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Purpose: We assessed the risk of gout in the Taiwan Biobank population by applying various machine learning algorithms. The study 
aimed to identify crucial risk factors and evaluate the performance of different models in gout prediction.
Patients and Methods: This study analyzed data from 88,210 individuals in the Taiwan Biobank, identifying 19,338 cases of gout 
and 68,872 controls. After data cleaning and propensity score matching for gender and age, the final analytical sample comprised 
38,676 individuals (19,338 gout cases and 19,338 controls). Five machine learning models were used: Bayesian Network (BN), 
Random Forest (RF), Gradient Boosting (GB), Logistic Regression (LR), and Neural Network (NN). The predictive performance was 
evaluated using a split dataset (80% training set and 20% test set).
Results: Variable importance analysis was performed to identify key variables, with uric acid and gender emerging as the most 
influential risk factors. Descriptive data highlighted significant differences between the control group and gout patients, with a higher 
prevalence of gout in men (51.36% vs 48.64%). Both the RF and GB demonstrated high performance across multiple metrics, with RF 
consistently achieving a high area under the curve (AUC) of 0.986 to 0.987, alongside excellent sensitivity (0.945–0.947) and 
specificity (0.998–0.999). GB also performed robustly, with AUC values around 0.987–0.988 and maintaining high sensitivity 
(0.944–0.950) and specificity (0.995–0.999) across different model variations. The F1 scores for both models (GB and RF) indicate 
strong predictive capabilities, with values around 0.971–0.972.
Conclusion: The RF and GB demonstrated exceptional accuracy in predicting gout status, particularly when incorporating genetic 
data alongside clinical factors. These findings underscore the potential for integrating machine learning models with genetic 
information to enhance gout prediction accuracy in clinical practice.
Keywords: risk prediction, gout, machine learning, artificial intelligence

Introduction
Gout is a complex inflammatory condition primarily caused by hyperuricemia leading to monosodium urate (MSU) crystal 
deposition in joints and other tissues. Its clinical presentation includes acute painful flares and chronic complications.1 The 
disease etiology is multifactorial, involving genetic predispositions, lifestyle factors such as diet and alcohol consumption, and 
certain medical conditions that affect uric acid metabolism.2,3 Gout is associated with various comorbidities, including 
cardiovascular diseases and renal impairment, which can complicate its management and exacerbate patient morbidity.1,4

Gout is a prevalent and debilitating rheumatic disease with an increasing global incidence, especially in Pacific and 
developed countries.5 The Taiwanese population, like many others, faces the growing burden of gout, with a reported 
prevalence of approximately 6.24%.6 The high recurrence rate linked to this condition leads to diminished health-related 
quality of life7,8 and heightened financial strain, particularly for individuals unable to manage it effectively.9

On a global scale, there were 10,016,336 reported cases in 2023, which is anticipated to rise to approximately 
12,082,807 by 2035.7 Understanding the risk factors and developing effective prediction models for gout is essential for 
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proactive management and prevention. In this context, the use of data-driven methods, particularly machine learning 
(ML), has gained prominence as a powerful tool for disease risk assessment.10

The conventional approach (that is, traditional statistical techniques, including logistic regression models) to assessing 
gout risk often relies on well-established clinical risk factors such as age, gender, genetics, lifestyle, and serum urate levels.11 

While these factors provide valuable insights, they may not fully capture the complexity of the disease, and there is an 
increasing need for more accurate, individualized risk assessments. According to previous research findings,10,12 conventional 
models, which greatly rely on multivariate regression models overly simplify the links between disease risk factors and 
outcomes excessively, reducing the prediction accuracy. This is where machine learning techniques come into play.

Machine learning, with its capacity to analyze vast datasets, uncover intricate nonlinear relationships between 
variables, and generate predictive models, offers a promising alternative to conventional methods. Through the applica-
tion of ML algorithms, researchers and clinicians can explore a broader spectrum of risk factors, potentially identifying 
subtle associations and interactions that might be missed by traditional statistical approaches. The goal of this scholarly 
article is to provide a comprehensive comparative analysis of machine learning and conventional approaches for 
assessing gout risk among the Taiwanese population. By evaluating the strengths and limitations of each approach, we 
intend to shed light on their respective roles in enhancing the precision and efficacy of gout risk assessment.

