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Purpose: The aim of this study is to investigate the underlying molecular mechanism of oxidative stress (OS) involved in aortic 
dissection (AD).
Methods: Datasets of AD and OS-related genes were obtained from the Gene Expression Omnibus (GEO) and the GeneCards 
database, respectively. Differential expression analysis and weighted gene correlation network analysis (WGCNA) were employed to 
screen genes. After enrichment analysis, a protein–protein interaction (PPI) network was constructed, and machine learning algorithms 
were used to determine signature genes. Comprehensive bioinformatics analyses on the signature genes were executed, and a clinical 
prediction model was established and evaluated. External datasets, in vitro experiment, and Mendelian randomization (MR) analysis 
were applied to validation.
Results: We identified CCL2, ITGB4, MYC, SOCS3, SPP1 and TEK as OS-related signature genes in AD. The area under the ROC 
curve of all the signature genes was greater than 0.75. The clinical prediction model based on the signature genes showed satisfactory 
diagnostic efficacy in both training and validation cohorts. In validation cohort and in vitro experiment, CCL2, MYC, SPP1 and TEK 
were further validated. However, the MR results showed no causal association between the expression of the signature genes and AD.
Conclusion: This study demonstrated that OS participates in and affects the progression of AD. Six biomarkers associated with OS 
could be perceived as crucial targets for the diagnosis and treatment of AD.
Keywords: bioinformatics analysis, machine learning, Mendelian randomization, expression quantitative trait locus, aortic dissection

Introduction
Aortic Dissection (AD) is a catastrophic condition caused by the division of the layers comprising the aortic wall. 
Unrelenting exposure to elevated pulsatile pressure and stress from blood flow can attenuate the structural integrity of the 
aortic wall, causing a tear in the inner layer and the development of a false lumen.1 The annual incidence of AD is 
reported to be about 2.8–6.0 cases per 100,000 people.2 Nevertheless, only 15%–43% of confirmed acute AD cases are 
precisely suspected, and a notable portion of AD patients are still overlooked in the emergency department.3,4 Therefore, 
early detection and intervention for AD patients is of paramount importance to enhance survival rate.

Oxidative stress (OS) refers to the imbalance of oxidation-antioxidation homeostasis owing to an excess of the free 
radicals like reactive oxygen species (ROS), which can induce damage to cells and tissues. Recent studies have 
confirmed that through promoting vascular smooth muscle cell (VSMC) phenotypic switching and damage, increasing 
expression of matrix metalloproteinases (MMPs), inducing extracellular matrix (ECM) degradation, and mediating other 
pathophysiological disorders, OS advances the formation and development of AD.5 However, the molecular mechanism 
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of OS involved in the onset and progression of AD has been scarcely explored, and the potential regulatory targets are 
still undiscovered.

With the prosperity of bioinformatics, especially the advances in multi-omics analysis such as genomics and 
transcriptomics based on high-throughput sequencing and the exponential growth of big data such as genome-wide 
association studies (GWAS) data in public databases,6 researchers can have a different perception of diseases from 
a novel dimension, such as exploring the molecular markers. Mendelian randomization (MR) analysis enhances causal 
deduction between exposures and outcomes from observational studies by utilizing single nucleotide polymorphisms 
(SNPs), which are the most common genetic variants, as instrumental variables (IVs). Large-scale molecular quantitative 
trait locus (QTL) and GWAS data enable us to investigate the latent association between genes and traits.

The objective of this study was to furnish a theoretical underpinning for a deeper comprehension of the impact of OS 
on the pathophysiological process of AD. In this study, we performed machine learning algorithms to identify the 
signature genes, depicted clinical prediction nomograms, and substantiated our findings by external datasets, in vitro 
experiments, and MR analysis.

