This trend poses a substantial threat to human health, as the options for treating CRKP infections dwindle, given the diminishing efficacy of available antibiotics.³

The first reported instances of CRKP date back to the 1990s.⁴ Infection caused by carbapenem-resistant strains exhibit significantly higher mortality rates compared to those caused by carbapenem-susceptible strains.⁵ In the United States and European countries, *K. pneumoniae* ST258 (sequence type) contributes significantly to the spread of carbapenem resistance, while ST11 is predominant in China.^{6,7} The New Delhi metallo-β-lactamase-1 (NDM-1) was initially identified in *K. pneumoniae* and *Escherichia coli* in 2008 and has since become a global

4935

Zhang et al Dovepress

concern.⁸ Due to the presence of mobile genetic elements such as transposons and plasmids, *K. pneumoniae* often plays a pivotal role in facilitating the transfer of antimicrobial resistance genes between environmental strains and clinical strains.⁹ The IncX type plasmid is often associated with carbapenemase production, and the IncX3 plasmid is essential for the delivery of carbapenemase genes, especially *bla*_{NDM}.^{10–13}

This study focuses on the genomic characterization of a new sequence type, ST6758 CRKP strain, isolated from an inpatient at a teaching hospital in China, which carries $bla_{\text{NDM-1}}$ on an IncX3 type plasmid. The complete genome sequence of this strain was determined, and a comprehensive analysis was conducted to examine its genomic features, plasmid characteristics, and resistance mechanisms. Furthermore, the transmission mechanisms of the carbapenemase gene $bla_{\text{NDM-1}}$ in K. pneumoniae were investigated.

Material and Methods

Patient and Isolate

On May 27, 2019, a 69-year-old male was admitted to a tertiary hospital in Zhejiang Province, China, presenting with dysuria. Clinical evaluations led to the diagnosis of prostatic hyperplasia and urinary retention. *K. pneumoniae* strain CRKP331 was isolated from the patient's urine sample on May 29. The strain was initially identified using the VITEK MS system (bioMérieux, France) and further validated by whole-genome sequencing. CRKP331 was susceptible to aminoglycoside antibiotics, and the aminoglycoside antibiotic isepamicin was used to treat the urinary tract infection. The patient eventually recovered.

Antimicrobial Susceptibility Test

Antimicrobial susceptibility testing was conducted using the VITEK 2 system (bioMérieux, France) with Gram-negative antimicrobial susceptibility testing cards (AST-GN13) and the standard broth microdilution test, adhering to the guidelines established by the Clinical and Laboratory Standards Institute (CLSI). The antimicrobial agents tested in this study included amikacin, ceftazidime, ceftriaxone, ampicillin/sulbactam, sulfamethoxazole/trimethoprim, cefepime, gentamicin, imipenem, meropenem, levofloxacin, and tobramycin. Breakpoints were interpreted in accordance with the recommendations outlined in the CLSI guidelines.¹⁴

Whole-Genome Sequencing

The complete genome sequence of the strain was determined utilizing the Illumina NovaSeq 6000 platform (Illumina Inc., San Diego, CA, USA) in the 150-bp paired-end sequencing mode, with an average sequencing depth of ≥100×. Furthermore, long-read sequencing was conducted using a MinION sequencer (Nanopore, Oxford, UK). The short Illumina reads and long MinION reads were subjected to hybrid assembly using Unicycler (v0.4.7) in conservative mode. This resulted in the generation of complete circular contigs, which were then refined and corrected using Pilon with Illumina reads through multiple rounds of iteration until no further changes were detected. The resulting complete genome sequence was subsequently annotated automatically using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) server.

Genomic Analysis

A novel sequence type of *K. pneumoniae* was assigned utilizing the conserved segments of seven essential housekeeping genes (*rpoB*, *gapA*, *mdh*, *pgi*, *phoE*, *infB* and *tonB*) based on the BIGSdb-Pasteur MLST (Multilocus Sequence Typing) analysis (https://bigsdb.pasteur.fr/klebsiella/). The BacWGSTdb server was employed to investigate the strain's antimicrobial resistance genes and plasmid replicons. A comparative analysis was conducted using circular representations, depicted as concentric rings, to assess the *bla*NDM-1-carrying plasmid and its resemblance to similar plasmids. This analysis was performed using the BLAST Ring Image Generator (BRIG). A sequence Typing analysis was performed using the BLAST Ring Image Generator (BRIG).

