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Abstract: Unmethylated cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs) 

are recognized by Toll-like receptor 9 (TLR9) found in antigen-presenting cells and B cells 

and can activate the immune system. Using CpG ODNs as an adjuvant has been found to be 

effective for treating infectious diseases, cancers, and allergies. Because natural ODNs with only 

a phosphodiester backbone are easily degraded by nuclease (deoxyribonuclease [DNase]) in 

serum, CpG ODNs with a phosphorothioate backbone have been studied for clinical application. 

CpG ODNs with a phosphorothioate backbone have raised concern regarding undesirable side 

effects; however, several CpG ODNs with only a phosphodiester backbone have been reported 

to be stable in serum and to show an immunostimulatory effect. In recent years, research has 

been conducted on delivery systems for CpG ODNs using nanoparticles (NPs). The advantages 

of NP-based delivery of CpG ODN include (1) it can protect CpG ODN from DNase, (2) it 

can retain CpG ODN inside the body for a long period of time, (3) it can improve the cellular 

uptake efficiency of CpG ODN, and (4) it can deliver CpG ODN to the target tissues. Because 

the target cells of CpG ODN are cells of the immune system and TLR9, the receptor of CpG 

ODN is localized in endolysosomes, CpG ODN delivery systems are required to have qualities 

different from other nucleic acid drugs such as antisense DNA and small interfering RNA. Studies 

until now have reported various NPs as carriers for CpG ODN delivery. This review presents 

DNase-resistant CpG ODNs with various structures and their immunostimulatory effects and 

also focuses on delivery systems of CpG ODNs that utilize NPs. Because CpG ODNs interact 

with TLR9 and activate both the innate and the adaptive immune system, the application of CpG 

ODNs for the treatment of cancers, infectious diseases, and allergies holds great promise.

Keywords: Toll-like receptor 9 (TLR9), immunostimulation, higher-order nanostructure of 

DNA, delivery system, nanoparticles

Introduction
Unmethylated cytosine-phosphate-guanosine (CpG) dinucleotide is recognized by 

Toll-like receptor 9 (TLR9) and induces immune response. Immune activity in DNA 

was first discovered when a DNA fraction of Bacille Calmette-Guérin was found to 

produce type I interferon (IFN), leading to the activation of natural killer cells; the 

antitumor effect of this induction was recognized.1 Krieg et al2 elucidated that immune 

response is caused only when CpG is included in the DNA, and that immune response 

is inactivated when the cytosine residue is methylated. This CpG sequence is found 

with high frequency in bacterial DNA, and only occasionally in mammalian DNA. 

Because CpG in mammalian DNA is methylated, it is believed that the recognition of 

unmethylated CpG sequence is an action by the immune system to recognize the DNA 
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of bacteria and eliminate it. It was then discovered that TLR9 

is the receptor of DNA containing unmethylated CpG.3

In human beings, TLR9 is mainly expressed by B cells 

and plasmacytoid dendritic cells (pDCs).4 CpG stimulates 

these cells and induces innate and adaptive immune responses 

(Figure 1). B cells whose TLR9 is activated by CpG secrete 

cytokines important to the innate immune system – including 

IL-6, IL-10, and IL-12 – using nuclear factor-kappa B and 

other signal transduction pathways.2,5,6 IL-6 and IL-12 secreted 

from B cells are also involved in adaptive immune response. 

IL-6 promotes the multiplication and activation of B cells; as 

a result, the production of antibodies is enhanced.7,8

pDCs whose TLR9 is activated by CpG secrete cytokines 

involved in innate immune response, including type I IFNs 

and tumor necrosis factor-alpha (TNFα).9 These pDCs also 

activate natural killer cells.10 Furthermore, pDCs with acti-

vated TLR9 secrete IL-12 and promote the differentiation 

of T helper (Th) 0 into Th1,11–13 as well as inducing Th1 to 

migrate to B cells through the actions of IFN-γ-inducible 

protein of 10 kDa (IP10).14,15 B cells that interact with Th1 

differentiate into plasma cells, which possess the ability 

to produce antibodies, playing a central role in adaptive 

immunity. Also, IFN-α promotes CD8-positive cytotoxic T 

lymphocyte response.16,17

Because immune response mediated by the activation of 

TLR9 induces not only the innate immune system but also 

the adaptive immune system, its application for treating 

illnesses including infectious diseases, cancers, allergies, 

and asthma holds great promise.18–21 Until now, various 

CpG oligodeoxynucleotides (ODNs) have been developed 

to induce immune response via the activation of TLR9. What 

is most important in the clinical application of CpG ODN 

is protecting CpG ODN from DNase and delivering CpG 

ODN to the TLR9 of pDCs. Chemical modification of CpG 

ODN is an effective technique to protect against degradation 

by DNase. However, several severe side effects caused by 

the modification of DNA backbone have been reported. For 

example, repeated administration of backbone-modified CpG 

ODNs has resulted in reduced immune responses, lymphoid 

follicle destruction, and organ enlargement.22 DNase-resistant 

natural CpG ODNs consisting entirely of phosphodiester 

backbone are, therefore, desirable for clinical application, 

but so far most clinical trials have been conducted using 

backbone-modified CpG ODNs. Encapsulating CpG ODN 

and sealing it inside nanoparticles (NPs) is also an effective 

method to protect ODN against break down by DNase. NPs 

may make it possible to use naturally occurring CpG ODNs 

in clinical applications.