Materials and Methods
Data Acquisition and Screening of Differentially Expressed Genes (DEGs)
The data from studies of AD in the Gene Expression Omnibus (GEO) database7 were obtained by R package 
“GEOquery”. The six included expression profiling series were split into training and validation cohorts (Table 1), and 
all samples of the included expression profiling series were from ascending aorta tissue. The batch effects were adjusted 
by the “ComBat” function of the R package “sva” when consolidating all the training cohorts. Differential expression 
analysis was performed using the R package “limma”, applying the threshold of adjusted p-value <0.05 and |log2FC| > 1. 
“Oxidative Stress” was searched in the GeneCards database8 to attain oxidative stress-related genes (OSRGs), and genes 
with relevance score greater than the average were included (Supplementary File 1, Table S2).

Weighted Gene Correlation Network Analysis (WGCNA)
R package “WGCNA” was used to construct and analyze correlation networks. To reduce code load and systematic error, 
we initially selected the top 5000 genes from all genes with the smallest median absolute deviation in the combined gene 
expression data. Then, based on the scale-free topology criteria, the appropriate soft-threshold for network construction 
was calculated by “pickSoftThreshold” function. The “blockwiseModules” function was executed to perform automatic 
network construction, gene clustering, and module detection according to the optimal soft-threshold and dynamic cut tree 
method, using the following chief parameters: networkType = “unsigned”, TOMType = “unsigned”, mergeCutHeight = 
0.15, minModuleSize = 20. After importing clinical traits into the network, namely the presence or absence of AD, the 

Table 1 Information About the Research of AD in the GEO Database

Datasets ID Sample  
Size of AD

Sample Size  
of Normal

Experiment Type Data Type

GSE98770 6 5 Expression profiling Training cohort

GSE147026 4 4 Expression profiling Training cohort

GSE153434 10 10 Expression profiling Training cohort

GSE190635 4 4 Expression profiling Training cohort

GSE52093 7 5 Expression profiling Validation cohort

GSE98770 6 5 miRNA expression profiling /

GSE107844 3 3 lncRNA expression profiling /

Abbreviations: AD, aortic dissection; GEO, Gene Expression Omnibus.
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Pearson correlation between modules and clinical traits was calculated. Finally, “networkScreening” function was used to 
identify genes highly related to AD with a screening criterion of weighted p-value < 0.05.

Functional Enrichment Analysis
Gene ontology (GO),9 which is composed of biological process (BP), cellular component (CC), and molecular function 
(MF), and Kyoto Encyclopedia of Genes and Genomes (KEGG)10 pathway enrichment analysis of the overlapped genes 
of DEGs, OSRGs, and WGCNA genes were performed by R package “clusterProfiler”. Enrichment terms with false 
discovery rate (FDR) < 0.05 were considered statistically significant.

Protein–Protein Interaction (PPI) Network Construction and Hub Gene Computation
The PPI network of the overlapped genes was analyzed using the STRING database11 with a minimum required 
interaction score of 0.7 (high confidence). The network was visualized using Cytoscape software (version 3.10.1),12 

and the top 15 hub genes were computed using the maximal clique centrality (MCC) topological algorithm of the 
“cytoHubba” plugin.13

Calculation of Signature Genes by Machine Learning Algorithms
Based on the hub genes, three supervised classification machine learning algorithms, including least absolute shrinkage 
and selection operator (LASSO), random forest (RF), and support vector machine and recursive feature elimination 
(SVM-RFE), were implemented to calculate the signature genes. The LASSO algorithm selects the minimum lambda 
value to determine the optimal variables. The RF algorithm screens the top variables based on the lowest model error rate 
and the highest variable importance. The SVM-REF algorithm explores the best variables by removing the feature 
vectors produced by SVM.14

Receiver Operating Characteristic (ROC) Curve Analysis and Gene Set Variation 
Analysis (GSVA)
The ROC curve was used to evaluate the diagnostic value of individual genes using the R package “pROC”. The 
signature genes were initially divided into up- and down-regulated gene sets. According to the single-sample gene set 
enrichment analysis (ssGSEA) algorithm and the formula “NEStotal = NESup – NESdown”, the total normalized enrich-
ment score (NES) of each sample in the combined training cohort was calculated. The samples were equally divided into 
low- and high-NEStotal groups. The R packages “GSVA” and “limma” were used for performing GSVA. The gene sets 
involved in the analysis were derived from C5 (ontology gene sets) and C2 (curated gene sets) in the Molecular 
Signatures Database (MSigDB).15 The terms with adjusted p-value <0.05 and |log2FC| > 0.58 were considered 
significantly variant.