The emergence of machine learning in disease risk assessment marks a pivotal moment in the evolution of medical 
diagnostics and preventive medicine. Nevertheless, we recognize the importance of weighing its potential benefits against 
the established strengths of conventional approaches, which have long been the cornerstone of clinical practice. Machine 
learning classifiers have been successfully used to predict diseases risk including but not limited to heart diseases,13 

diabetes14–16 and its complications,17 and others.
An earlier study18 explored gout staging through machine learning methodologies and suggested further research to 

enhance the precision of diagnostic models. In light of this, we explored machine learning approaches to determine their 
performance in gout risk assessment.

Materials and Methods
Data Source and Disease Identification
The study data were collected from the TWB dataset, which had phenotypic and genetic data collected from Han Chinese 
individuals between the ages of 30 and 70. These individuals had completed a standardized questionnaire on physical, 
sociodemographic, and past medical history. The database is a large-scale population-based biobank managed by the 
National Health Research Institutes (NHRI) of Taiwan. Established in 2010, the biobank aims to collect comprehensive 
health and genetic data from the Taiwanese population to support research on various diseases and public health issues. It 
includes biological samples, health records, and lifestyle information from over 200,000 participants. Its primary purpose 
is to facilitate research into the genetic, environmental, and lifestyle factors contributing to health and disease in Taiwan. 
By providing a rich resource for researchers, the Taiwan Biobank plays a crucial role in advancing precision medicine 
and improving public health strategies in the region.

Genotyping in the biobank was conducted using the C2-58 Axiom Genome-Wide TWB 2.0 Array, developed 
specifically for people of Taiwanese descent. The dataset included information on gout diagnosis and related variables. 
We extracted data for 88,347 individuals assessed at the biobank centers from 2008 to 2019.

In Taiwan, the diagnosis of gout typically involves a combination of clinical examination and specific diagnostic 
criteria. While clinical examination of monoarticular arthritis is indeed a significant aspect of the diagnosis, it is not the 
sole method. The diagnosis is often supported by the presence of MSU crystals in synovial fluid or tophi, which provides 
definitive evidence of gout.19 In our research, gout was primarily identified through self-reporting, as indicated by the 
question, “Have you or your family members (biological parents or blood-related siblings) ever been diagnosed with 
gout?” A response of “yes” signified the presence of the condition, while a response of “no” indicated its absence. 
Additionally, disease diagnosis was supported by the measurement of uric acid levels; specifically, a uric acid level of 
7 mg/dL or higher in men and 6 mg/dL or higher in women. An individual was considered to have gout if either the self- 
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report response was “yes” or if the uric acid levels were elevated. Comprehensive descriptions of the lifestyle factors and 
other variables considered in our study have been documented in previous reports.20,21

Data Processing and Model Development
Our data were cleaned and subjects with and without gout (n = 88,210) were extracted. Figure 1 illustrates the data 
processing pipeline. From the above subjects, those with missing values (n = 137) were excluded. The algorithms used 
to assess matrices like the Youden index, AUC, sensitivity, and specificity included BN, RF, GB, LR, and NN. Details 
of these algorithms have been described elsewhere.22 These algorithms were selected based on their established 
efficacy in previous research.23 The traditional model we employed is logistic regression, a widely recognized 
statistical technique for binary classification tasks, which serves as a benchmark against which we compared the 
performance of the machine learning algorithms. In terms of performance metrics, we focused on the following key 
indicators: accuracy (the overall proportion of correct predictions (both true positives and true negatives) among all 
observations), sensitivity or recall (which indicates the model’s ability to correctly identify positive cases (true 
positives) out of all actual positive cases), specificity (which measures the ability of the model to correctly identify 

Taiwan Biobank
Baseline

(n = 132,720)

Eligible for analyses 
(n = 88,347)

Data cleaning

Final analyses
(n = 88,210)

Gout cases
(N = 19,338)

controls
(N = 68,872)

Propensity score matching
(matching: gender and age)

(case: control = 1:1)

Gout
(N = 19,338)

No gout
(N = 19,338)

Final analysis
(N = 38,676)

AI machine learning

Excluded individuals with 
no genetic information

Excluded 137 individuals 
with incomplete phenotypic 
and genotypic data

Figure 1 Data processing pipeline.
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negative cases (true negatives) out of all actual negative cases), and F1 score (the harmonic mean of precision and 
recall, providing a balance between the two).

