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Abstract: The Quorum sensing (QS) system is a widely existing communication mechanism, which regulates bacterial community 
behaviors and the expression of specific genes. The most common pathogenic bacteria in clinical infections are gram-negative bacteria, 
and QS plays an important regulatory role in the production of virulence factors and development of antibiotic resistance. This article 
reviews the QS systems of gram-negative bacteria and provides an overview of how they regulate their physiological functions. 
Keywords: quorum sensing, gram-negative bacteria, physiological impacts

Currently, Gram-negative bacteria are the predominant pathogens responsible for hospital-acquired infections, exceeding 
the incidence of infections caused by Gram-positive pathogens by 20%.1 The 2023 China Antimicrobial Surveillance 
Network data indicate that clinical infections continue to be predominantly caused by gram-negative bacteria, accounting 
for 70.1% of the cases.2 The most common pathogens in descending order are Escherichia coli (18.02%), Klebsiella 
pneumoniae (14.06%), Acinetobacter baumannii (8.76%), and Pseudomonas aeruginosa (7.46%).2 These Gram-negative 
strains are the most common among carbapenem-resistant gram-negative bacilli and represent drug-resistant bacteria of 
the greatest concern in clinical settings. In 2019, approximately 4.95 million people died from diseases related to 
bacterial resistance, with approximately 1.27 million of these deaths directly attributed to bacterial resistance.3 There are 
multiple reasons for the development of antibiotic resistance in bacteria, such as biofilm formation, genetic material 
mutations, latent gene activation, and the transfer of genetic material (for example, horizontal gene transfer mediated by 
phage transduction or plasmid conjugation).

Quorum sensing (QS) is a mechanism for intra- or intercellular communication and the regulation of gene expression, 
which is achieved through the production, release, receptor binding, and induction of downstream signals by signaling 
molecules.4 Many physiological functions of Gram-negative bacteria are regulated by QS. In terms of virulence 
regulation, upon invading the human body, pathogens utilize QS systems to sense the population density and develop 
offensive and defensive strategies. Under low-density conditions, bacteria downregulate the expression of virulence 
factors to evade the host immune attack. When the population density increases to a level that the human immune system 
cannot cope with, bacteria express a large number of virulence factors in a short period, thereby delivering a devastating 
blow to the host’s immune system.5 QS also plays a crucial role in bacterial antibiotic resistance and it has been 
confirmed that the signaling molecule system regulates bacterial efflux pumps.6 Under the pressure of antibiotics and host 
defenses, QS systems can regulate the formation of biofilms, persister cells, and even small colony variants in 
pathogens.7 Surface-active agents regulated by QS can enhance the hydrophobicity of cells, thereby facilitating their 
adhesion to solid substrates.8 QS is one of the most extensively studied targets in antivirulence therapy research. Since 
this process enables the coordinated regulation of multiple virulence factors without being essential for bacterial growth, 
targeting QS can control bacterial pathogenesis while limiting selective pressure for survival and the development of 

Infection and Drug Resistance 2024:17 5395–5410                                                         5395
© 2024 Chu and Yang. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the 

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Infection and Drug Resistance                                                              Dovepress

Open Access Full Text Article

Received: 9 August 2024
Accepted: 26 November 2024
Published: 5 December 2024

In
fe

ct
io

n 
an

d 
D

ru
g 

R
es

is
ta

nc
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


antibiotic resistance. The link between QS and pathogen virulence and resistance has led to increasing interest in using 
QS as a new approach to treat bacterial infections. Therefore, regulation of bacterial physiological functions by QS 
should be considered. Research on the QS systems of bacteria can aid in gaining a comprehensive understanding of 
bacterial communities.

An Overview of QS Systems in Gram-Negative Bacterial
The AHL-Based QS System
In Gram-negative bacteria, QS is commonly mediated by N-acyl homoserine lactones (AHLs), also known as auto
inducer-1 (AI-1) (Figure 1A). AHLs were first discovered in the bioluminescence system of the marine bacterium Vibrio 