IL-6 and IL-10
secretion

Innate immune response

CpG ODN

Adaptive immune response

IL-12

IL-12

IP-10

Th0

Th0

Th1

IL-2

Plasma cell

IgG secretion

Inhibition of IgE production

CD8+ cytolytic T lymphocyte (CTL)

IL-6

B cell

IFN-γ

IFN-α

IFN-α/β and
TNFα

secretion

Plasmacytoid
dendritic cell

(pDC)

Natural killer cells

Figure 1 Immunostimulatory effect of cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs). 
Notes: The immunomodulatory cascade triggered by CpG ODNs includes the activation of T helper 1 (Th1) cells and secretion of proinflammatory cytokines such as 
interleukin (IL)-6, IL-12, and interferon gamma (IFN-γ). The CpG motifs in either bacterial DNA or synthetic CpG ODNs act as “danger signals” to the innate immune system, 
triggering a protective immune response against the pathogen. In addition, the adaptive immune response mounted by the host afterward will maintain an immunologic 
memory and provide long-lasting protection. 
Abbreviation: TNFα, tumor necrosis factor-alpha.
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Delivery systems for CpG ODNs using NPs as carriers 

differ greatly from delivery systems for anticancer drugs 

and nucleic acid drugs such as antisense DNA and small 

interfering RNA (siRNA). For delivery of anticancer drugs 

using NPs, the NPs must be delivered from the bloodstream 

to the cancerous tissues through vascular walls. Therefore, 

NPs of around 100 nm in size are required. Also, manipula-

tion is required so that immune cells do not capture the NPs 

before they arrive at cancerous tissues. The target cells for 

the delivery of CpG ODN, on the other hand, are antigen-

presenting cells (APCs) and B cells. These immune cells 

easily take up relatively large particles, greater than 100 nm 

in size.23 For delivery of antisense DNA and siRNA, after 

they have been taken up by cells as a result of endocytosis, 

their nucleic acids must move from the endosome to the 

nucleus. However, with the delivery of CpG ODN, because 

the receptor TLR9 is localized in the endosome, CpG ODNs 

must be retained in the endosome for a long period of time. 

Therefore, delivery systems using CpG ODNs require a 

design strategy different from that of conventional drug 

delivery systems.

This review summarizes the structural features that 

depend on base sequences of CpG ODNs consisting of 

phosphorothioate and phosphodiester backbones and 

considers their relationship to the capacity of immune 

mediator cytokine induction. In addition, this review also 

considers the advantages and disadvantages in a delivery 

system of these CpG ODNs using various NPs as carriers 

and describes the possible future direction of studies on 

CpG ODNs.

Synthetic CpG ODNs with 
various structures and their 
immunostimulatory effect
DNase-resisitant CpG ODNs  
for TLR9 activation
Because ODNs that contain CpG motifs are quickly degraded 

by DNase, research has been conducted on CpG ODNs resis-

tant to DNase.24–30 DNase-resistant CpG ODNs consisting 

of a phosphorothioate backbone have been developed by 

replacing the oxygen in the phosphate group of the nucleic 

acid targeted by DNase.24,25,31 These chemically modified 

synthetic CpG ODNs are divided into at least four classes 

(Table 1 and Figure 2).

Class A (also known as type D) CpG ODN has a naturally 

occurring phosphodiester backbone and palindromic CpG 

motifs at the center of its sequence. Poly(G) sequences 

on phosphorothioate backbones are attached to the 3′ and 

5′ ends.32–34 This class of CpG ODN activates the TLR9 

of pDCs and induces IFN-α. However, it almost never 

induces the multiplication of B cells. The entire sequence of 

class B (type K) CpG ODN consists of a phosphorothioate 

backbone.33–36 This class of CpG ODN induces the 

proliferation and activation of B cells. However, its ability 

to induce IFN-α with pDCs is low.37 Class C includes 

Table 1 Features of each class of cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs)

Class A (type D) Class B (type K) Class C Class P

ODN structure Central phosphodiester region  
containing one or more CpG motifs  
in a palindrome and 5′ and/or 3′ ends  
consisting of poly(G) motifs with  
phosphorothioate backbone

Completely  
phosphorothioate backbone

One or more 5′ CpG  
motif(s) and a  
3′ palindrome

Two palindromes consisting  
of phosphorothioate backbone

Examples ODN2216 (for human) 
ODN2336 (for human) 
ODN1585 (for mouse)

ODN2006 (also know as  
PF-3512676 and CpG7909,  
for human) 
ODN1668 (for mouse) 
ODN1826 (for mouse)

ODN2395  
(for human and mouse) 
ODN M362  
(for human and mouse)

ODN21798

Mainly stimulated  
cell types

pDCs B cells pDCs and B cells pDCs

Actions Innate immune responses:  
IFN-α, TNFα, and IL-12 secretion

Innate immune responses:  
IL-6, IL-10, and  
IL-12 secretion

Intermediate between  
the A and B classes

Potency for IFN-α secretion  
is higher than that of  
CpG ODN in class C

Adaptive immune responses:  
IL-12 and IP10 secretion

Adaptive immune responses:  
antibody production;  
IL-6 and IL-12 secretion

Abbreviations: IFNα, interferon-alpha; IL, interleukin; IP10, interferon-gamma-inducible protein of 10 kDa; pDC, plasmacytoid dendritic cell; TNFα, tumor necrosis factor-alpha.
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one or two CpG motif(s) with a phosphodiester backbone 

at the 5′ end, and contains a palindromic sequence on a 

phosphorothioate backbone at the 3′ end. This class of 

CpG ODN has the capacity to induce the proliferation of B 

cells and the production of IFN-α via pDCs; it has a quality 

between classes A and B.38–41 Also, class P CpG ODN has 

two palindromic motifs on phosphorothioate backbones. It 

displays a high capacity for producing IFN-α and the ability 

to activate nuclear factor-kappa B.42

These classes of CpG ODN include a complete or par-

tial phosphorothioate backbone, so that they are resistant to 

DNase. However, side effects are a cause for concern. Reports 

of side effects include the prolongation of coagulation time 

due to the inhibition of the tenase complex,43 distribution 

of cell signaling due to nonspecific adsorption of proteins 

including transcription factors,44 and acute toxicity due to 

complement activation.45,46 These classes of CpG ODN have 

also been reported to cause renal damage.47,48 Therefore, 

ideally, naturally occurring CpG ODNs consisting only 

of phosphodiester backbone is desired. Because DNA is 

mainly decomposed by exonucleases, it is believed that a 

ring structure like a plasmid is difficult to break down. When 

DNA with only a phosphodiester backbone was formed into 

a dumbbell-like structure, it certainly displayed resistance to 

DNase.49–51 Schmidt et al52 synthesized an ODN with a phos-

phodiester backbone in a dumbbell-like structure designed 

to include CpG motifs in hairpin-loops (Figure 3A). By 

utilizing the actions of peripheral blood mononuclear cells, 

immunostimulatory effects similar to linear-structure CpG 

ODNs with phosphorothioate backbones at both ends were 

obtained. Immunostimulatory activity that induces TNF-α 

and IL-6 is found in Y-shaped DNA (Y-DNA) itself, formed 

from three single-strand DNA having naturally occurring 

phosphodiester backbones.53 DNA with branch structures, 

like Y-DNA, has outstanding cellular uptake efficiency. 