Statistical Analysis
We utilized SAS Software version 9.4 (SAS Institute, Cary, NC, USA) and PLINK 1.90 beta software24 for data 
management. Continuous and discrete variable distributions were assessed using t-tests and chi-square tests. 
Categorical variables were presented as count and percentages %, while continuous variables as means and standard 
deviations (SD). We estimated propensity scores using the PROC LOGISTIC and PROC SQL was used to cases and 
controls in a 1:1 ratio, ensuring precise alignment on gender and age to minimize bias. We checked balance between the 
case and control group by calculating the Standardized Mean Differences (SMD). We employed logistic regression to 
estimate the AUC for both internal and external factors in relation to gout.

For the development of AI models, we harnessed SAS® Viya® version 3.5 (SAS Institute Inc., Cary, NC, USA). In 
this study, we considered various supervised learning models described above. We divided the dataset into training (80%) 
and test (20%) partitions before constructing machine learning models. The AUC, which signifies the area under the 
Receiver Operating Characteristic (ROC) curve, was used to assess model performance. An AUC value close to 1 
indicates a near-perfect model. To select the best model in machine learning model comparison, we calculated Youden’s 
Index (also known as Youden’s J statistic).

In both basic statistics and machine learning models, we designated gout as the outcome and target variable. Adjusted 
covariates included age, gender, body mass index, smoking status, alcohol consumption, exercise habits, uric acid, 
creatinine, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, triglycerides (TG), 
and ABCG2 rs2231142. Different covariates were considered in various models. Moreover, we incorporated a variety of 
genetic models to enhance the analysis and interpretation of gout risk, potentially yielding more meaningful insights into 
the role of genetics in health outcomes.

Results
As shown in Figure 1, this study analyzed data from 88,210 individuals in the TWB, identifying 19,338 cases of gout and 
68,872 controls. After data cleaning and propensity score matching for gender and age, the final analytical sample 
comprised 38,676 individuals (19,338 gout cases and 19,338 controls). At baseline and prior to propensity score 
matching, the mean age (SD) was 49.85 (10.78) years for the controls and 51.56 (11.01) years for the cases with gout 
(p<0.001) (Table 1). There were more men with gout compared to women (51.36% vs 48.64%). Before matching, there 
were significant differences in all variables between cases and controls (p<0.001). The variable importance (determined 
using the tree-based methods including the Mean Decrease Impurity [Gini Importance]) for models with and without 
genetic marker is shown in Figure 2A and B. There were 12 most important variables, with uric acid and gender 
emerging as the most important risk factors for gout.

Table 2 shows the performance metrics for the test data after propensity score matching.
Overall, our dataset was split into a 20% test set and an 80% training set. Across various models displayed in the 

table, the Random Forest and Gradient Boosting demonstrated superior accuracy (Figure 3A). The RF achieved an AUC 
of 0.986, sensitivity of 0.947, specificity of 0.998, and F1 score of 0.972. Similarly, GB performed comparably with an 
AUC of 0.987, sensitivity of 0.944, specificity of 0.999, and F1 score of 0.971, highlighting its robust predictive 
capability even without genetic information.

Incorporating the ABCG2 rs2231142 risk locus improved prediction metrics marginally across both models 
(Figure 3B). For instance, in Model 1b (additive adjustment), RF achieved an AUC of 0.987, with a sensitivity of 
0.947, specificity of 0.998, and an F1 score of 0.972. GB, in this configuration, also reached an AUC of 0.987 with 
a sensitivity of 0.950, specificity of 0.995, and F1 score of 0.972.