Figure 1 Schematic of three different natural QS systems. (A) V. fischeri’s LuxI/LuxR QS system. AHL is one of the QS signal molecules. LuxI is an AHL synthetase, and LuxR 
binds to AHL to form the LuxR-AHL complex, which initiates transcription of the lux cluster by binding to the plus promoter. The lux CDABE in the Lux cluster is responsible 
for bioluminescence. (B)AI-2 QS system. AI-2 is one of the QS signaling molecules synthesized by luxS. AI-2 is transported into and out of the cell by membrane materials, 
and lsrK can phosphorylate AI-2. In the absence of phosphorylated AI-2, LsrR inhibits transcription of PlsrR and Plsr by binding to these promoters. When phosphorylated AI-2 
appears and binds to LsrR, transcription is inhibited by the release of LsrR promoter binding. (C) The AI - 3 / epinephrine, norepinephrine signaling pathway. AI - 3 and 
epinephrine/norepinephrine appear to be recognized by the same receptor and interact with sensor kinases located in the periplasm. The adrenergic receptor, QseC, makes 
uppart of the QseB/C two-component system that regulates the flagellumegulon and thus motility. 
Abbreviations: lM, inner membrane; OM, outer membrane.
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fischeri, and this phenomenon has been positively correlated with the bacterial population density.9 The AHL-based QS 
system comprises three components: (1) AHL signaling molecules, (2) synthase proteins that produce AHL signals, and 
(3) receptor proteins that perceive and respond to AHLs. AHLs consist of a series of fatty acid side chains of varying 
lengths that are connected to a homoserine lactone (HSL) ring. Most known AHLs have fatty acid side chains ranging 
from 4 to 20 carbon atoms in length. Their specificity is primarily determined by the length of the fatty acid side chain, 
modifications of the carbon atoms (mainly at the C3 position, with some AHLs showing biological activity only after 
modification), and degree of saturation of the fatty acid side chain.10,11 The AHL-based QS system exhibits four 
fundamental characteristics: 1. Autoinducers are typically synthesized from S-adenosylmethionine (SAM) and can 
traverse the cell membrane, 2. Autoinducers can bind to receptors located in the membrane or cytoplasm, and 3. The 
AHL-QS pathway activates numerous genes that regulate various cellular processes, 4. Regulation of AHL-QS involves 
the generation of autoinducers through a positive feedback loop. In gram-negative bacterial species, multiple homologs 
of AHL-mediated QS system signal-receptor pairs have been identified, including LuxI/R, LasI/R, RhlI/R, AfeI/R, BtaI/ 
R, EsaI/R, and TofI/R.12 Some organisms, such as E. coli, K. pneumoniae, Salmonella spp., and Shigella spp., lack AHL 
synthase enzymes, and thus do not produce AHLs. However, they possess a LuxR homolog known as SdiA, which can 
bind to AHLs produced by other microorganisms and influence gene expression.13,14

In Gram-negative bacteria that utilize AHL as QS signals, signal transduction pathways are diverse. Among these, 
P. aeruginosa, which is the most extensively researched species, primarily comprises four QS systems: lasR/lasI, rhlR/ 
rhlI, pqs, and iqs. The first system is the lasR/lasI system, which is composed of the transcriptional activator LasR and 
acyl-homoserine lactone synthase LasI. LasI guides the synthesis of N-3-oxo-dodecanoyl-homoserine lactone (3-oxo- 
C12-HSL) and secretes it into the extracellular environment during active transport. At a certain threshold concentration, 
it binds to LasR, activating the transcription of virulence factors including alkaline protease, exotoxin A, and elastase, 
thereby enhancing the expression of virulence genes in P. aeruginosa.15 The second system is the rhlR/rhlI system, in 
which RhlR acts as a transcriptional regulatory factor, and RhlI encodes an AHL synthase. This system produces 
homoserine lactones with a C4-HSL structure that can freely traverse the cell membrane and regulate the expression of 
numerous genes such as chitinase, cyanide, and pyocyanin.16 In addition to typical AHLs, P. aeruginosa produces 
2-heptyl-3-hydroxy-4(1H)-quinolone [Pseudomonas quinolone signal (PQS)] as a QS signal. PQS belongs to the 2-alkyl- 
4-quinolone (AQs) family17 and represents the third recently discovered QS system specific to P. aeruginosa. The 
signaling molecules of the quinolone system possess antimicrobial activity and are insoluble in water.18 The pqs system 
primarily functions through two signalling molecules, PQS and 2-heptyl-4-hydroxyquinoline (HHQ), both of which can 
bind to the LysR-type transcriptional regulator PqsR to form a PqsR-PQS (or PqsR-HHQ) complex, activating the 
expression of various virulence genes.19,20 In addition to its role in QS regulation through binding to PqsR, PQS can 
independently regulate gene expression in a manner that does not rely on PqsR.21 The PQS can link two systems: lasR/ 
lasI and rhlR/rhlI. On the one hand, lasR/lasI and rhlR/rhlI control PQS production. In contrast, PQS influenced lasR/lasI 
and rhlR/rhlI. The iqs system utilizes IQS as a QS signal molecule, and its structure has been identified as that of 
2-(2-hydroxyphenyl)-thiazole-4-ethanal. The genes involved in iqs synthesis belong to the non-ribosomal peptide 
synthetase gene cluster, ambBCDE. Under low-phosphate conditions, mutations in ambBCDE lead to reduced production 
of PQS and C4-HSL signals, as well as decreased expression of virulence factors such as pyocyanin, rhamnolipids, and 
elastase.22 In addition to the aforementioned four QS systems, another P. aeruginosa QS auxiliary system, namely the 
GacS/GacA system, plays a significant role in enhancing bacterial motility, releasing rhamnolipids, and promoting 
biofilm formation, among other functions23