Construction of Molecular Networks
Transcription factors (TFs) regulate the expression of corresponding genes by recognizing specific cis-acting elements, 
such as promoters and enhancers, to form dynamic transcription complexes with ribonuclease activity. The common TFs 
of the signature genes were retrieved from the TRRUST database.16 The binding sites of the most significant TF to the 
promoter region of the signature genes were forecasted in the JASPAR database,17 with the promoter region being 
specified from 2.0 kb before to 0.1 kb after of the transcription start site.

To identify the drugs corresponding to the signature genes that serve as potential therapeutic targets, the DGIdb 
database18 was utilized to mine and predict the possible drugs for the signature genes.

The competitive endogenous RNA (ceRNA) network was constructed to disclose the possible intrinsic mechanisms of 
interaction between RNAs, including mRNA and non-coding RNA (ncRNA). The differentially expressed microRNAs 
(DEmiRNAs) in GSE98770 and long non-coding RNAs (DElncRNAs) in GSE107844 were screened by R package 
“limma”. The miRNA–mRNA interactions were predicted by exploring the miRDB,19 miRWalk,20 TarBase,21 and 
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TargetScan22 databases. The miRNA–lncRNA interactions were predicted by exploring the miRCode23 and LncBase24 

databases.
The TF-gene interaction and drug–gene interaction networks were visualized by Cytoscape software, while ceRNA 

network was visualized by R package “ggalluvial”.

Establishment and Assessment of Clinical Prediction Model
The signature genes were incorporated to establish the clinical prediction model. A nomogram was exhibited based on 
the model to predict the risk of AD. The diagnostic accuracy and predictive capacity of the model were evaluated by 
concordance index (C-index), calibration curve, Hosmer-Lemeshow Goodness-of-Fit Test, and decision curve analysis 
(DCA). R packages “rms”, “ResourceSelection”, “rmda”, and “regplot” were used to perform all the procedures above.

Validation in External Dataset
The expression level and the predictive precision of individual signature genes and the capability of the clinical 
prediction model to distinguish between AD patients and healthy people were verified in validation cohort GSE52093.

Clinical Aortic Specimens Collection
Approved by the Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, this study 
stringently followed the guidelines stated in the Helsinki Declaration. Patients with recognized connective tissue 
diseases, bicuspid aortic valve, aortic coarctation, Takayasu’s arteritis, or coronary artery disease were excluded. 
Eighteen patients with acute AD were enrolled. Additionally, 18 aortic specimens for the control group were acquired 
from healthy donors. Written informed consent was obtained from all participating individuals or their relatives. The 
incorporated specimens were swiftly cryopreserved after acquisition and used for subsequent in vitro experiments.

Total RNA Extraction and Quantitative Real-Time Reverse Transcription Polymerase 
Chain Reaction (RT-qPCR)
The customized primers were designed and purchased from Beijing Tsingke Biotech Co., Ltd. Table 2 contains the 
primer sequences of the signature genes. The aortic tissues were first ground using a tissue grinder. Afterwards, Trizol 
solution (TaKaRa, Japan) was used to extract total RNA, followed by quantification of RNA concentration in each 
sample using a nucleic acid concentration detector. The reverse transcription kit Prime Script™RT (TaKaRa, Japan) was 
used to compound the reverse transcription reaction system and synthesize cDNA, and qPCR was performed using qPCR 
kit SYBR ® Premix Ex Taq™ (TaKaRa, Japan).