Phylogenetic Analysis

The phylogenetic tree was examined using CSI Phylogeny (version 1.4),¹⁸ which is based on a core-genome single-nucleotide polymorphism (SNP) strategy. CSI Phylogeny was employed to identify and filter *K. pneumoniae* CRKP331

Dovepress Zhang et al

SNPs, validate the SNPs, and construct a phylogeny based on a concatenated alignment of the high-quality SNPs. The maximum parsimony algorithm was then used to generate a phylogenetic tree from the resulting SNPs, which was subsequently visualised on the iTOL webpage.¹⁹

Nucleotide Sequence Accession Numbers

The whole genome results for strain CRKP331 have been deposited in DDBJ/EMBL/GenBank, and the accession number is SAMN40739512.

Ethical Approval

This study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of Zhejiang Provincial People's Hospital (Ethics approval number 2019KY244). In this case, the Ethics Committee of Zhejiang Provincial People's Hospital granted an exemption from written informed consent because our study focused solely on bacteria. The clinical isolate *K. pneumoniae* CRKP331 was collected as part of the routine hospital laboratory procedures.

Results and Discussion

The minimum inhibitory concentrations (MICs) of the tested antibiotics are shown in <u>Table S1</u>. *K. pneumoniae* CRKP331 exhibited resistance to various antibiotics, including ceftazidime, ceftriaxone, cefazolin, cefepime, imipenem, meropenem, ampicillin/sulbactam, and sulfamethoxazole/trimethoprim. However, it remained susceptible to amikacin, gentamicin, and tobramycin, and was classified as intermediate to levofloxacin.

The genome sequence of *K. pneumoniae* CRKP331 consists of five contigs, with a total length of 5,765,149 bp. Of these, one is a chromosome, measuring 5,317,817 bp, while the remaining four are plasmids. Contig 2 is 206,059 bp, contig 3 is 111,193 bp, contig 4 is 82,257 bp, and pNDM-CRKP331 is 47,823 bp in length. The novel sequence type of CRKP331 was classified as ST6758 through MLST analysis. This classification was achieved by analyzing the conserved segments of seven essential housekeeping genes (*rpoB4*, *gapA2*, *mdh1*, *pgi1*, *phoE4*, *infB4* and *tonB174*).

The antimicrobial resistance genes identified in the genome of the isolate are presented in Table 1. We identified the β -lactam resistance genes $bla_{SHV-187}$, bla_{TEM-1B} , $bla_{CTX-M-3}$, and bla_{NDM-1} ; the fosfomycin resistance gene fosA; the

Table I A	Antimicrobial	Resistance	Genes	(ARGs)	in	Isolate	K.	Pneumoniae	CRKP331
-----------	---------------	------------	-------	--------	----	---------	----	------------	---------

Antimicrobial Resistance Gene	Accession No. of Contig	Identity (%)	Position in Contig	Antimicrobial Resistance Category	Accession no. of Reference Gene	
oqxB	I	99.02	1,177,000.1180152	Quinolone	EU370913	
oqxA	1	99.15	1,180,176.1181351	Quinolone	EU370913	
bla _{SHV-187}	1	99.08	2,632,897.2633763	Beta-lactam	LN515533	
fosA	1	94.29	4,574,451.4574870	Fosfomycin	ACZD01000244	
aac(6')-lb-cr	2	100	112,203.112802	Quinolone	DQ303918	
ARR-3	2	99.19	112,859.113351	Rifamycin	FM207631	
dfrA27	2	100	113,484.113957	Trimethoprim	FJ459817	
aadA16	2	99.64	114,138.114983	Aminoglycoside	EU675686	
sull	2	99.89	115,414.116280	Sulphonamide	EU780013	
mph(A)	2	99.67	120,475.121396	Macrolide	U36578	
tet(A)	2	100	123,553.124827	Tetracycline	AF534183	
floR	2	98.19	125,428.126641	Phenicol	AF118107	
bla _{TEM-IB}	2	100	131,497.132357	Beta-lactam	AY458016	
bla _{CTX-M-3}	2	100	133,139.134014	Beta-lactam	Y10278	
qnr\$1	2	100	137,979.138635	Quinolone	AB187515	
bla _{NDM-1}	pNDM-CRKP331	100	33,266.34078	Beta-lactam	FN396876	