AI-2 QS System
Synthesis of AI-2
The AI-2 QS system utilizes furanone borate diester compounds as signaling molecules, and this QS system is present in 
both Gram-negative and Gram-positive bacteria. The classical biosynthetic pathway of AI-2 is a part of the activated 
methyl cycle, where AI-2 is generated from methionine. It goes through four enzymatic reactions to produce AI-2. 
Methionine is converted into S-adenosylmethionine (SAM) by S-adenosylmethionine synthase (MetK). SAM served as 
a methyl donor to generate S-adenosylhomocysteine (SAH). The synthesis of AI-2 involves the conversion of SAH to 
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homocysteine, which can be accomplished through a one-step reaction using SAH hydrolase (SahH), or a two-step 
reaction that requires SAH nucleosidase (Pfs) and LuxS. LuxS catalyzes the cleavage of the sulfur-ether bond in SRH, 
yielding homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD). The former generates methionine to enter the methyl 
cycle, whereas the latter can be rearranged to produce two different conformations, (2S,4S)-2-methyl-2,3,3,4-tetrahy
droxytetrahydrofuran (S-THMF) and (2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (R-THMF), which can inter
convert and serve as ligands for Vibrio Harveyi LuxP-type receptors and Salmonella enterica LsrB-type receptors.24

The Perception of AI-2
The AI-2 mediated QS system exists in over 60 bacterial species, including V. fischeri, E. coli, K. pneumoniae, 
Salmonella Typhi, Bacillus subtilis, Staphylococcus aureus, and Yersinia Pestis.25 To date, four types of AI-2 receptors 
have been discovered: periplasmic binding proteins homologous to LuxP and LsrB,26 CahR-type receptors containing the 
dCache_1 domain27 and YeaJ-type AI-2 receptors containing the GAPES1 domain.28

LuxP and LsrB are two homologs of periplasmic binding proteins (PBPs), with only 11% nucleotide similarity. These 
two receptors bind to different chemical properties of AI-2 precursor molecules derived from DPD.29 The LuxP receptor 
is only found in Vibrio species and belongs to the high-affinity substrate-binding protein family. It regulates the activity 
of the membrane-bound sensor histidine kinases (HKs) protein using AI-2, effectively modulating the transmission of 
phosphorylation signals and impacting downstream gene expression. When AI-2 is present at low concentrations, LuxQ 
undergoes phosphorylation and transmits a phosphorylation signal through LuxU to LuxO. Phosphorylated LuxO 
cooperates with the alternative sigma factor σ54 to activate sRNA transcription. sRNA forms a complex with the partner 
protein Hfq, leading to the disruption of LuxR, a transcriptional regulator protein that controls the transcription of the lux 
operon. This inhibition suppressed transcription of the lux operon. However, when AI-2 is present at high concentrations, 
it binds to the LuxP receptor protein and activates its phosphatase activity. This leads to the dephosphorylation of the 
phosphotransferase LuxU and the transcriptional regulator LuxO. Dephosphorylated LuxO relieves its inhibitory effect 
on the transcription activator LuxR, initiating the transcription of the bioluminescence operon and resulting in biolumi
nescence phenomenon.25

Unlike the LuxP receptor, which is found only in S. enterica, the LsrB receptor was initially identified in Vibrio 
species. It has also been found in members of other Enterobacteriaceae, Rhizobiaceae, Bacillaceae, and Clostridia.30,31 

The LsrB receptor, a high-affinity substrate-binding periplasmic protein and component of the ATP-binding cassette 
(ABC) transport system, can internalize AI-2.32,33 When the extracellular accumulation of AI-2 reaches a threshold, AI-2 
is recognized, binds to the LsrB receptor, and enters the cytoplasm through a heterodimeric transmembrane channel 
composed of LsrC and LsrD, a process energized by ATP hydrolysis by LsrA. Once in the cytoplasm, AI-2 is 
phosphorylated by the kinase LsrK, and is further processed AI-2 by LsrF, which can bind to the inhibitory protein 
LsrR of the lsrACDBFGE operon, releasing it from the Plsr promoter and enhancing the expression of the lsr operon, 
facilitating the rapid transport of extracellular AI-234(Figure 1B).

Studies have shown that many bacteria lacking LuxP or LsrB receptors respond to AI-2, indicating the presence of 
unidentified AI-2 receptors. In recent years, two new types of AI-2 receptors, the CahR-type27,35 and YeaJ-type,28 have 
been discovered.