However, it has no resistance to DNase. Rattanakiat et al30 

discovered that dendrimer-like DNA (DL-DNA) (Figure 3B) 

with phosphodiester backbones, formed by linking Y-DNA 

containing CpG motif, has high immunostimulatory  activity. 

One of the causes of this high activity is believed to be 

DL-DNA’s resistance to DNase. Recently, Nishikawa et al54 

observed that TNF-α release from RAW264.7 cells at 8 hours 

after stimulation by CpG motifs contained X-shaped DNA 

consisting entirely of phosphodiester backbone. This suggests 

that X-shaped DNA was stable for 8 hours at least, although 

Y-DNA has no resistance to DNase. Li et al55 synthesized 

the CpG-bearing DNA tetrahedral nanostructure with only 

a phosphodiester backbone (Figure 3C). The core tetrahedral 

structure comprised four 55-mer ODNs self-assembled with 

one another by an annealing process. CpG motif sequence 

was linked to each ODN via a 7-mer oligothiamine spacer. 

1 2 3 4

30

Y-DNA

CpG-A CG

CG

CG

C
G

CG

C
G

CG

CG

CpG-B
CpG-C
CpG-D

G1

G2

G3

gg g g g

aggtggtaacccctaggggttaccacct
tccaccattggggatccccaatggtgga

gg

g

c c

c
c

c

c

tt
t
t

t
t

t
t
t

tt

a a a a

g

g

ggggg

g

c

c

c

c

c

c
tt

t
t
t
tt

t
t

t
t

a a a a
a

a

A

B

C

Figure 3 Structures of cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides 
(ODNs) consisting of entirely phosphodiester backbone. (A) Sequence and structure 
of CpG ODN with a dumbbell-like structure: the CpG ODN with a dumbbell-
like structure has 30 nucleotides in both loops that contain three CpG dinucleotide 
motifs.a (B) Structure of dendrimer-like DNA: Y-shaped DNA consists of three 
single-stranded DNA with 30 nucleotides containing CpG dinucleotide motifs; 
G1, G2, and G3 dendrimer-like structures were synthesized by ligation of Y-shaped 
DNA; the sizes of CpG ODNs with G1, G2, and G3 dendrimer-like structures 
were about 12, 20, and 36 nm, respectively.b (C) Assembly of CpG bearing DNA 
tetrahedral nanostructure: the core tetrahedral nanostructure consists of assembly 
with four 55-mer ODNs. The CpG motif is linked to each ODN via a 7-mer 
oligothyamine spacer.c 
aReproduced with permission from Schmidt et al;52 breproduced with permission 
from Rattanakiat et al30; creproduced with permission from Li et al.55
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Figure 2 Features of cytosine-phosphate-guanosine oligodeoxynucleotide (ODN) 
sequences in each class. 
Note: Underlining indicates palindromic sequence; black and red hyphens indicate 
phosphodiester and phosphorothioate bonds, respectively.
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The CpG-bearing DNA tetrahedral nanostructure was 

efficiently taken up into macrophage-like cells, and induced 

various pro-inflammatory cytokines such as TNF-α, IL-6, and 

IL-12 through TLR9 activation. Li et al55 also suggested that 

the stimulatory effect of the tetrahedral nanostructure is due 

to resistance to DNase, because the tetrahedral nanostructure 

DNA was stable in serum for 8 hours.

Furthermore, Meng et al56 discovered that linear-

structured CpG ODNs consisting only of a phosphodiester 

backbone possess high TLR9 activation capacity. TLR9 

activation by class B ODNs is most optimal when there are 

two to four CpG motifs. When four or more CpG motifs 

were linked, ODN consisting only of a phosphodiester 

backbone remarkably improved its resistance against 

DNase. The ODN contained nine or more CpG motifs, 

remained largely intact in serum for more than 24 hours, 

and possessed high TLR9 activation capacity even in low 

concentrations. Because DNA administered inside the 

body is cleaved from the 3′ end by exonuclease, when the 

3′ end of CpG ODN with only a phosphodiester backbone 

was modified, its resistance to DNase increased.56 When 

multiple CpG motifs are linked, even when the 3′ end is 

cleaved by exonuclease, the activation capacity of TLR9 

can be maintained when the cell is acted on because many 

CpG motifs still remain.

Structure-dependent immunostimulatory 
effect of synthetic CpG ODNs
Class A CpG ODNs induce the production of IFN-α by 

activating the TLR9 of pDC. However, class B ODNs do 

not induce the production of IFN-α via pDCs. This shows 

that the action of CpG ODNs is dependent on base sequence 

and structure.

Class A CpG ODNs form nanometer-sized multimers 

under certain physiological conditions and take on globular 

and linear structures (Figure 4A).57 This globular structure 

is split into two forks.57,58 This is because the structure forms 

a duplex because of the palindromic sequence of base pairs 

at the center of the ODN. Next, the four poly(G) sequences 

at the end of these duplexes combine with one another 

because of Hoogsteen base pairing and become a G-tetrad 

structure. As a result, they become G-quadruplex structures 

(Figure 4B). G-quadruplex can form a linear structure when 

it further forms a G-tetrad with another duplex (Figure 4B). 

Also, when two strands of monomeric CpG ODN combine 

with the G-quadruplex, there is a possibility that two-forked 

NPs can form (Figure 4C). In other words, class A CpG 

ODNs spontaneously form higher-order structures because 

of their palindromic sequence and poly(G). For class A CpG 

ODN2216, in the case of linear structure, its length is more than 

100 nm, and in the case of globular structure, the maximum 
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Figure 4 Formation of higher-order structure in class A oligodeoxynucleotides (ODNs). (A) Globular structure of class A cytosine-phosphate-guanosine (CpG) ODN 
observed by atomic force microscopy (large circled structure is a close-up view of small circle). (B) Possible higher-order structure formation of class A CpG ODNs. Class A 
CpG ODNs comprise a palindromic sequence in the center and poly(G) sequences at both the 5′ and the 3′ ends. Two monomer molecules form a duplex that is attributed 
to palindromic sequences. Two duplexes further form a quadruplex through G-tetrad formation of four poly(G) ends. Association of the quadruplex with another duplex 
causes a linear structure. Two other CpG monomers replace the original duplex by forming two new duplexes, which leads to formation of a bifurcation with three ends. 
(C) A bifurcation structure of class A CpG ODNs imaged by atomic force microscopy. (D) Height histogram of higher-order structure in class A CpG ODNs. 
Reproduced with permission from Klein et al.58
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size is 50 nm.57 Also, class A CpG ODN2336 has an average 