Across all adjustments (Models 1a to 1d), both RF and GB maintained AUCs above 0.986 and high sensitivity and 
specificity scores, confirming these models as highly effective predictors of gout. The F1 scores for both models 
consistently exceeded 0.97, indicating balanced precision and recall.
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Discussion
Our study applied machine learning models to predict gout using clinical and genetic data from a large Taiwanese cohort, with 
notable findings supporting the efficacy of machine learning in identifying individuals at risk of gout. Key insights from our 
analyses reveal that RF and GB were the top-performing models, achieving high predictive metrics, even when accounting solely 
for baseline clinical variables. Moreover, we observed a notable gender disparity among gout patients, with a higher prevalence in 
men (51.56%) than women (49.85%). Earlier research7 demonstrated a rising trend in disease prevalence from 1990 to 2019, and 
their predictive model based on the age-period-cohort (APC) suggested that this upward trajectory is likely to persist.

Our results indicate that gout risk can be robustly predicted using clinical data alone, with the RF model achieving an 
AUC of 0.986 and GB reaching an AUC of 0.987. These metrics underscore the models’ capability to differentiate gout 
cases from non-cases with high sensitivity and specificity, supporting their potential use as diagnostic or screening tools 
in clinical settings. Notably, integrating genetic information (ie, the ABCG2 rs2231142 risk allele) provided a marginal 
improvement across all model performance indicators. The consistency of high F1 scores (≥0.97) across models 
highlights a balanced capacity for both sensitivity and precision. This balance is particularly valuable in a clinical 
environment, where overdiagnosis and missed cases both pose risks. The ability to maintain such predictive power even 

Table 1 Basic Characteristics of Case and Control Populations Before and After Propensity Score Matching

Before Propensity Score Matching After Propensity Score Matching

No gout  
(n = 68,872)

Gout  
(n = 19,338)

P-value No gout  
(n = 19,338)

Gout  
(n = 19,338)

P-value

Gender <0.001 1.000
Female 50,652 (73.55%) 9406 (48.64%) 9406 (48.64%) 9406 (48.64%)

Male 18,220 (26.45%) 9932 (51.36%) 9932 (51.36%) 9932 (51.36%)

Age (y) 49.85±10.78 51.56±11.01 <0.001 51.56±11.01 51.56±11.01 1.000
Body mass index (kg/m2) 23.56±3.51 26.43±4.00 <0.001 24.06±3.53 26.43±4.00 <0.001

Smoking (n, %) <0.001 <0.001

No 57,942 (84.13%) 14,041 (72.61%) 14,536 (75.17%) 14,041 (72.61%)
Yes 10,930 (15.87%) 5297 (27.39%) 4802 (24.83%) 5297 (27.39%)

Drinking (n, %) <0.001 <0.001

No 64,418 (93.53%) 16,703 (86.37%) 17,360 (89.77%) 16,703 (86.37%)
Yes 4454 (6.47%) 2635 (13.63%) 1978 (10.23%) 2635 (13.63%)

Exercise (n, %) <0.001 0.837

No 41,461 (60.20%) 11,028 (57.03%) 11,048 (57.13%) 11,028 (57.03%)
Yes 27,411 (39.80%) 8310 (42.97%) 8290 (42.87%) 8310 (42.97%)

Uric acid (mg/dL) 4.83±0.95 7.23±1.12 <0.001 5.14±0.99 7.23±1.12 <0.001

Creatinine (mg/dL) 0.67±0.25 0.84±0.39 <0.001 0.74±0.28 0.84±0.39 <0.001
Cholesterol (mg/dL)

High density lipoprotein 56.66±13.49 48.92±11.78 <0.001 54.39±13.49 48.92±11.78 <0.001

Low density lipoprotein 119.40±31.20 126.70±33.07 <0.001 121.00±31.58 126.70±33.07 <0.001
Triglycerides (mg/dL) 104.10±81.08 156.50±129.10 <0.001 114.80±95.66 156.50±129.10 <0.001

ABCG2 rs2231142
Additive <0.001 <0.001

GG 34,267 (49.75%) 7270 (37.59%) 9858 (50.98%) 7270 (37.59%)

GT 28,628 (41.57%) 9297 (48.08%) 7903 (40.87%) 9297 (48.08%)
TT 5977 (8.68%) 2771 (14.33%) 1577 (8.15%) 2771 (14.33%)

Dominant <0.001 <0.001

GG 34,267 (49.75%) 7270 (37.59%) 9858 (50.98%) 7270 (37.59%)
GT+TT 34,605 (50.25%) 12,068 (62.41%) 9480 (49.02%) 12,068 (62.41%)

Recessive <0.001 <0.001

GG+GT 62,895 (91.32%) 16,567 (85.67%) 17,761 (91.85%) 16,567 (85.67%)
TT 5977 (8.68%) 2771 (14.33%) 1577 (8.15%) 2771 (14.33%)

Notes: GG, GT, and TT are the ABCG2 rs2231142 genotypes. Categorical variables: n (%). Continuous variables: Mean ± standard deviation.
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after adjustments for gender and age through propensity score matching further strengthens the reliability of these models 
across diverse demographic groups.