The CahR-type receptor is a newly discovered sensor of extracellular signal transduction proteins, in which AI-2 
recognizes the dCache_1 domain of the CahR-type receptor, thus activating downstream gene expression. Studies have 
shown that CahR-type AI-2 receptors are widely present in prokaryotes and regulate chemotaxis and biofilm formation in 
P. aeruginosa PAO1.27

The YeaJ-type AI-2 receptor is characterized by the presence of a GAPES1 domain and GGDEF domain responsible 
for the synthesis of cyclic di-GMP (c-di-GMP). The interaction of YeaJ and YedQ with AI-2 and host-derived bile 
components taurocholate and taurodeoxycholate leads to an increase in intracellular concentrations of c-di-GMP. This 
elevation in c-di-GMP levels subsequently enhances the abundance of the T3SS chaperone SicA. The binding of SicA to 
InvF, SipB, and SipC was diminished, leading to a decrease in the transcription levels of T3SS-1 genes, including sopB, 
sopE2, sicA, sipB, and sipC. Specifically, in S. Typhi, binding of AI-2 to the GAPES1 domain of the YeaJ-type receptor 
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induces c-di-GMP synthesis, thereby inhibiting the expression of T3SS-1 genes. Studies indicate that homologs of YeaJ 
are present in many species of the Enterobacteriaceae family.28

AI-3 QS System
In recent years, research has shown that in E. coli mutants lacking the LuxS protein, which is incapable of synthesizing 
the AI-2 signaling molecule, a novel signaling molecule distinct from AI-2, termed AI-3, is produced to maintain inter- 
species communication (Figure 1C). However, the structure of AI-3 remains elusive. However, epinephrine (Epi) and 
norepinephrine (NE) can promote toxin secretion by enterohemorrhagic E. coli, indicating that the AI-3 type QS system 
regulates bacterial virulence through AI-3, epinephrine, and norepinephrine.36 In 2020, AI-3 was identified as 
3.6-dimethylpyrazin-2-ol (3,6-DPO), a small molecule derived from threonine metabolism. This discovery underscores 
the complexity of the QS system in bacteria and highlights the sophisticated mechanisms by which bacteria interact with 
their hosts and regulate virulence factors.37

Other Signaling Molecules in Gram-Negative Bacteria
Diffusible Signal Factors
The diffusible signal factor (DSF) family is an intriguing group of QS signals found in various Gram-negative bacteria. 
The first identified DSF was cis-11-methyl-dodecenoic acid (XcDSF), discovered in the plant pathogen Xanthomonas 
campestris pv. campestris (Xcc). Subsequently, other DSFs were discovered. DSF-mediated interspecies communication 
pathways typically fall into three distinct groups, represented by Xcc, B. cenocepacia, and P. aeruginosa.38 In addition, 
DSF can mediate interspecies communication. DSF plays a crucial role in regulating biofilm formation, virulence, 
motility, toxin production, exopolysaccharide synthesis, and extracellular enzyme activity.

α-Hydroxyketones
In recent years, a novel class of signaling molecules known as AHKs has been identified in human pathogens such as 
Legionella pneumophila and Vibrio cholerae. V. cholerae synthesizes cholera autoinducer (CAI)-1 (3-hydroxytridecan- 
4-one) through the cqs gene, while L. pneumophila produces autoinducer (LAI)-1 (3-hydroxypentadecan-4-one) via the 
lqs gene cluster. Both CAI-1 and LAI-1 are diffusible and volatile autoinducers that play crucial roles in regulating 
biofilm formation, motility, and pathogenicity.39

Indole
Various bacteria and some plants produce significant amounts of indole, leading to its widespread presence in both 
prokaryotic and eukaryotic communities. Recently, indole has been demonstrated to function as an intercellular, 
interspecies, and interkingdom signaling molecule. Indole is stable in indole-producing bacteria, but many non-indole- 
producing bacteria and eukaryotes can modify or degrade indole through various oxygenases. Recently, indole has been 
shown to regulate antibiotic resistance and persistence formation in E. coli.40 Indole stimulates biofilm formation in 
P. aeruginosa and alters gene expression in a manner opposite to that of AHL, downregulating virulence and QS- 
regulated phenotypes in P. aeruginosa. Numerous studies have reported that indole controls various bacterial phenotypes 
and exhibits anti-virulence properties against non-indole-producing pathogens. Possible anti-virulence mechanisms 
include the inhibition of bacterial QS, biofilm formation, toxin production, and various bacterial adhesion factors.41

An Overview of Physiological Functions Mediated by QS Systems
The fact that QS can be perceived by a wide range of receptors from different species demonstrates its extensive 
involvement in the regulation of various physiological functions of bacteria, such as bioluminescence, motility, aggrega
tion, biofilm formation, expression of virulence factors, bacterial escape, competition, antibiotic resistance, plasmid 
conjugation, spore formation, and colonization.(Figure 2 and Table 1)