height of 0.8 ± 0.1 nm (Figure 4D) and length of 30–70 nm.58 

Meanwhile, such higher-order structures are not observed in 

class B CpG ODNs; they form a linear structure.58

Because poly(G) binds with scavenger receptors on 

the cell surface,59 ODNs that contain poly(G) sequences 

have been reported to show an increase in cellular uptake 

efficiency.34,60 This suggests that the high cellular uptake 

efficiency of class A CpG ODNs with poly(G) also means a 

high TLR9 activation capacity. On the other hand, Kerkmann 

et al57 reported that the cellular uptake efficiency of class A 

and class B CpG ODNs did not change. They suggested that 

the greater ability of class A CpG ODNs to produce IFN-α 

than class B CpG ODNs is because of the higher-order 

structure of class A CpG ODNs. This is because when the 

palindromic sequence is changed, higher-order structures are 

not formed, and the ability to produce to IFN-α is decreased. 

Furthermore, it has been observed that when class B CpG 

ODNs were loaded onto polystyrene NPs 180 nm in diameter, 

their production capacity of IFN-α was greater than that of 

class A CpG ODNs.57 Because the cellular uptake efficiency 

of free class B CpG ODNs loaded onto polystyrene NPs do 

not change, it is believed that the high IFN-α production 

capacity of class A CpG ODNs is due to its spontaneously 

formed higher-order structure. Other research groups have 

reported that by artificially causing class B CpG ODNs to 

form higher-order structures using NPs, an immune profile 

similar to class A CpG ODNs could be obtained.61–63 Class C 

CpG ODNs also form a duplex, because of the palindromic 

sequence at the 3′ end. This structure is believed to affect 

the activation of TLR9.

Naturally occurring DL-DNA containing CpG motifs 

synthesized as Y-DNA structural units displayed high 

immunostimulatory activity.30 The hydrodynamic size 

of Y-DNA formed from three-strand 30-base ODN was 

7.0 ± 0.2 nm; however, second- and third-generation 

DL-DNA (Figure 3B) were 20 ± 1.2 nm and 35.8 ± 3.2 nm, 

respectively. Receptor-mediated endocytosis is dependent on 

the size of ligands, and the optimal size for uptake is known 

to be 25–30 nm.64–67 The size of DL-DNA falls within this 

range, so its high immunostimulatory activity may have an 

effect on cellular uptake efficiency in addition to resistance 

to DNase. What is extremely interesting is that Y-DNA has 

immunostimulatory activity even if it does not contain CpG 

motifs.54 This suggests the importance of the higher-order 

structure of ODNs on immunostimulation.

Meng et al56 reported that ODNs consisting only of 

a phosphodiester backbone and linked with numerous 

CpG motifs exhibited high TLR9 production capacity. 

CpG ODN2006, a class B prototype, includes three CpG 

motifs. PD-ODN2006 is synthesized with a phosphodiester 

backbone, not the phosphorothioate backbone of the original 

ODN2006 sequence, and it has no TLR9 activation capacity 

because DNase degrades it. PD-ODN2006-2006, composed 

of two PD-ODN2006s linked together, is not degraded 

much by DNase and possesses high TLR9 activation capac-

ity (Figure 5). When the size of the DNA is below 250 

bases,  cellular uptake efficiency increases as the DNA size 

increases.68 However, a sequence that indirectly connects 

PD-ODN2006s using a 14-mer ligand sequence without a 

CpG dinucleotide sequence (PD-2006-linker-2006) showed 

lowered TLR9 activation capacity (Figure 5). PD-ODN2006-

2006 and PD-ODN2006-linker-2006 both contain six CpG 

motifs. The difference in TLR9 activation capacity despite 

this characteristic suggests that aside from the number of 

CpG motifs and size, TLR9 activation is also dependent on 

the ODN sequence.

Delivery of CpG ODNs using NPs
Control of the immune system via TLR9 by CpG ODNs has 

been shown to be effective for treating infectious diseases, 

cancers, and allergies. In recent years, various NPs have 

been developed as carriers of CpG ODNs. The number of 

papers related to the delivery of CpG ODNs using NPs has 

increased sharply since 2007.

The advantages of using NPs as CpG ODN carriers 

include (1) protection from DNase degradation, (2) extension 

of retention time inside the body, (3) decrease in the amount 

administered because cellular uptake efficiency is improved, 

(4) the ability to change the structure of CpG ODNs, (5) the 

ability to deliver to target tissues, (6) the ability to change 

localization inside the body, and (7) allow the slow release 

of CpG ODNs over a long period of time.

Protection of CpG ODNs  
from degradation by DNase
Concerning the protection of CpG ODNs from DNase 

by NPs, many research studies use CpG ODNs with a 

phosphorothioate backbone resistant to DNase, so there is 

little direct evidence available. Because antisense ODNs 

encapsulated by cationic lipid NPs or lipid NPs have been 

reported to be partially or completely protected from 

DNase degradation in serum,69,70 CpG ODNs with only 

phosphodiester backbone are believed to have similar effects 

when encapsulated by these nanopaNPsrticles. Zhu et al71 

showed that CpG ODNs with only a phosphodiester backbone 
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joined electrostatically to the surface of NPs acquired 

resistance to DNase degradation. They observed that all 

molecules of CpG ODNs with a completely phosphodiester 

backbone were broken down within an hour in 20% 

serum. However, CpG ODNs attached electrostatically to 

mesoporous silica NPs, the surface of which were modified 

with amino groups, remained after 3 hours without being 

degraded (Figure 6). Furthermore, when the conjugate of 

these NPs and CpG ODNs was coated with poly(allylamine 

hydrochloride), the efficiency of protection against DNase 

was discovered to increase. In vivo mice experiments have 

shown that 272 nm cationic poly(D,L-lactic-co-glycolic acid) 

(PLGA) NPs were taken up into pDCs in less than an hour,72 

so that protection of CpG ODNs against DNase by NPs for 

several hours is considered to be sufficient. The greatest 

advantage of using NPs is protection against DNase, as CpG 

ODNs consisting of chemically unmodified phosphodiester 

backbone can be used.