Table 2 The Primer Sequences of the Signature Genes for RT-qPCR

Gene Forward Primer (5’→3’) Reverse Primer (5’→3’)

CCL2 TCGCGAGCTATAGAAGAATCACC GAATCCTGAACCCACTTCTGCTT

ITGB4 CTCACCAACCTGTACCCGTATTG TCATCGTTGACCAGGCCATAG

MYC CAAGAGGCGAACACACAACG GTCGTTTCCGCAACAAGTCC

SOCS3 TCCAAACAGGGGACACTTCG GGGGGTGTGACCATTTCCTT

SPP1 CATATGATGGCCGAGGTGATAGT CTTTCCATGTGTGAGGTGATGTC

TEK CGGCCAGGTATATAGGAGGAAAC TTCTCACACGTCCTTCCCATAAA

Abbreviations: RT-qPCR, quantitative real-time reverse transcription polymerase chain reaction; CCL2, 
C-C motif chemokine ligand 2; ITGB4, integrin subunit beta 4; SOCS3, suppressor of cytokine signaling 3; 
SPP1, secreted phosphoprotein 1.
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Mendelian Randomization (MR)
Expression quantitative trait locus (eQTL) disclosed the associations of SNPs with the gene expression levels. The eQTL 
data was retrieved from the eQTLGen Consortium25 and Consortium for the Architecture of Gene Expression (CAGE).26 

The common (effect allele frequency [EAF] > 0.01) cis-eQTL significantly (p < 5.0×10−7) associated with the expression 
level of the signature genes was identified. SNPs were permitted to be in moderate linkage disequilibrium (LD) (r2 < 
0.01) to reinforce the strength of IVs. The summary-level data of AD was retrieved from the R10 data of the FinnGen 
study27 (Details are presented in Table 3).

The causal effect of the expression levels of the signature genes on AD was estimated using two-sample Mendelian 
randomization (TSMR) and summary-data-based Mendelian randomization (SMR).28 During TSMR analysis, the inverse 
variance weighted (IVW) method was predominantly employed, while the Wald ratio method was employed when only 
one SNP was used.

Sensitivity tests, including tests for heterogeneity and horizontal pleiotropy, were applied to evaluate the variability 
and trustworthiness of the MR results, the specific methods included Cochran’s Q test, MR-Egger intercept analysis and 
heterogeneity in dependent instruments (HEIDI) test.

Statistical Analysis
All statistical analyses were conducted using R software (version 4.3.3) and RStudio (version 2023.12.1+402). Student’s 
t-Test was used to analyze the comparisons between groups of continuous variables that were normally distributed, and 
the Mann–Whitney test was used for non-normally distributed variables. A bilateral p < 0.05 was considered statistically 
significant. All available database websites were displayed in Supplementary File 1, Table S1.

Results
Adjusting Batch Effects and Screening of DEGs
The main procedure of this study was illustrated in Figure S1. Boxplots of the GEO expression datasets and principal 
component analysis (PCA) plots of the samples before and after adjusting batch effects in the combined training cohorts 
were displayed in Figure S2.

We screened 308 DEGs between AD and normal samples, in which 170 genes are up-regulated and 138 genes are 
down-regulated (Figure 1A and Supplementary File 1, Table S3). Figure 1B portrays the expression clustering heatmap 
of the top 15 differentially expressed up- and down-regulated genes.

The gene correlation network was constructed using the optimal soft-threshold of 13 to fulfill the standard of scale- 
free topology. The top 5000 genes arranged by the median absolute deviation method were clustered into 9 color modules 
by the dynamic cut tree method (Figure 1C). The correlation heatmap between clinical traits and color modules indicated 
that the pink module was the most relevant to Normal (Pearson correlation 0.48, p-value 6.0×10−4), while the green 
module was the most relevant to AD (Pearson correlation 0.59, p-value 1.0×10−5) (Figure 1D). Ultimately, 1421 genes 
were screened to be highly correlated with AD (Supplementary File 1, Table S4).