Regulation of Bacterial Motility, Chemotaxis, and Autoaggregation by QS Systems
In nature, bacteria exist in two primary life forms: a planktonic state and an attached state that forms biofilms on surfaces. 
Biofilm formation aids bacteria in resisting adverse external factors, and supports their growth and proliferation. E. coli 
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utilizes AI-2 as its sole QS signal, which mediates aggregation of E. coli through the induction of chemotactic responses. 
This process can be divided into three stages. Stage One does not rely on the chemotactic ability of the cells. E. coli 
expressing Ag43 initially form “seeding” aggregates through random collisions. Ag43 belongs to the autotransporter protein 
family, in which adjacent cells Ag43 can interact to form dimers. Since the physiological density of the cells is not high at this 
time, relying solely on random collisions for further growth is inefficient. Stage Two: The “seeding” aggregates formed in the 
initial stage secrete sufficient concentrations of AI-2, thereby gradient-mediated chemotaxis of individual cells towards the 
aggregate. The increase in the growth rate of the aggregates may be due to the increase in local cell density mediated by 
chemotaxis, which slows as the aggregates and motile cells reach equilibrium. Stage Three: As the concentration of AI-2 
further increased, the high levels of AI-2 in the external environment gradually disrupted the chemotaxis of E. coli towards 
the aggregates, resulting in more separated cells within the aggregates than those connecting them, leading to the dissolution 
of the aggregates. Curli fibers are a major protein component of the E. coli biofilm matrix. Research indicates that AI-2 
induced chemotaxis promotes early stage autoaggregation of E. coli mediated by curli fibers during low-temperature growth. 
This aggregation enhances the AI-2-mediated signal transduction, biofilm formation, and resistance to adverse conditions.105

Regulation of Bacterial Environmental Stress Response by QS Systems
The ability of bacteria to resist stress is a crucial determinant of their survival in natural environments and represents 
a significant marker of their adaptability. Extensive research has shown that the QS system plays a vital role in regulating 
bacterial stress resistance. Studies have found that after the deletion of theluxS gene in Porphyromonas gingivalis, its 
survival rate significantly increased under conditions of 50°C, pH 9.0, and exposure to 0.35 mm hydrogen peroxide.106

Figure 2 Physiological Functions Mediated by QS System.
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Table 1 Informative Table of Different Gram-Negative Bacterial QS Systems and Function

Bacterium QS systems Virulence-related phenotypes Resistance phenotypes Reference

Pseudomonas 

aeruginosa

(1) LasI (S)-LasR (R)- 

HSL (s)

Expression of several virulence factors including: 

LasA protease, LasB elastase, Apr alkaline protease

Regulating biofilm formation influences resistance to 

most antibiotics

[42–44]

(2) RhlI(S)-RhlR(R)- 

HSL(s)

Expression of several virulence factors including: LasB 

elastase, RhlAB rhamnolipids, Phz pyocyanin, Hen 

hydrogen cyanid

Regulating biofilm formation influences resistance to 

most antibiotics

[45,46]

(3)PqsABCD(S)-PqsR 

(R)-Alkyl quinolones 

(PQS)

Expression of several virulence factors including: Phz 

pyocyanin, Hian hydrogen cyanidel, LecA lectin 

PQS may exert cytotoxicity on cells by targeting the 

inhibition of the cellular respiratory chain

Regulating biofilm formation influences resistance to 

most antibiotics

[47]

(4)AmbBCDE(S)-IqsR 

(R)- integrated 

quorum sensing 

system(IQS)

Expression of several virulence factors including: 

pyocyanin, rhamnolipids and elastase

Regulating biofilm formation influences resistance to 

most antibiotics

[15]

Enterohemorrhagic  

Escherichia coli

(1) Unknown (S)-SdiA 

(R)-3OC8HSL (s)

Growth and division, Colonization, Adhesion and 

subversion of epithelial intestinal cells

Regulating biofilm formation influences resistance to 

most antibiotics 

Regulating the arcAB pathway of the efflux pump through 

SdiA affects Resistance to nalidixic acid, 

Chloramphenicol, Quinolones (ciprofloxacin, 

Norfloxacin)

[48–50]

(2) LuxS (S)-LsrB (R)- 

AI-2 (s)

Motility, Adhesion and subversion of epithelial 

intestinal cells, Exotoxin, Persistent infection, Stress 

survival

Regulating biofilm formation influences resistance to 

most antibiotics

[51–54]

(3) Unknown (S)- 

QseC (R)-AI-3 (s)

Motility, Adhesion and subversion of epithelial 

intestinal cells

[55,56]

(4) Indole Adhesion and subversion of epithelial intestinal cells, 

Persistent infection

Regulating biofilm formation influences resistance to 

most antibiotics

[57–59]

Klebsiella 

pneumoniae

(1) Unknown (S)-SdiA 

(R)- HSL (s)

Controlling fimbriae expression, biofilm formation [60]

(2) LuxS (S)-LsrB (R)- 

AI-2 (s)

Regulating the synthesis of LPS and PNAG and the 

structure of biofilms

[61]

(3) QseB(S)-QseC 

(R)-AI-3 (s)

Biofilm formation, serum resistance [62]

Salmonella.Typhi (1) Unknown (S)-SdiA 

(R)-3OC8HSL (s)

Competitive advantage, Motility, Adhesion, Invasion, 

Resistance to complement, Persistent infection

Regulating biofilm formation influences resistance to 

most antibiotics 

Influencing resistance to Nisin through PhoPQ and 

PmrAB

[63–66]