Prolonged circulation time and increased 
cellular uptake
In vivo experiments have reported that NPs prolong the 

circulation lifetime of CpG ODNs in the body. Pan et al73 

included a CG sequence in an 18-mer antisense ODN 

for controlling the Bcl-2 gene and discovered that this 

could activate the immune system. When free antisense 

ODN with phosphorothioate backbone was administered 

intravenously to mice, only 1% remained in plasma after 

24 hours. When this antisense ODN was encapsulated in 

lipid NPs (89 ± 45 nm in diameter) composed of 3β-[N,N-

(dimethylaminoethane)carbamoyl] cholesterol (DC-Chol), 

egg yolk phosphatidylcholine, distearoylphosphatidylethano

lamine-N-[methoxy(polyethylene glycol)-2000] (mPEG
2000

-

DSPE), and protamine, 25% of the ODN remained in plasma 

after 24 hours. This shows that encapsulation in lipid NPs 

extends blood circulation time. DC-Chol, a cationic lipid, 

partially deprotonates in near-neutral pH and decreases the 

surface electrical charge of NPs. Also, mPEG
2000

-DSPE 

on the surface of NPs decreases the uptake of NPS by 
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Figure 5 Effect of linker sequences in phosphodiester (PD) cytosine-phosphate-guanosine (CpG) oligodeoxynucleotide 2006 (ODN2006) connection on Toll-like receptor 
9 (TLR9) activation.a (Original ODN2006 consists entirely of phosphorothioate backbone, but the backbones of all the CpG ODNs used in this experiment were replaced 
by naturally occurring phosphodiester bonds.) (A) Activation of TLR9 represented by nuclear factor-kappa B (NF-κB) activity: 293XL-hTLR9 cells were stimulated by series 
connection of PD-ODN2006 with and without linker sequences. PD-ODN2006-2006, composed of two phosphodiester ODN2006s directly linked together, showed 
higher capacity for TLR9 activation than PD-ODN2006-A-2006 and PD-ODN2006-B-2006, whose sequences consist of indirectly connected phosphodiester ODN2006s 
using 14-mer linkers (sequence of linker A, CCTTCAGTGGGACC; sequence of linker B, GGTCCCACTGAAGG). (B) Stability of these CpG ODNs consisting of entirely 
phosphodiester backbone in solution with and without serum imaged by gel electrophoresis: these CpG ODNs consisting entirely of phosphodiester backbone were resistant 
to deoxyribonuclease in serum. 
Notes: aThe sequence of ODN2006 that contains three CpG motifs is shown in Figure 2. 
Reproduced with permission from Meng et al.56
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Figure 6 Mesoporous silica nanoparticles (NPs) for delivery of natural cytosine-
phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs) consisting entirely 
of phosphodiester backbone. (A) Scanning electron microscopic image of amino-
modified mesoporous silica SBA-15 particles. (B) Stability of CpG ODNs consisting 
entirely of phosphodiester backbone in 20% serum containing medium: lane 1, DNA 
marker; lane 2, undigested CpG ODN consisting entirely of phosphorothioate 
backbone; lanes 3 and 4, free natural CpG ODN after incubation for 1 and 3 hours; 
lanes 5 and 6, natural CpG ODN loaded on mesoporous silica NPs after incubation 
for 1 and 4 hours; and lanes 7 and 8, natural CpG ODN loaded on mesoporous 
silica NPs followed by polycation (poly(allylamine hydrochloride)) treatment after 
incubation for 1 and 3 hours. This indicates that natural CpG ODN consisting entirely 
of phosphodiester backbone loaded on mesoporous silica NPs was stable in serum. 
Reproduced with permission from Zhu et al.71
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the reticuloendothelial system. These actions are believed 

to prolong the blood circulation time. When this lipid 

NP-encapsulated antisense ODN was administered, the 

cumulative dose to tumorous tissues was about nine times 

that of free ODN. Traditional cationic lipid NPs are quickly 

eliminated from the circulatory system,45 but if the electrical 

charge on the NPs’ surface is reduced, as in the case 

of DC-Chol, circulation time can be extended. Wilson 

et al27 discovered neutral cationic lipid NPs ionizable at 

physiological pH. When ionizable cationic lipid NPs and 

ODN are mixed under a low pH condition, the surface of 

the NPs becomes charged, and the ODN is electrostatically 

attached. Next, when these NPs are transferred to 40% 

ethanol, the structure of the NPs becomes unstable and 

ODN is taken up into the interior of the NPs. Afterwards, 

when the pH is made neutral, the NPs become neutral NPs. 

In contrast to the free ODN circulation lifetime of a few 

minutes, the circulation lifetime of ODN encapsulated in 

ionizable cationic lipid NPs can be extended from several 

hours to several days.74,75

One of the reasons that CpG ODNs adsorbed into NPs or 

with encapsulated phosphorothioate backbone show greater 

TLR9 activity than free CpG ODNs is that the cellular uptake 

efficiency of CpG ODNs is improved. The cellular uptake 

efficiency of CpG ODNs is being studied using fluorescently 

labeled CpG ODNs. When fluorescently labeled free CpG 

ODN was added to cultured 239XL-TLR9 cells, fluores-

cence was not observed inside the cells. In contrast, strong 

fluorescence was observed in CpG ODN adsorbed by mes-

oporous silica NPs and boron nitride NPs (Figure 7).71,76 In 

vivo studies have shown the method of delivering CpG ODN 

using lipid NPs significantly increased uptake efficiency 

compared with free CpG ODN when it was administered 

to mice and the uptake into APCs in the spleen and lymph 

nodes was observed after 24 hours.27 Also, when CpG ODNs 

were loaded onto cationized gelatin NPs with an average 

diameter of 272 ± 33.3 nm, after 2 days DCs in draining 

lymph nodes were 30% CpG positive and B cells were 20% 

positive.77 The cause is believed to be the increase in the 

delivery efficiency of CpG ODNs by NPs, with many CpG 

ODNs being adsorbed or encapsulated per NP. Klier et al78 

also reported that class A CpG ODN delivered by gelatin 

NPs showed significant immunomodulation effect (Th2/

Th1 shift) on equine bronchoalveolar lavage cells. This effect 

is believed to be an enhancement of cellular uptake of CpG 

ODNs by gelatin NPs.