quinolone resistance genes oqxB, oqxA, qnrSI and aac(6')-Ib-cr; the trimethoprim resistance gene dfrA27; the rifamycin resistance gene ARR-3; the sulfonamide resistance gene sull; the aminoglycoside resistance gene addA16; the tetracycline resistance gene tet(A); the macrolide resistance gene mph(A) and the phenical resistance gene floR.

With the exception of oqxA, oqxB, bla_{SHV-187}, and fosA, which are located on the chromosome, the remaining resistance genes are located on plasmids. A further analysis revealed the presence of aac(6')-Ib-cr, ARR-3, dfrA27, aadA16, sul1, mph(A), tet(A), floR, bla_{TEM-1B}, bla_{CTX-M-3} and qnrS1 on plasmid 2. In addition, the carbapenem resistance gene bla_{NDM-1} was found to be located on plasmid pNDM-CRKP331. The bla_{NDM}-carrying plasmid pNDM-CRKP331 was designated as the IncX3-type plasmid. The similarity of pNDM-CRKP331 to other IncX3type plasmids was analyzed using the basic local alignment search tool (Figure 1). These analogous plasmids were

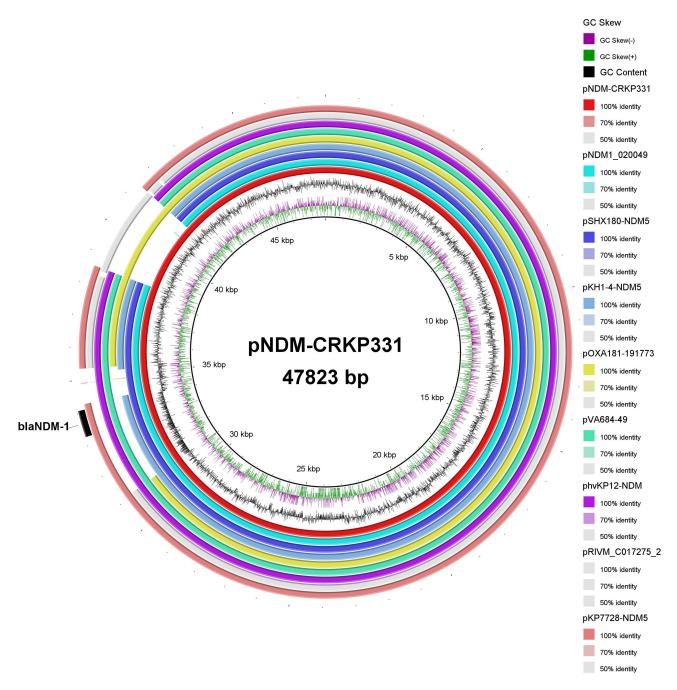


Figure I Circular comparison between the blandnut plasmid pNDM-CRKP331 and similar plasmids.

Dovepress Zhang et al

all derived from *K. pneumoniae*, including pNDM1_020049 (accession no. CP028786), pSHX180-NDM5 (accession no. CP094514), pKH1-4-NDM5 (accession no. CP102881), pOXA181-191773 (accession no. CP080367), pVA684-49 (accession no. CP093461), hvKP12-NDM (accession no. CP103320), pRIVM_C017275_2 (accession no. CP068868), pKP7728-NDM5 (accession no. CP092650). All the other plasmids, with the exception of pOXA181-191773 and pRIVM_C017275_2, carry the $bla_{\rm NDM}$ gene. This suggests that the IncX3 plasmid was an important vector for $bla_{\rm NDM}$ gene transfer in *K. pneumoniae*. A variety of $bla_{\rm NDM}$ sub-type were found on these IncX3 plasmid, which highlights the possibility that the IncX3 plasmid was one of the major platforms for $bla_{\rm NDM}$ gene evolution.²⁰