(2) LuxS (S)-LsrB (R)- 

AI-2 (s)

Stress survival (oxidative stress), Motility, Adhesion, 

Invasion

[67–69]

(3) Unknown (S)- 

QseC (R)-AI-3 (s)

Motility, Invasion, Intracellular survival, Persistent 

infection

Regulating biofilm formation influences resistance to 

most antibiotics

[70,71]

(4) Indole Motility, Invasion Influencing resistance to multi-antibiotics through the 

Phage-shock response and oxidative stress pathway 

mediated by OxyR

[72,73]

(5) DSF Invasion [74,75]

Burkhordelia cepacea (1) Cep1 (S)-CepR 

(R)-C8HSL, C6HSL (s)

Expression of swarm motility genes and several 

virulence factors including: proteases, siderophores, 

toxins, antifungal agents and biofilm formation

[76]

(2) Ccil (S)-CciR (R)- 

C8HSL, C6HSL (s)

Expression of swarm motility genes and several 

virulence factors including: proteases, siderophores, 

toxins, antifungal agents and biofilm formation

[77]

Vibrio Harveyi (1) LuxM (S)-LuxN 

(R)- 3OHC4HSL (s)

Expression of bioluminescence genes [78]

(2) LuxS (S)-LuxP (R)- 

AI-2 (s)

Expression of several virulence factors including: 

extracellular protease; swimming and swarming 

abilities

[79]

(3) CqsA (S)-CqsS 

(R)-CAI-1 (s)

Expression of bioluminescence genes, 

metalloprotease production, and type III secretion

[80]

(Continued)
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Regulation of Bacterial Biofilms by QS Systems
The formation of biofilms is a result of cell density-dependent gene expression and provides an appropriate microenvir
onment for intercellular communication. The main events involved in biofilm formation include the initial attachment of 
planktonic cells to a surface, followed by cell differentiation, EPS secretion, maturation, and dispersal.107 QS plays 
a significant regulatory role in coordinating biofilm formation across multiple species, although it may not be the primary 
regulatory factor, with varying effects from initial attachment to maturation. QS-induced alterations in cell surface 
characteristics contribute to biofilm phenotypic variation, cell aggregation, and the synthesis of extracellular polysac
charides or adhesins. As a component of biofilms, EPS offers microorganisms a stable environment to withstand 
environmental stresses such as high temperatures, elevated alcohol levels, and acidity. Additionally, the polysaccharides 
and proteins in EPS serve as nutritional sources for microbial growth and metabolism. Firstly, QS affects the physico
chemical properties of cells and enhances biofilm formation in the biofilm lifestyle. QS-regulated surfactants can increase 
cell hydrophobicity, promoting their adhesion to solid substrates.8 Further findings indicate a direct correlation between 
QS and EPS production. In wastewater treatment, the exogenous addition of 5 nmol/L C6-HSL significantly boosted EPS 
secretion.108 Other AHL molecules, such as 3-O-C6-HSL, C8-HSL, and C12-HSL, are also significantly related to EPS 
formation.109 Therefore, microbial communities can be regulated by QS through EPS and biofilm formation.

The majority of bacterial infections in the human body are associated with biofilms, and the formation of biofilms is 
a critical factor contributing to the difficulty in treating and preventing the recurrence of clinical bacterial infections; AI-2 
plays a crucial regulatory role during biofilm formation.6 When the luxS gene in Haemophilus influenzae, responsible for 
the QS system, is lacking, its ability to form biofilms is significantly enhanced.85,110 In K. pneumoniae, luxS mutants can 
form mature biofilms but with a reduced capacity for microcolony development, primarily during the early stages of 

Table 1 (Continued). 

Bacterium QS systems Virulence-related phenotypes Resistance phenotypes Reference

Vibrio Cholerae (1) LuxS (S)-LuxP (R)- 

AI-2 (s)

Expression of several virulence factors including: 

Biofilm formation and EPS production, host 

colonization

Aminoglycosides [81,82]

(2) CqsA(S)-CqsS (R)- 

CAI-1 (s)

Expression of several virulence factors including: 

Biofilm formation and EPS production, host 

colonization

[83]

Acinetobacter spp (1) Abal (S)-AbaR (R)- 

3OHC12HSL (s)

Expression of virulence factors including biofilm 

formation

[84]

Haemophilus 

influenzae

(1) LuxS (S)-RbsB (R)- 

AI-2 (s)

Invasion, lipooligosaccharide composition, 

Persistent infection

[85–87]

Campylobacter jejuni (1) AHL QS Transmission ability [88]

(2) LuxS (S)-unknown 

(R)-AI-2 (s)

Motility, Adhesion and invasion, Stress survival, 

Transmission ability, Exotoxin

Influencing resistance to most antibiotics through Biofilm 

formation and VBNC formation

[89–92]