Clathrin-mediated endocytosis, caveolae-mediated 

uptake, phagocytosis, macropinocytosis, and clathrin- and 

caveolae-independent endocytosis are all possible methods 

for the uptake of lipid NPS into cells. The specific method 

depends on the type of cells.27 When free CpG ODNs were 

charged negatively, it was difficult for them to attach to a 

negatively charged cell surface. This electrostatic repulsion is 

believed to limit the efficiency of free CpG ODN uptake.

The size of NPs affects both cellular uptake and TLR9 

activation. Foged et al23 investigated phagocytic activity on 

DCs by polystyrene NPs of various sizes from 0.04 to 15 µm, 

and reported that the size of 500 nm was optimal for uptake 

into DCs. Also, when the NP size was greater than 200 nm, 

it was reported that the retention time in the endosome was 

long. However, NPs form aggregates or agglomerates in  

solution. When NPs form aggregates or agglomerates, cells 

take in not only NPs by themselves but also NPs in aggregates 

or agglomerates. Therefore, not the primary size of NPs but 

their hydrodynamic size should be used as the indicator of 

the effects of the size of NPs on cellular uptake.

Retention of NPs loaded with CpG 
ODNs in endolysosome
TLR9 joins with CpG ODNs in the endolysosome; therefore, 

it is important to retain the CpG ODN in the endolysosome. 

Vectors and siRNA delivery systems must deliver to the 

nucleus; therefore, breaking out from the endolysosome is 

necessary. However, for the delivery systems of CpG ODNs, 

because TLR9 exists in the endolysosome, breaking out 

from the endolysosome is not necessary but staying in is. 

Chen et al79 coated the surface of polystylene NPs with four 

types of cationic polymers – poly(ethylenimine), chitosan, 

poly(2-dimethyl-amino)ethyl methacrylate, and poly(L-

lysine) – to cause CpG ODN to bind. They reported that 

DIC Lysosome
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BNNS (red)

24 h

DAPI (blue)
200 nm BNNS (red)

48 h 72 h
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Figure 7 Boron nitride nanospheres (BNNSs) as carrier for cytosine-phosphate-
guanosine oligodeoxynucleotide delivery: (A) transmission electron microscopic 
image of BNNSs; (B) localization of BNNSs taken up into cell (BNNSs [red] 
are localized in endolysosome [green]); (C) distribution of BNNSs during cell 
proliferation. Cells and BNNS were stained with DAPI (blue) and rhodamine B (red), 
respectively. BNNSs (red) were observed even in divided cells that were incubated 
for 48 and 72 hours (h). 
Reproduced with permission from Zhi et al.76 
Abbreviation: DIC, differential interference contrast.
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with poly(L-lysine), there was least escape of NPs from the  

endolysosome. This means that the type of polycation has an 

effect on the retention of NPs in the endosome. When Zhi 

et al76 added boron nitride NPs to 293XL-TLR9 cells, it was 

localized in the lysosome after 24 hours. This localization 

was maintained even after the cell division (Figure 7).

Sustained release of CpG ODNs
The increase in uptake efficiency of CpG ODNs and in 

their efficiency of delivery means that the dose of CpG 

ODN can be decreased. Furthermore, the retention of NPs 

in the endolysosome and lysosome leads to continuous 

effects by CpG ODN. Furthermore, the sustained release 

of CpG ODN by NPs also results in decreased dosage and 

continuous effects. Sokolova et al80 prepared multishell 

NPs that causes CpG ODN to be adsorbed to calcium 

phosphate (Figure 8). By using a multishell structure, 

CpG ODN can be protected from DNase. At the same 

time, calcium phosphate gradually dissolves in the acidic 

environment of the lysosome’s interior, so the slow 

release of CpG ODN can be expected. Zhu et al81 have  

reported on the enzyme-triggered sustainable release of 

CpG ODNs. They caused naturally occurring CpG ODN 

to be adsorbed by hollow mesoporous silica NPs with a 

laminated surface. Furthermore, they coated the surface 

with poly(L-lysine). By repeating the adsorption of this 

CpG ODN and poly(L-lysine), a layer-by-layer adsorption 

can be formed. By dissolving the NP surface of ploy(L-

lysine) with α-chymotrypsin, CpG ODN together with 

low-molecular-weight compounds loaded in the hollow 

NPs can be slowly released (Figure 9). Demento et al72 

controlled the rate of release of CpG ODN from NPs by 

attaching biotinylated CpG ODN to the surface of PLGA 

NPs modified with avidin-palmitate. Usually 100 µg of 

CpG ODN is administered per mouse, but with NPs, 

effects were observed with administration of 0.5 µg. By 

minimizing the release of CpG ODN, side effects including 

autoimmunity and lymphoid architectural damage that 

occur when CpG ODN is given in large amounts can be 

decreased.22

Delivery of CpG ODNs to target tissues
Bourquin et al77 reported that CpG ODN loaded on cation-

ized gelatin NPs had remarkably high antitumor effects 

compared with free CpG ODN in a mouse melanoma model. 

They investigated the localization of CpG ODN in vivo, 

and revealed that while free CpG ODN accumulated in 

splenocytes, CpG ODN delivered by NPs was selectively 

stored in APCs inside draining lymph nodes. The activation 

of adaptive immune response due to the selective transport 

to APCs inside draining lymph nodes by NPs is believed to 

be the cause for the high antitumor effect.