A simple annotation of the pNDM-CRKP331 plasmid was performed using the RAST Server. This revealed the presence of IS6 and ISKox3 upstream of bla_{NDM-1} , while ISAba125 and IS3000 were identified just downstream of bla_{NDM-1} . The ISFinder database was utilized to identify the IS element of pNDM-CRKP331. A total of twenty-two IS elements were identified in the plasmid, belonging to five IS families, including IS6, Tn3, ISKra4, ISL3, and IS30. Among these, IS6 (19/46) and Tn3 (9/46) were the most prevalent. This suggests that the bla_{NDM} gene may act as an external gene and recombine into the IncX3 plasmid via insertion or transposition of IS elements.

Using the Basic Local Alignment Search Tool (BLAST) with a threshold of 85% plasmid length and 80% coverage, 41 strains of K. pneumoniae were retrieved from the NCBI database, harboring IncX3-type plasmid similar to pNDM-CRKP331 (Table 2). Among these strains, twenty-two sequence types (STs) were identified, including ST1, ST11, ST14, ST15, ST16, ST17, ST23, ST35, ST43, ST258, ST307, ST340, ST427, ST437, ST485, ST505, ST512, ST656, ST766, ST1383, ST4523, and ST6758. The most common sequence types were ST11 (6/42), ST37 (6/42), and ST512 (5/41). These strains were distributed across 11 countries, with the highest prevalence in China (22 strains, 22/42), followed by the USA (5/42) and Italy (5/42). Phylogenetic analysis of the 42 strains is shown in Figure 2. The carbapenemase genes carried by these strains were predominantly $bla_{\rm NDM}$ (25/42). Additionally, $bla_{\rm KPC}$ was identified in 18 strains, including $bla_{\rm KPC-2}$ and $bla_{\rm KPC-3}$. Notably, five strains carried both $bla_{\rm KPC}$ and $bla_{\rm NDM}$. The CRKP331 strain demonstrates a unique spectrum of resistance genes. Nonetheless, it possesses a set of shared resistance genes with other strains, which confer resistance to β -lactams, aminoglycosides, fluoroquinolones, macrolides, tetracyclines, and sulfonamides. These observations highlight the imperative for customized therapeutic approaches and underscore the evolving and complex nature of antimicrobial resistance within K. pneumoniae.

We further investigated the IncX3-type plasmids in these strains. These plasmids predominantly carried single resistance genes (39/42), with a few (3/42) carrying two resistance genes. The resistance genes were primarily $bla_{\rm NDM}$ (25/42), encompassing three subtypes: $bla_{\rm NDM-1}$, $bla_{\rm NDM-5}$, and $bla_{\rm NDM-7}$. Three strains carried $bla_{\rm KPC}$, all of which carried two resistance genes ($bla_{\rm KPC}$ and $bla_{\rm SHV}$). Additionally, three strains carried only $bla_{\rm OXA-181}$. Some strains did not carry carbapenemase genes but instead carried an Extended Spectrum β-Lactamases (ESBLs) gene, such as $bla_{\rm SHV-12}$ (5/42) or $bla_{\rm SHV-182}$ (5/42). Notably, the five strains from Italy (all ST512) carried an IncX3 plasmid with only $bla_{\rm SHV-182}$, while the five strains from the USA (all ST258) carried an IncX3 plasmid, with four strains carrying only $bla_{\rm SHV-12}$ and one strain carrying both $bla_{\rm KPC-3}$ and $bla_{\rm SHV-12}$. Of the 22 strains from China, all carried the IncX3 plasmid, with 20 carrying $bla_{\rm NDM}$ and the other two carrying $bla_{\rm OXA-181}$. The IncX3 plasmid carrying the $bla_{\rm NDM}$ gene has been widely prevalent in *K. pneumoniae* in China, involving 15 ST types (ST1, ST11, ST14, ST15, ST17, ST23, ST35, ST340, ST485, ST505, ST656, ST766, ST1383, ST4523, ST6758).