Yersinia Pestis (1) YspI(S)- YspR(R)- 

3OC6HSL, 3OC8HSL 

(2) YpeI(S)-YpeIR(R)- 

unknown

Survival ability in fleas, Stress survival (Starvation 

stress), Growth and division Invasion

[93–95]

(2) LuxS (S)-unknown- 

AI-2 (s)

Survival ability during host infection, Survival ability in 

fleas, Adhesion, Invasion, Membrane modeling

[96,97]

Yersinia 

Enterocolitica

(1) YenI(S)- YenR(R)- 

HSL(s)

Swarming motility and cell aggregation, Host cell 

attachment, Virulence Plasmid Maintenance (pYVe)

[98,99]

Yersinia 

Pseudotuberculosis

(1) YpsI(S)-YpsR(R)- 

HSL(s) 

(2) YtbI(S)-YtbR(R)- 

HSL(s)

Swarming motility and cell aggregation, Survival 

ability, Damage host cells

[100,101]

Brucella melitensis (1) Unknown (S)-vjbR 

(R)- C12-HSL 

(2) Unknown (S)- 

BlxR(R)-

Motility, Survival ability in Brucella containing 

vacuoles (BCV), Adhesion, Intracellular replication, 

Immune evasion

Influencing rifampin resistance through the virB operon 

(virB7–11)

[102–104]
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biofilm formation.61 The regulation of biofilms by QS varies considerably among bacterial strains and potentially exhibits 
strain-specific characteristics.

The Regulation of Bacterial Antibiotic Resistance by QS Systems
QS Systems Collaborate with Biofilm to Mediate Antibiotic Resistance
The collective QS in conjunction with biofilms mediates the dissemination of antibiotic resistance. Studies have 
demonstrated that obstructing the QS system within biofilms further elucidates the interplay between QS resistance 
and QS.111 Protective polymers on the surfaces of biofilms attenuate bacterial growth and respiration rates within 
biofilms, rendering natural and artificial antibiotics insufficient to completely eradicate infectious biofilm 
communities.112 When mature bacterial biofilms are formed, the bacteria within the biofilm exhibit significantly 
increased resistance, with cells showing antibiotic resistance levels 10–1000 times higher than those of planktonic 
bacteria of the same species at similar growth stages.113 Pathogenic bacteria within biofilms use QS mechanisms to 
activate virulence factors and to develop antibiotic resistance. Additionally, antibiotic-degrading enzymes produced 
within the bacterial biofilms and certain gene products contribute to bacterial resistance. Antibiotic-degrading enzymes 
acquire antibiotic resistance via QS as a stress response. Studies have shown that the β-lactamases produced by bacteria 
are critical factors in conferring resistance to β-lactam antibiotics in biofilms. The reduced permeability of antibiotics 
through biofilms is attributed to the potential binding of antibiotics to the structural components within the biofilm 
matrix, rather than a decrease in antibiotic diffusion within the biofilm matrix.114

QS Systems Regulate the Active Efflux of Antibiotics
In addition to preventing drugs from entering the cell, bacteria can also actively pump drugs. Efflux pumps are 
transmembrane proteins that transport various toxic compounds, including antibiotics, in an energy-dependent manner 
across the bacterial membranes. Although all bacteria contain multiple efflux pumps, they are particularly important as 
mechanisms of antimicrobial resistance (AMR) in gram-negative bacteria. Efflux transport proteins are classified into six 
families, including members of the resistance-nodulation-division (RND) family, which exhibit the most clinically 
relevant levels of resistance in gram-negative bacteria. In Gram-negative bacteria, the signaling molecule AHL actively 
translocates through the cell membrane via the MexAB-OprM efflux pump. Some researchers have found that auto- 
inducer molecules can upregulate the expression of the multidrug resistance pump MexAB-OprM, leading to multidrug 
resistance in P. aeruginosa.115 Overexpression of the QS regulator SdiA leads to increased expression of the AcrAB 
efflux pump, which also plays a role in the multidrug resistance efflux pump system in E. coli.116 However, the 
expression levels of efflux pumps can also affect the signaling molecules. Some researchers have found that over
expression of the MexCD-OprJ multidrug resistance efflux pump can reduce the signaling molecule response in 
P. aeruginosa.117 Furthermore, a previous study demonstrated that chemical induction of the MexEF-oprN efflux 
pump can inhibit QS in P. aeruginosa.118 The notable contribution of RND efflux pumps to multidrug resistance, 
especially in clinically relevant gram-negative pathogens, offers a distinct opportunity to restore drug sensitivity by 
targeting the structure, function, and regulation of these transport proteins.