Table 3 Information of eQTL and GWAS Data

Phenotype Resource Tissue Type Sample Size Population

eQTL eQTLGen Consortium Blood 31,684 Principally European

CAGE Blood 2765 Principally European

AD FinnGen Consortium (R10) / 967 cases and 381977 controls European

Abbreviations: eQTL, expression quantitative trait locus; GWAS, genome-wide association analysis; CAGE, Consortium for the 
Architecture of Gene Expression.
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GO and KEGG Enrichment Analysis and PPI Network Construction
A total of 81 overlapped genes of 308 DEGs, 3011 OSRGs and 1421 WGCNA genes were screened, in which 61 genes 
are up-regulated and 20 genes are down-regulated (Figure 2A). According to GO and KEGG enrichment analysis, 517 
GO terms and 14 KEGG pathways were obtained (Supplementary File 1, Tables S5 and S6). The results showed that the 
overlapped genes were primarily enriched in BPs of regulation of body fluid levels, response to oxygen levels, wound 
healing, response to hypoxia, and response to decreased oxygen levels. Regarding KEGG pathways, the genes were 
enriched in rheumatoid arthritis, HIF-1 signaling pathway, ECM-receptor interaction, complement and coagulation 
cascades, and PI3K-Akt signaling pathway (Figure 2B).

The PPI network of the overlapped genes was constructed by the STRING database to further identify the hub genes 
(Figure 2C). The “cytoHubba” plugin of Cytoscape software was used to analyze the top 15 hub genes based on the MCC 
algorithm (Figure 2D).

Figure 1 Identification of DEGs in AD and the results of WGCNA. (A) Volcano plot of DEGs in AD. (B) Clustering heatmap of the top 15 up- and down-regulated genes. 
(C) Dendrogram of genes. Each branch of the tree represents a gene, and each gene is clustered into the corresponding color module. (D) The correlation heatmap 
between clinical traits and color modules.
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Figure 2 Functional enrichment analysis and PPI network construction. (A) Venn diagram of DEGs, OSRGs, and WGCNA genes. (B) Bubble plots of the top 5 terms of BP, 
CC, MF and KEGG pathways in which DEOSGs enriched. (C) PPI network of 81 OS-related DEGs constructed by the STRING database. (D) The top 15 hub genes 
screened by the “cytoHubba” plugin in Cytoscape software. A redder node color represents a higher gene ranking.
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Identification of Signature Genes
The LASSO algorithm selected 8 genes by choosing the minimum λ as the optimal λ (Figure 3A and B). When the error 
of the algorithms was minimized, the RF and SVM-RFE screened 8 and 12 genes, respectively (Figure 3C-E). The 
signature genes jointly identified by the three machine learning algorithms included CCL2, ITGB4, MYC, SOCS3, SPP1, 
and TEK (Figure 3F).

The area under the curve (AUC) of all ROC curves was above 0.75, indicating satisfactory diagnostic accuracy of 
individual genes (Figure 4A). All signature genes were confirmed to be highly differentially expressed in the combined 
training cohort (Figure 4B), and CCL2, MYC, SOCS3, and SPP1 were up-regulated, while ITGB4 and TEK were down- 
regulated.

Gsva
The results of differential analysis of the enriched MsigDB gene sets showed that 59 and 59 gene ontology gene sets were 
up- and down-regulated, and 9 and 24 canonical pathways were up- and down-regulated (Supplementary File 1, Tables 
S7 and S8). Among these, BP of negative regulation of DNA templated DNA replication, CC of basal cortex, MF of 
aromatic amino acid transmembrane transporter activity, and pathways of SODD/TNFR1 signaling pathway, defective 
RIPK1-mediated regulated necrosis and extrinsic apoptotic pathways were highly significantly variant (Figure 5).

Construction of TF-Gene Interaction, Drug–Gene Interaction and ceRNA Networks
The TRRUST database detected 9 TFs, including CEBPA, STAT4, STAT3, HDAC2, RELA, NFKB1, STAT1, SP1, and 
JUN, as the collective regulators of CCL2, MYC, SOCS3, and SPP1 (Figure 6A and Supplementary File 1, Table S9). 
We searched for the most prominent TF CEBPA in the JASPAR database and predicted transcription factor-binding sites 
(TFBS) based on gene promoter sequences derived from the NCBI database with a relative profile score > 0.8 (Figure 6B 
and Supplementary File 1, Table S10).