In conclusion, we report a new ST-type CRKP strain, ST6758, which carries 16 antimicrobial resistance genes, including bla_{NDM} . These resistance genes are primarily located on plasmids, with the carbapenemase gene $bla_{\text{NDM-1}}$ specifically located on an IncX3-type plasmid. A total of 41 *K. pneumoniae* strains carrying similar IncX3-type plasmids were retrieved from the NCBI database, representing 20 ST types across 11 countries. The most common resistance gene carried by these IncX3-type plasmids is bla_{NDM} , and all these plasmids carry only a single bla_{NDM} gene. IncX3-type

Assembly	Strain	Country	Collection	Isolation Source	Query	Percent	Plasmid	ST	Antimicrobial
Accession			date		Coverage	Identity	Length	Туре	Resistance Genes
GCA 000814305.1	34618	USA	2011	Homo sapiens	82%	99.99%	43380bp	258	bla _{SHV-12}
GCA 001521895.1	NUHL24835	China	2014	Homo sapiens	94%	99.98%	46161bp	14	bla _{NDM-5}
GCA 001701845.2	20 GR 12	Greece	2012	Homo sapiens	82%	99.99%	43380bp	258	bla _{SHV-12}
GCA 001902215.1	MNCRE69	USA	2012	Homo sapiens	82%	99.99%	45288bp	258	bla _{SHV-12}
GCA 001902235.1	MNCRE53	USA	2012	Homo sapiens	82%	99.99%	45289bp	258	bla _{SHV-12}
GCA 002852995.3	SCKP020049	China	2016	Homo sapiens	94%	99.99%	54035bp	- 1	bla _{NDM-1}
GCA 003054385.1	SCM96	China	2017	Homo sapiens	94%	99.98%	46161bp	15	bla _{NDM-1}
GCA 011769805.1	50595	Czech Republic	2019	Homo sapiens	91%	99.98%	51140bp	- 11	bla _{OXA-181}
GCA 012970485.1	B16KP0226	South Korea	2016	Homo sapiens	81%	99.99%	46835bp	307	bla _{KPC-2} , bla _{SHV-106}
GCA 012971365.1	F16KP0075	South Korea	2016	Homo sapiens	81%	99.99%	46836bp	- 11	bla _{KPC-2} , bla _{SHV-182}
GCA 015353095.1	19110124	China	2019	Swine	94%	99.98%	46161bp	340	bla _{NDM-5}
GCA 015775135.1	ZG2017CW4-4-1-2	China	2017	River	94%	99.98%	49941bp	- 11	bla _{NDM-5}
GCA 016772555.1	45706	USA	2013	Homo sapiens	82%	99.99%	43379bp	258	bla _{SHV-12}
GCA 018623105.1	KP32558	China	2020	Homo sapiens	94%	99.97%	46161bp	656	bla _{NDM-5}
GCA 019443585.1	K191773	China	2019	Homo sapiens	91%	99.99%	51479bp	16	bla _{OXA-181}
GCA 019458505.1	1678	China	2021	Homo sapiens	94%	99.99%	46161bp	485	bla _{NDM-5}
GCA 020459305.1	CII	China	2018	Homo sapiens	94%	99.99%	54034bp	1383	bla _{NDM-1}
GCA 021390015.1	LZKP00001	China	2020	Homo sapiens	94%	99.98%	46162bp	35	bla _{NDM-5}
GCA 021397585.1	KP46	China	2017	Homo sapiens	92%	99.98%	53096bp	15	bla _{NDM-1}
GCA 022453565.1	KP7728	China	2021	Homo sapiens	91%	99.99%	54048bp	17	bla _{NDM-5}
GCA 022649725.1	WCHKP115038	China	2018	Homo sapiens	94%	99.99%	46161bp	- 11	bla _{NDM-5}
GCA 023612215.1	SOI	Australia	2016	Homo sapiens	91%	99.99%	54048bp	15	bla _{NDM-7}
GCA 024226755.1	LH13-d	Switzerland	2022	Gallus gallus domesticus	80%	99.95%	46338bp	427	bla _{NDM-1}
GCA 024396875.1	KP82	China	2013	Homo sapiens	94%	99.99%	54035bp	437	bla _{NDM-5}
GCA 024637895.1	SHX180	China	2018	Homo sapiens	94%	99.99%	53065bp	4523	bla _{NDM-5}
GCA 024734155.1	KHI	China	2019	Homo sapiens	91%	99.98%	52085bp	37	bla _{NDM-5}
GCA 024734195.1	KW2	China	2019	Well water	94%	99.98%	46161bp	766	bla _{NDM-5}
GCA 024762135.1	hvKP12	China	2021	Homo sapiens	94%	99.99%	46161bp	- 11	bla _{NDM-5}
GCA 025677745.I	BSIKPN-11	China	2017	Homo sapiens	94%	99.98%	46161bp	П	bla _{NDM-5}