In a previous investigation,25 the accuracy of the machine learning method for identifying gout flares was validated, 
demonstrating enhanced sensitivity and specificity compared to earlier studies. Our study builds upon the growing body of 
literature utilizing machine learning for disease prediction, specifically in the context of gout. However, to our knowledge, no 
predictive model has been established for gout, especially in Taiwan. Several studies investigating machine learning models have 
concentrated on hyperuricemia, with separate observations. For instance, one of them26 found that the decision tree performed 
better than other models. Notably, XG Boost demonstrated superior performance in some of the studies.27,28 Conversely, another 
study reported similar predictive efficacy among the decision tree, random forest, and logistic regression approaches.29

A 

B

0.001

0.003

0.004

0.007

0.008

0.011

0.012

0.025

0.032

0.06

0.150

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Exercise

Drinking

rs2231142 (Additive)

LDL-C

Age

Smoking

HDL-C

TG

BMI

Creatinine

Gender

Uric acid

Relative importance

<0.001

0.001

0.001

0.005

0.007

0.008

0.008

0.010

0.014

0.018

0.351

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Smoking

Exercise

Drinking

HDL-C

rs2231142 (Additive)

LDL-C

TG

Age

BMI

Creatinine

Gender

Uric acid

Relative importance

Figure 2 (A and B) show the variables’ importance in the additive model before and after propensity score matching. The champion model before propensity score 
matching was Random Forest and Gradient Boosting after matching.
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The utilization of machine learning technologies offers the potential to analyze vast datasets, identify intricate 
patterns, and to tailor interventions, thereby advancing our ability to proactively address the evolving landscape of 
gout and optimize patient outcomes. In this research, we found that the Random Forest and Gradient Boosting algorithms 
demonstrated exceptional accuracy in predicting gout status. The robust performance of these algorithms across different 
models underscores their versatility and reliability in gout risk prediction. Nevertheless, a recent investigation comparing 
predictive models for tophi in individuals with gout revealed that the logistic regression model outperformed various 
machine learning models.30 This conclusion was drawn after a comprehensive analysis involving the assessment of AUC, 
decision curve analysis (DCA), calibration curves, and precision-recall (PR) curves.

The identification of influential factors, including sex, age, BMI, lifestyle factors (smoking, drinking, exercise), and 
biochemical markers (uric acid, creatinine, HDL-cholesterol, LDL-cholesterol, TG), substantiates the multifactorial 
nature of gout development. Notably, the integration of the ABCG2 rs2231142 risk locus, a well-established genetic 
factor in gout pathogenesis, aligns with studies showing its role in elevating serum uric acid levels, thereby exacerbating 
gout risk. However, while previous studies have focused on traditional statistical methods, our study highlights the added 
benefit of machine learning models in handling complex, high-dimensional data with higher predictive accuracy.

The predictive accuracy of especially the RF and GB models suggests practical applications in clinical decision- 
making. These models could serve as non-invasive, early screening tools, especially in populations with high baseline 
risks (for instance, individuals with elevated BMI or uric acid levels). Furthermore, given the incremental benefit of 
including genetic data, targeted genetic testing may be beneficial in specific high-risk populations to further refine 

Table 2 Performance Metrics for the Test Data After Propensity Score Matching

Algorithm KS (Youden) AUC Sensitivity Specificity Accuracy F1

Model 1a

Bayesian network 0.634 0.908 0.777 0.858 0.817 0.809

Random forest 0.945 0.986 0.947 0.998 0.972 0.972

Gradient boosting 0.944 0.987 0.944 0.999 0.972 0.971
Logistic regression 0.916 0.975 0.935 0.981 0.958 0.957