Data on the signature genes and drug interactions were downloaded from the DGIdb database, and entries with 
interaction scores greater than the average were screened. Only CCL2, MYC, SPP1, and TEK with the interactions were 
filtered. Among these, CCL2 with Carlumab and Emapticap pegol had the highest interaction scores (Figure 6C).

7 DEmiRNAs and 261 DElncRNAs were identified in GSE98770 and GSE107844. The target mRNAs and lncRNAs 
of DEmiRNAs were subsequently mined from online databases. The conceivable ceRNA network embraced 2 signature 
mRNAs, 2 DEmiRNAs, and 4 DElncRNAs (Figure 6D).

Establishment and Assessment of the Clinical Prediction Model
Based on the clinical prediction model established by the signature genes, the nomogram was depicted to predict the risk 
of AD (Figure 7A). Model efficacy analyses showed that the C-index was 0.90 (95% CI 0.81–1.00), and the p-value of 
Hosmer-Lemeshow Goodness-of-Fit Test was 0.189. The calibration curve indicated that the model possessed a content 
accuracy in predicting absolute risk (Figure 7B). Compared with the decision curve of individual genes, the curve of the 
model had a relatively higher net benefit, indicating that the clinical decisions based on the model could be more 
profitable for patients (Figure 7C).

Validation by GSE52093 and RT-qPCR
The expression boxplots and the ROC curves of the signature genes in GSE52093 were exhibited in Figure 8A and B. All 
signature genes except ITGB4 and SOCS3 were significantly differentially expressed, and CCL2, MYC, and SPP1 were 
up-regulated, while TEK was down-regulated. All signature genes showed satisfactory predictive precision with AUC > 
0.75. The ROC curve of the clinical prediction model demonstrated excellent prediction accuracy with an AUC of 1.00 
(95% CI 1.00–1.00) (Figure 8C). The results implied that the model was valuable in differentiating AD patients from 
normal individuals.

RT-qPCR was performed to examine the expression of the signature genes in dissected and normal aortic specimens. 
Compared with controls, CCL2, MYC, SOCS3 and SPP1 were up-regulated, while ITGB4 and TEK were down- 
regulated (Figure 8D).
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Figure 3 Screening of signature genes by machine learning algorithms. (A and B) Diagrams of the process of selecting variables by LASSO algorithm. (C) The importance 
ranking of variables obtained by RF algorithm. Graphs to ascertain the optimal variable size by the minimum error of RF (D) and SVM-REF (E) algorithms. (F) Venn diagram 
of signature genes.
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Validation by MR
The design of the MR study was shown in Figure 9A. A total of 2, 3, 4, 1, 23, and 18 SNPs were identified from the 
eQTLGen consortium or CAGE for CCL2, ITGB4, MYC, SOCS3, SPP1, and TEK (Supplementary File 1, Table S11). 
The results of both TSMR and SMR suggested that no significant causal effect between the expression levels of the 
signature genes mediated by genetic variants and the risk of AD was detected, and the trend of TSMR results was 
primarily consistent with that of SMR (Figure 9B and C and Supplementary File 1, Tables S12 and 13). The scatter plots, 

Figure 4 Identification of the signature genes. (A) ROC curves of the signature genes in combined training cohort. (B) The expression differences of the signature genes 
between AD and normal samples in combined training cohort (** p<0.01, *** p<0.001, **** p<0.0001).

https://doi.org/10.2147/IJGM.S478146                                                                                                                                                                                                                                 

DovePress                                                                                                                                   

International Journal of General Medicine 2024:17 5642

Li et al                                                                                                                                                                 Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=478146.pdf
https://www.dovepress.com/get_supplementary_file.php?f=478146.pdf
https://www.dovepress.com/get_supplementary_file.php?f=478146.pdf
https://www.dovepress.com/get_supplementary_file.php?f=478146.pdf
https://www.dovepress.com/get_supplementary_file.php?f=478146.pdf
https://www.dovepress.com
https://www.dovepress.com


forest plots, funnel plots, and leave-one-out analysis plots of TSMR and the locus plots and effect plots of SMR were 
exhibited in Supplementary File 2, Figures S3–8.