GCA 026247925.1	LC-1873/18	Italy	2018	Homo sapiens	82%	99.99%	43380bp	512	bla _{SHV-182}
GCA 026247945.1	LC-79/19	Italy	2019	Homo sapiens	82%	99.99%	43380bp	512	bla _{SHV-182}
GCA 026247965.1	LC-394/19	Italy	2019	Homo sapiens	82%	99.99%	43380bp	512	bla _{SHV-182}
GCA 026247985.1	LC-395/19	Italy	2019	Homo sapiens	82%	99.99%	43380bp	512	bla _{SHV-182}
GCA 026248005.1	LC-422/19	Italy	2019	Homo sapiens	82%	99.99%	43380bp	512	bla _{SHV-182}
GCA 028472725.1	SCKP090351	China	2019	Homo sapiens	94%	99.99%	54035bp	23	bla _{NDM-1}
GCA 028554845.1	S5 CRE5a	USA	2017	Homo sapiens	82%	99.99%	53321bp	258	bla _{KPC-3} , bla _{SHV-12}
GCA 029623595.1	GIMC1009:Kpn-52ICU-2H	Russia	2021	Homo sapiens	80%	99.99%	48359bp	307	bla _{NDM-1}
GCA 029834605.1	IITJ BC16	India	2021	Homo sapiens	87%	99.99%	46612bp	16	bla _{NDM-5}
GCA 030061645.1	VA684	Chile	2019	Homo sapiens	94%	99.99%	48523bp	505	bla _{NDM-7}
GCA 030544725.1	T877-PC	China	2021	Homo sapiens	91%	99.99%	51479bp	43	bla _{OXA-181}
GCA 030552975.1	KP9	China	2021	Homo sapiens	94%	99.98%	46162bp	37	bla _{NDM-5}
			L	1	1	l	I		

Zhang et al Dovepress

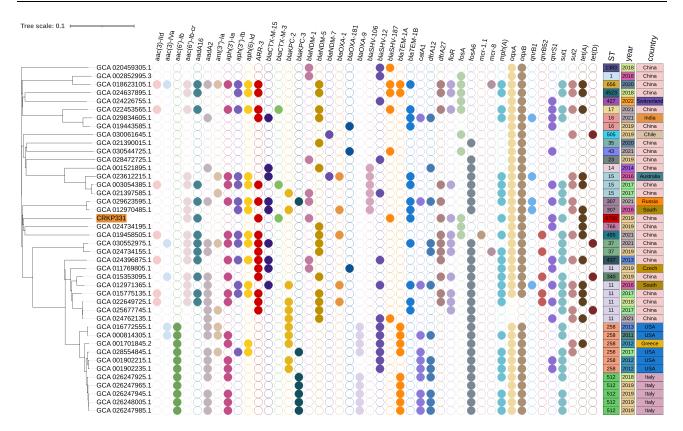


Figure 2 Phylogenetic analyses of CRKP331 and 41 K. pneumoniae strains carrying an IncX3-type plasmid similar to pNDM-CRKP331. The antimicrobial resistance genes are represented by different colours in the cells, whereas the gene is absent in the empty cells. Each square colour indicates a specific sequence type.

plasmids carrying the bla_{NDM} gene are widely prevalent in K. pneumoniae in China, spanning 15 ST types. Measures should be taken to prevent the spread of these bla_{NDM} -carrying IncX3-type plasmids. Our findings contribute to the understanding of the transmission mechanisms of carbapenemase genes in K. pneumoniae.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (82172314) and the Zhejiang Provincial Medical and Health Science and Technology plan (2022KY022 and 2023KY484).