The size of NPs also has an effect on transferability into 

tissues. The molecular weight of drugs and the size of NPs are 

known to be factors determining the transferability into lymph 

nodes. Drugs with a molecular weight less than 5000 injected 

intramuscularly or subcutaneously are absorbed by capillar-

ies and circulated. However, drugs with a molecular weight 

greater than 20,000 mainly transfer to lymph nodes.82 The 

commonly used class B CpG ODN with phosphorothioate 

backbone has a molecular weight of about 8000, and its 

transferability to lymph nodes is low. For therapeutic NPs 

administered into the abdominal cavity of mice, it has been 

reported that NPs with sizes of 100–200 nm are excellent 

for transferring to lymph nodes and in retention.83 Kuramoto 

et al84 prepared liposomes 100–200 nm in size composed of 

N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium 

chloride, a cationic lipid, and cholesterol, to which CpG 

ODNs were loaded. When these NPs were administered to 
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Figure 8 Multishell calcium phosphate (CaP) nanoparticles (NPs) for cytosine-
phosphate-guanosine (CpG) delivery: (A) preparation of multishell CaP-NPs 
functionalized with CpG oligodeoxynucleotides and antigen (hemagglutinin, HA): 
(B) scanning electron micrographs of singe-shell (top panels) and triple-shell NPs 
(bottom panels). 
Reproduced with permission from Sokolova et al.80
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the abdominal cavity of mice with peritoneal dissemination, 

a pronounced antitumor effect was observed compared with 

CpG ODN alone.

By attaching specific ligands to the surface of NPs, it is 

possible to deliver them to target cells. Because macrophages 

and pDCs, which are target cells of CpG ODN, have man-

nose receptors, it is believed that introducing mannose to 

the surface of NPs can intensify the effects of CpG ODNs. 

Kuramoto et al85 loaded CpG ODN on mannose-modified 

liposome, the surface of which was modified with mannose-

modified cholesterol derivative cholesten-5-yloxy-N-(4-((1-

amino-2-β-D-thiomannosylbutyl)amino)alkyl)formamide, 

and administered it to the abdominal cavity of mice with 

peritoneal dissemination. As a result, by targeting the immune 

cells in the greater omentum and the mesentery, where 

numerous lymph nodes exist, increased antitumor effect was 

reported. Also, Chen et al86 synthesized glycodendrimers with 

terminals consisting of α-mannose and made this adsorb to 

the surface of boron nitride nanotubes. Because α-mannnose 

binds with the mannose receptor of macrophages, CpG 

ODN delivered by these NPs is selectively taken up into 

macrophages. Also, because glycodendrimer is recognized 

by lectins on the cell surface, cellular uptake efficiency can 

also be expected to increase.

Multicomponent delivery system 
including CpG ODNs
When antigens and CpG ODNs are delivered at the same 

time, the advantages of both agents can be maximally  

drawn out.87,31 Furthermore, when delivering these agents 

simultaneously with NPs, it has been reported that using sepa-

rate NPs to deliver each of the agents results in greater immu-

nostimulatory effect.88–91 This suggests that delivering antigens 

and CpG ODN to APCs at the same time is important.

Standley et al29 encapsulated ovalbumin (OVA), and 

furthermore prepared acid-degradable NPs (CpG-OVA-NPs) 

based on a cross-linked polymer network that includeed CpG 

ODN. The size of these NPs was 200–500 nm, and the bond-

ing amount of the encapsulated OVA and CpG ODN were 

40 and 25 µg/mg NPs for CpG ODN. In vitro assays showed 

CpG-OVA-NPs increased the amount of IL-12 secreted by 

APCs by 45 times compared with NPs encapsulating only 

OVA. Also, the induction of CD40, CD80, and CD86, indica-

tors of DC activation also increased. However, co-delivery 

had no effect on major histocompatibility complex (MHC) 

I and MHC II. It has been reported that for in vivo assays, 

co-delivery can induce OVA-specific CD8 T-cell response. 

Lee et al92 also showed the enhancement of MHC-restricted 

presentation of antigen by using biodegradable PLGA 

NPs loaded with CpG ODNs and OVA. Similar profound 

augmentation of anti-OVA-specific immune response was 

observed by co-delivery of OVA and CpG ODN using 

nanoliposomes.93

Nasal and intradermal vaccination is an attractive strategy 

for CpG ODN delivery. For this strategy in previous studies, 

mucoadhesive N-trimethyl chitosan NPs loaded with OVA and 

CpG ODN were prepared.94,95 This delivery system induced a 

significantly higher level of IgG2a and increased the number of 
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Figure 9 Hollow mesoporous silica/poly(L-lysine) (HMS/PLL) nanoparticles for codelivery of drug and cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs): 
(A) preparation of the fluorescein and CpG ODN-loaded HMS/PLL particles and enzyme triggered release; (B and C) transmission electron microscopic images of HMS 
nanoparticles. 
Reproduced with permission from Zhu et al.81 
Abbreviations: APTES, aminopropyltriethoxysilane; LBL, layer-by-layer.
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OVA-specific IFN-γ producing T cells in the spleen compared 

with NPs with only OVA, suggesting that the co-delivery of anti-

gen and CpG ODN improves the immunostimulatory effect.

Many studies have reported on systems that incorporate 

CpG ODN and antigens in biodegradable NPs.96–101 These 

systems co-encapsulate CpG with antigens in biodegradable 

NPs. Demento et al72 minimized the release rate of CpG ODN 

by using biotin-avidin binding to attach CpG ODN to the 

surface of biodegradable PLGA NPs. CpG ODN-modified 

antigen-encapsulating PLGA NPs that encapsulated antigen 

peptides of the West Nile virus envelope protein were prepared. 

The average size of these NPs was 272 nm, and the encap-

sulated antigen peptides were about 4.7 µg/mg NPs. These 

NPs were administered to mice, and their immunostimula-

tory effect was compared with Alhydrogel, which includes 

antigens and aluminum hydroxide (as adjuvant). The results 

showed that with Alhydrogel, the level of IgG1, associated 

with Th2-skewed response, was high. With CpG ODN-

modified antigen-encapsulating PLGA NPs, the levels of 

IgG2a and IgG2b, involved in Th1-based response, were 

high.  Concerning infection of the West Nile virus, the test 

group administered Alhydrogel had a 44% survival rate. 

The test group administered CpG ODN-modified antigen-

encapsulating PLGA NPs had a 94% survival rate.