Discussion
Oxidative stress has been authenticated to play an important role in cardiovascular diseases, but its possible mechanisms 
in AD have been rarely reported. This study investigated the underlying molecular mechanisms of OS in AD by thorough 
bioinformatics approaches on the gene expression profiles of AD and normal samples from the GEO database. Pertaining 
to GO and KEGG enrichment analysis based on the OS-related DEGs, the BPs were predominantly connected with the 
response to hypoxia and regulation of body fluid levels, the CCs were principally located in the basal part of cell and 
endoplasmic reticulum lumen, the MFs were primarily related to the activity of cytokine, NAD+ nucleosidase, and 
NAD(P)+ nucleosidase, and the pathways contained ECM-receptor interaction, complement and coagulation cascades, 

Figure 5 The results of GSVA. The top 10 up- and down-regulated gene ontology (A) and canonical pathways (B) that the low- and high-NEStotal group variously enriched in.
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and PI3K-Akt and HIF-1 signaling pathways. The signature genes were screened by machine learning algorithms 
thereafter, including 4 up-regulated genes (CCL2, MYC, SOCS3, and SPP1) and 2 down-regulated genes (ITGB4 and 
TEK). Analyses including GSVA and molecular network construction were subsequently executed to have a deeper 
cognition of the signature genes.

Unfortunately, the results of the eQTL-based MR were negative, implying that the expression of the signature genes 
may not be causally related to AD. The expression of genes could be affected by a variety of non-genetic factors, such as 
regulation of TFs and ncRNA, epigenetic modifications, and environmental influences, which may lead to negative MR 
results. Based on the above results, we consider that these OS-related signature genes may not be the cause of AD, but 
they play an important role in the occurrence and development of AD.

Figure 6 Molecular networks. (A) The TF-gene interaction network retrieved from the TRRUST database. The red circle represents gene, the blue diamond represents TF, 
and the red, blue and grey lines represent activation, repression, and unclear regulation modes. (B) The CEBPA motif and the predicted TFBS based on the JASPAR database. 
(C) The drug–gene interaction network mined by the DGIdb database. The red rectangle represents gene, the blue diamond represents drug, and a thicker line represents 
a higher interaction score. (D) Sankey plot of the ceRNA network. The red and blue stratums represent up- and down-regulated RNA.
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C-C motif chemokine ligand 2 (CCL2) exhibits chemotactic activity for monocytes and basophils but not for 
neutrophils or eosinophils.29 Its potential role lies in recruiting monocytes into the arterial wall during atherosclerosis 
progression.30 The results of bulk sequencing,31 single-cell sequencing32 and histological examination33 confirmed that 
numerous macrophages infiltrating the aorta of AD patients intensively expressed CCL2. In the suprarenal aorta of apoE 
(-/-) mice infused with Ang-II, neovascularization and macrophage infiltration were observed, and the expression of 
matrix metalloproteinase-2 (MMP2), MMP9, CCL2, and VEGF significantly elevated.34,35

Integrin subunit beta 4 (ITGB4) is a receptor for laminin, and its heterodimers, namely integrins, facilitate adhesion 
between cells and the extracellular matrix and serve as signal transducers modulating gene expression and cellular 
growth. ITGB4 is indispensable for adhesion, proliferation, apoptosis, and senescence, and its down-regulation may 
participate in the pathological process of AD by reducing vascular endothelial cell adhesion.36

Figure 7 Construction and assessment of the clinical prediction model based on the signature genes. (A) Nomogram for predicting the risk of AD. (B) Calibration curves 
and Hosmer-Lemeshow Goodness of Fit Test of the model (p-value > 0.05 indicating a satisfactory calibration). (C) Decision curves of the model and individual genes.
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MYC, a proto-oncogene, contributes to cell cycle regulation, cellular transformation, and apoptosis. By binding to the 
promoter of vascular endothelial growth factor A (VEGFA), it enhances VEGFA synthesis and thus promotes sprouting 
angiogenesis.37 In the polycystin-1 (PC1)-mediated MEK/ERK/myc signaling pathway, the down-regulation of PC1 in 
VSMCs upregulates phospho-MEK, phospho-ERK, and myc, inducing the phenotypic switch of VSMCs, which may be 
a pivotal pathophysiological cause of AD.38