Disclosure

The author reports no conflicts of interest in this work.

References

- 1. Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev. 2019;43:123-144.
- 2. Xu J, Zhao Z, Ge Y, He F. Unravelling the genome sequence of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae ST11 isolated from a bloodstream infection. *J Global Antimicrob Resist*. 2020;20:339–341. doi:10.1016/j.jgar.2020.01.021
- 3. Ahmed S, Ahmed MZ, Rafique S, et al. Recent Approaches for Downplaying Antibiotic Resistance: molecular Mechanisms. *Biomed Res Int.* 2023;2023(1):5250040. doi:10.1155/2023/5250040
- 4. Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. *Lancet Infect Dis.* 2013;13(9):785–796. doi:10.1016/S1473-3099(13)70190-7
- 5. Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. *Ann Clin Microbiol Antimicrob*. 2017;16(1):18. doi:10.1186/s12941-017-0191-3
- 6. Wang Q, Wang X, Wang J, et al. Phenotypic and Genotypic Characterization of Carbapenem-resistant Enterobacteriaceae: data From a Longitudinal Large-scale CRE Study in China (2012–2016). Clin Infect Dis. 2018;67(suppl 2):S196–S205. doi:10.1093/cid/ciy/660
- 7. Ernst CM, Braxton JR, Rodriguez-Osorio CA, et al. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. *Nat Med.* 2020;26(5):705–711. doi:10.1038/s41591-020-0825-4

Dovepress Zhang et al

8. Yong D, Toleman MA, Giske CG, et al. Characterization of a New Metallo-β-Lactamase Gene, bla NDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrob Agent Chemother. 2009;53 (12):5046-5054. doi:10.1128/AAC.00774-09

- 9. Wyres KL, Holt KE. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol. 2018;45:131-139. doi:10.1016/j.mib.2018.04.004
- 10. Guo X, Chen R, Wang Q, et al. Global prevalence, characteristics, and future prospects of IncX3 plasmids: a review. Front Microbiol. 2022;13:979558. doi:10.3389/fmicb.2022.979558
- 11. Zhang Q, Lv L, Huang X, et al. Rapid Increase in Carbapenemase-Producing Enterobacteriaceae in Retail Meat Driven by the Spread of the bla (NDM-5)-Carrying IncX3 Plasmid in China from 2016 to 2018. Antimicrob Agents Chemother. 2019;63:10-128.
- 12. Ho PL, Li Z, Lo WU, et al. Identification and characterization of a novel incompatibility group X3 plasmid carrying bla NDM-1 in Enterobacteriaceae isolates with epidemiological links to multiple geographical areas in China. Emerg Microbes Infect. 2012;1(1):e39. doi:10.1038/emi.2012.37
- 13. Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci. 2019;1457(1):61-91. doi:10.1111/nyas.14223
- 14. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100. J Clin Microbiol. 2021;59(12):e0021321. doi:10.1128/JCM.00213-21
- 15. Ruan Z, Feng Y. BacWGSTdb, a database for genotyping and source tracking bacterial pathogens. Nucleic Acid Res. 2016;44(D1):D682-D687. doi:10.1093/nar/gkv1004
- 16. Ruan Z, Yu Y, Feng Y. The global dissemination of bacterial infections necessitates the study of reverse genomic epidemiology. Briefings Bioinf. 2020;21(2):741-750. doi:10.1093/bib/bbz010
- 17. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12(1):402. doi:10.1186/1471-2164-12-402
- 18. Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One. 2014;9:e104984. doi:10.1371/journal.pone.0104984
- 19. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acid Res. 2021;49(W1): W293-W296. doi:10.1093/nar/gkab301
- 20. Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM Metallo-beta-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev. 2019;32:10-128.

Infection and Drug Resistance

Dovepress

Publish your work in this journal

Infection and Drug Resistance is an international, peer-reviewed open-access journal that focuses on the optimal treatment of infection (bacterial, fungal and viral) and the development and institution of preventive strategies to minimize the development and spread of resistance. The journal is specifically concerned with the epidemiology of antibiotic resistance and the mechanisms of resistance development and diffusion in both hospitals and the community. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/infection-and-drug-resistance-journal