Intratumoral injection of PEGylated unilamellar lipo-

somes bearing surface-conjugated anti-CD40 antibody and 

CpG ODN has demonstrated synergistic antitumor effects 

without dose-limiting inflammatory toxicity.102 In addi-

tion, co-delivery of polyriboinosinic-polyribocytidylic acid 

(poly(I:C)), an agonist of CpG and TLR3, with CD40 ligand 

(CD40L), has been reported to intensify the antitumor effect 

of CD40L.103 When vector-expressing CD40L (pSP-D-

CD40L) was directly administered to mouse tumor together 

with CpG ODN and poly(I:C), antitumor activity was dis-

played. When pSP-D-CD40L was loaded onto poly(β-amino 

esters), a cationic polymer, and polyethylenimine NPs, and 

delivered together with CpG ODN and poly(I:C), even 

greater antitumor effect was obtained. Wells et al104 observed 

high antitumor activity as a result of the delivery of anti-

CD40 antibody together with CpG ODN, poly(I:C9), and 

IFN-γ in an emulsion of squalene and Tween 80. These high 

antitumor activities are believed to be due to the induction 

of the powerful antitumor response of CD8-positive T cells 

by the stimulation of CD40 combined with TLR agonists. 

Also, Sokolova et al80 reported that CpG ODN and poly(I:C) 

incorporated with hemagglutinin, a model antigen, into 

multishell calcium phosphate NPs and administered to DCs 

resulted in a greater amount of IL-12 produced.

Disadvantages of delivery system
Meanwhile, the disadvantages of using NPs include not being 

able to establish the safety of NPs and not being able to clarify 

the metabolic process. When mixed with DNA, cationic 

polymers like poly(L-lysine) and polyethyleneimine form 

polyplexes.105–107 Also, the method to attach CpG ODN by 

modifying negatively charged NPs with polycation is the most 

generally implemented method. However, polycations elicit 

the nonspecific adsorption of negatively charged molecules, 

and also promote the formation of NP aggregates.108–110 These 

results are believed to be causes of side effects.  Furthermore, 

it has been suggested that polycations may cause damage to 

liver from complement activation.45 Research has been con-

ducted to avoid these disadvantages of polycations by using 

PEG111 and polyanions.112,113 Also, it has been reported that 

ionizable cationic liposome eliminates these disadvantages 

of polycations.27 Kim et al110 prepared amphiphilic NPs 

composed of hydrophilic poly(γ-glutamic acid) (γ-PGA) 

and hydrophobic L-phenylalanine. These NPs are negatively 

charged by ionizing the carboxyl group near the surface of 

γ-PGA.114 However, it has been reported that free CpG ODN 

of the same negative charge can be encapsulated. Forming 

a polyplex of CpG ODN and poly(ε-lysine), the CpG ODN 

load can be increased by encapsulating the polyplex in γ-PGA 

and hydrophobic L-phenylalanine.

Prospects for the future
Recently, a cytosolic DNA-sensing receptor that functions 

upstream of the TLR was discovered and named the high-

mobility group box (HMGB) protein.115 In addition to being 

expressed in immune cells, HMGB protein can be found 

in a variety of other cell types. The protein can recognize 

DNA and RNA and activate the innate immune system. 

Furthermore, since HMGB recognizes mammalian DNA, it 

is thought to be implicated in autoimmune diseases. Class B 

CpG ODNs with a phosphorothioate backbone demonstrated 

a high affinity to HMGB,115 whereas interaction was not seen 

with a natural CpG ODN with a phosphodiester backbone.116 

These results suggest that CpG ODNs with a phosphorothio-

ate backbone activate innate and adaptive immune systems in 

B cells and APCs via TLR9, and inhibit the innate immune 

system in other types of cells. Conversely, natural CpG ODNs 

with only a phosphodiester backbone activate the innate and 

adaptive immune systems in B cells and APCs via TLR9 and 

do not inhibit the innate immune system in other types of 

cells. From the standpoint of improvement and maintenance 

of systemic immune activation, the presence of natural CpG 

ODNs with a phosphodiester backbone is therefore more 
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advantageous than CpG ODNs with a phosphorothioate 

backbone.

The number of natural CpG ODNs consisting entirely of 

phosphodiester backbone developed is significantly smaller 

than that of CpG ODNs with a phosphorothioate backbone. 

The development of clinically applicable natural CpG ODNs 

is therefore expected to grow in the future. On the other 

hand, since CpG ODNs with a phosphorothioate backbone 

demonstrate high affinity with HMGB protein, they may be 

effective in the treatment of HMGB-mediated autoimmune 

diseases116 such as rheumatoid arthritis and systemic lupus 

erythematosus.

There are many benefits of NP-mediated delivery of CpG 

ODNs. The author found that the binding modes of CpG 

ODNs to NPs affect the production of immune mediators 

(cytokines) (unpublished data). That is, the type of the 

binding mode of class B CpG ODNs to NPs can induce the 

production of either IL-6 or IFN-α. This ability to control 

cytokine induction opens the possibility of treatment-specific 

preparations of CpG ODN carriers. Most CpG ODN NP 

preparations employ CpG ODNs with a phosphorothioate 

backbone. As described earlier in this review, natural CpG 

ODNs do not require encapsulation in NPs such as liposomes 

to be protected from DNase activity: adsorption to NPs is 

sufficient. The development of safe delivery systems for 

natural CpG ODNs in NPs is fast approaching.

Conclusion
The application of CpG ODNs for the treatment of cancers, 

infectious diseases, and allergies holds great promise, 

because CpG ODNs interact with TLR9 and activate both 

the innate and the adaptive immune system. This review 

paper summarizes the structural features that depend on base 

sequences of CpG ODNs consisting of phosphorothioate 

and phosphodiester backbones, and their relationship to the 

capacity of immune mediator cytokine induction. In addition, 

advantages and disadvantages in the delivery system of these 

CpG ODNs using various NPs and future direction of studies 

on CpG ODNs are described.

The number of natural CpG ODNs consisting entirely of 

phosphodiester backbone developed is significantly smaller 

than that of CpG ODNs with a phosphorothioate backbone. 

The development of clinically applicable natural CpG 

ODNs is therefore expected to grow in the future. From the 

standpoint of improvement and maintenance of systemic 

immune activation, the presence of natural CpG ODNs with 

a phosphodiester backbone is therefore more advantageous 

than CpG ODNs with a phosphorothioate backbone. 

However, since CpG ODNs with a phosphorothioate 

backbone demonstrate high affinity with HMGB protein, 

they may be effective in the treatment of HMGB-mediated 

autoimmune diseases116 such as rheumatoid arthritis and 

systemic lupus erythematosus.

There are many benefits of NP-mediated delivery of CpG 

ODNs, and the development of safe delivery systems for 

natural CpG ODNs in NPs is fast approaching.
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