Neural network 0.926 0.978 0.942 0.984 0.963 0.962

Model 1b

Bayesian network 0.645 0.911 0.810 0.835 0.822 0.820

Random forest 0.945 0.987 0.947 0.998 0.972 0.972
Gradient boosting 0.945 0.987 0.950 0.995 0.973 0.972

Logistic regression 0.910 0.976 0.928 0.982 0.955 0.954

Neural network 0.927 0.979 0.942 0.984 0.963 0.962
Model 1c

Bayesian network 0.647 0.911 0.815 0.832 0.824 0.822

Random forest 0.944 0.987 0.945 0.999 0.972 0.971
Gradient boosting 0.944 0.988 0.945 0.999 0.972 0.971

Logistic regression 0.913 0.976 0.930 0.983 0.957 0.955

Neural network 0.926 0.978 0.943 0.983 0.963 0.962
Model 1d

Bayesian network 0.640 0.909 0.770 0.870 0.820 0.810

Random forest 0.945 0.987 0.946 0.999 0.972 0.972
Gradient boosting 0.945 0.987 0.947 0.998 0.973 0.972

Logistic regression 0.910 0.976 0.928 0.981 0.955 0.954

Neural network 0.927 0.979 0.942 0.985 0.963 0.962

Notes: aModel 1: adjusted for gender, age, BMI, smoking, drinking, exercise, uric acid, creatinine, HDL, LDL, and TG. 
bModel 2: adjusted for gender, age, BMI, smoking, drinking, exercise, uric acid, creatinine, HDL, LDL, TG, and rs2231142 
(additive). cModel 3: adjusted for gender, age, BMI, smoking, drinking, exercise, uric acid, creatinine, HDL, LDL, TG, and 
rs2231142 (dominant). dModel 4: adjusted for gender, age, BMI, smoking, drinking, exercise, uric acid, creatinine, HDL, 
LDL, TG, and rs2231142 (recessive). 
Abbreviation: KS, Kernel Smoothing approach.
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predictions. Implementing these models in clinical settings could help identify at-risk individuals earlier, potentially 
prompting lifestyle or pharmacological interventions to prevent or manage gout more effectively.

While this study demonstrates strong predictive performance, several limitations should be considered. First, the 
reliance on data from a specific population, in this case, Taiwanese biobank participants, may impact the generalizability 
of our findings. Second, the diagnosis of gout was based on self-report and uric acid levels: we did not utilize crystal 
confirmation for diagnosis. Additionally, although genetic data provided incremental benefits, further exploration of 
additional genetic markers beyond ABCG2 rs2231142 might enhance prediction capabilities. Finally, the study’s reliance 
on propensity score matching, though helpful in controlling confounding, may not fully account for other unmeasured 
variables that influence gout risk. Future studies could explore machine learning models that incorporate additional 
environmental or lifestyle factors to capture a more comprehensive risk profile. Despite these, and given the escalating 
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Figure 3 (A and B) show ROC curves for model 1 (which adjusted for 11 core baseline variables including gender, age, BMI, smoking, drinking, exercise, uric acid, 
creatinine, HDL, LDL, and TG) and Model 2 (which adjusted for both baseline variables alongside a well-established risk locus (ABCG2 rs2231142) associated with gout). The 
champion model was Random Forest for 3A and Gradient Boosting for 3B.
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prevalence of gout, it is imperative to embrace innovative approaches, such as machine learning models. Integrating 
multidisciplinary input and establishing medical record networks,7 supported by advanced machine learning algorithms, 
can significantly enhance the precision and efficiency of gout management. Future studies incorporating diverse cohorts 
would enhance the external validity of our predictive model.

Conclusions
In conclusion, the application of Random Forest and Gradient Boosting models demonstrates high accuracy in gout 
prediction, with or without the addition of genetic data. This study underscores the potential of machine learning in 
clinical prediction, particularly for conditions with complex metabolic and genetic underpinnings like gout. These 
findings pave the way for personalized risk assessment and preventive interventions, thereby advancing our ability to 
mitigate the burden of gout on public health.

Abbreviation
RF, Random Forest; LR, Logistic Regression; AUC, area under the curve; DCA, decision curve analysis; PR, precision- 
recall; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TG, triglycerides; APC, age-period-cohort; BMI, 
body mass index.
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