Induced by various cytokines, suppressor of cytokine signaling 3 (SOCS3) blocks cytokine signal transmission by 
attaching to tyrosine kinase receptors and engaging in the JAK/STAT pathway. SOCS3 in macrophage protects stressed 
aorta from tissue destruction and the development of AD by impeding excessive inflammatory responses, promoting 
tissue repair responses, and maintaining the function of VSMCs.39 Targeted removal of SOCS3 from smooth muscle cells 

Figure 8 Validation by external dataset and RT-qPCR. (A) The expression boxplots of the signature genes in GSE52093. (B) The ROC curves of individual signature genes. 
(C) The ROC curve of the clinical prediction model. (D) The relative expression level of the signature genes in normal and dissected aortic specimens by RT-qPCR. (* 
p<0.05, ** p<0.01, *** p<0.001).
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(SMC) led to chronic inflammation of the aortic wall, resulting in increased fibroblasts and decreased tissue destruction, 
which safeguarded the aorta against AD.40 This accentuates that, depending on the cell type, disease severity may be 
promoted or mitigated by gene expression and the activation of consequential signaling pathways.

Secreted phosphoprotein 1 (SPP1) acts as a cytokine that is essential in type I immunity by upregulating of INF-γ and 
IL-12 while downregulating IL-10. SPP1 can be regulated to participate in VSMC apoptosis41 and inhibit angiotensin II 
(Ang II)-induced phenotypic switch of aortic SMC.42 While under normal physiological conditions, SPP1 has been 
corroborated to contribute to the regulation of vascular tone in resistance arteries and tissue perfusion.43

TEK encodes a receptor that is part of the protein tyrosine kinase Tie2 family and functions as a constituent of the 
angiopoietin (Ang)-Tie system, which is the second endothelial cell-specific ligand-receptor signaling system, in addition 
to the VEGF receptor pathway. The Ang-Tie system controls the formation of new blood vessels, changes in blood vessel 
remodeling and permeability, and immune response to maintain the stability of blood vessels.44,45 Furthermore, TEK 

Figure 9 The study design and results of MR analysis. (A) The diagram of the MR study design. Relevance assumption, genetic variants are associated with exposures; 
Independence assumption, genetic variants are not associated with outcomes through confounders; exclusion assumption, genetic variants affect outcomes simply via 
exposures, rather than directly affect the outcomes. (B) The forest plots of the results of TSMR. (C) The forest plots of the results of SMR.
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regulates multiple functions of endothelial cell, such as cell adhesion, migration, proliferation and spreading, and 
promotes the restructuring of the actin cytoskeleton. Nonetheless, there was limited evidence on the mechanisms of 
ITGB4 and TEK in AD, hence more investigations are required to elucidate their association with AD.

Notwithstanding, this study had several limitations likewise. Firstly, restricted by the low prevalence of AD, the small 
sample size obtained from the GEO database may lead to biased results, so more samples are needed to ameliorate the 
analysis. Secondly, the lack of clinical information in the GEO database highlights the necessity to collect the 
corresponding clinical indicators to explore the relationship between OS and the prognosis of AD patients. Thirdly, 
the negative results of MR indicated that it is not the genetic variation of the expression of the signature genes that led to 
the occurrence of AD, but the chronological order of the changes of the gene expression level and the occurrence of AD 
is still unknown. Finally, this study has only conducted the identification and simple validation of the OS-related DEGs, 
hence more profound studies are required to further investigate the molecular mechanisms.

Conclusion
This study provided novel insights into the role of OS in AD, and four biomarkers associated with OS (CCL2, MYC, 
SPP1, and TEK) were identified and validated. Moreover, further studies based on these signature genes may contribute 
to explore the potential pathogenesis and therapeutic targets.
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