QS Systems Regulate the Formation of Persistent Bacteria
Persistent bacteria represent a specific subset of bacterial cells that display transient antibiotic tolerance, are often 
characterized by reduced growth or growth arrest, and can resume growth after exposure to lethal stress. The presence of 
these persistent cells significantly contributes to the persistent and recurrent nature of stubborn bacterial infections and is 
closely linked to an increased risk of developing antibiotic resistance during the course of treatment. In E. coli, the hipB 
gene, which is associated with the toxin-antitoxin system, is involved in the formation of persisters related to exposure to 
nanoaluminum, triggering antibiotic persistence in E. coli through the quorum-sensing regulators LrsF and QseB.119 

Research has also found that substances secreted by E. coli, which can serve as QS signal molecules, such as indole, can 
lead to an increase in the persistence of S.Typhi.120
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The Regulation of Antibiotic Resistance Genes (ARGs) Expression by QS Systems
A study found that in P. aeruginosa, cis-2-unsaturated fatty acid signaling molecules are involved in inter-species 
communication, which can lead to biofilm formation and alterations in susceptibility to various antibiotics.121 The LasI/R 
circuit in P. aeruginosa regulates the expression of ampC β-lactamase. After three days of exposure to imipenem, the 
expression of ampC in the ΔlasI strain was reduced by one-fourth compared to that in the wild-type strain.122 Study also 
discovered that under antibiotic induction, the activity of AHLs signaling molecules can promote the expression of 
resistance genes, potentially leading to the gradual development of multidrug resistance in A. baumannii, causing bacteria 
to evolve into multidrug-resistant strains123 Further comprehensive investigation is warranted to elucidate the influence 
of QS on the expression of ARGs.

The Regulation of Horizontal Gene Transfer by QS Systems
In the process of bacterial biofilm formation involving QS, bacteria in biofilms can also transfer and spread antibiotic 
resistance genes through the conjugative transfer of plasmids.124 The bonding efficiency of plasmids in the biofilm was 
700 times that of suspended cells.125 When Licht et al126 studied the conjugational transfer of plasmids, they found that 
the conjugational transfer frequency between suspended cells was much lower than that in the biofilm system (4–50 
times), and the conjugational transfer frequency of plasmids in the biofilm system peaked in a short time. In addition, the 
frequency of plasmid conjugative transfer was high when bacteria containing anti-plasmids were introduced into bacteria 
that formed biofilms. A study also demonstrated that bacterial QS facilitates conjugative transfer of the multidrug- 
resistant plasmid RP4 within bacterial biofilms, significantly affecting the dissemination and spread of antibiotic 
resistance genes 127.

Furthermore, in a study by Wang Ting et al 128, it was found that AI-2 acts as a self-inducer and enhances conjugation 
frequency by regulating the expression levels of conjugative transfer-related genes, thereby promoting conjugative 
transfer of tetracycline resistance genes in Vibrio Parahaemolyticus. Exogenous AI-2 can upregulate the expression of 
TEM-type enzymes in a LsrR-dependent manner, increasing antibiotic resistance in E. coli strains 129.2.5 The Regulation 
of Bacterial Virulence by QS Systems.

QS Systems Regulate Virulence Through the Secretion Systems
The bacterial secretion system is a macromolecular complex that exists in the bacterial cell membrane. It is a complex 
transmembrane molecular machine that can provide a secretion pathway for a variety of bacterial effectors. Nine bacterial 
secretory systems, T1SS~T9SS, have been found to play important roles in bacterial survival and pathogenicity. 
Transcriptomic analysis of P. aeruginosa reveals that the Type 1 secretion System (T1SS) is positively regulated by 
the QS system, as the expression of its effector alkaline protease AprA depends on QS. The Type 2 secretion System 
(T2SS) is responsible for secreting folded proteins from the periplasm of Gram-negative bacteria 130. The Xcp system in 
P. aeruginosa secretes QS-regulated virulence factors including elastase and exotoxins. Interestingly, the Xcp system 
itself is positively regulated by QS 131. The QS system is directly associated with Type IV Secretion System (T4SS) in 
Brucella. In Brucella, the LuxR-type QS system is responsible for the virulence characteristics regulated by the virB 
operon, which encodes the T4SS controlled by VjbR 132.

QS Systems Regulate Virulence Phenotypes
A study revealed that deletion of the luxS gene in Actinobacillus pleuropneumoniae significantly reduced the transcrip
tion level of the virulence gene apxIIA. Mouse experiments confirmed a 96-fold decrease in LD50 for the luxS deletion 
strain, and bacterial loads in the peritoneal lavage fluid, spleen, and lung tissues of mice were also significantly reduced. 
These findings indicate that QS positively regulates the virulence of A. pleuropneumoniae 133. However, the opposite 
experimental results were found in H. influenzae, where the luxS deletion strain exhibited enhanced invasiveness in NCI- 
H292 cells. Infection experiments in chinchillas demonstrated that the luxS deletion strain of H. influenzae displayed 
increased pathogenicity in chinchillas, with significantly higher levels isolated from the middle ear than the wild-type 
strain. Additionally, histopathological results showed stronger inflammation and increased goblet cell hyperplasia in mice 
infected with the luxS deletion strain of H. influenzae 10 d post-infection 86. This indicated that the QS system regulates 
virulence differently in different bacterial strains.
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Discussion and Prospects
In summary, in recent decades, there has been a significant advancement in our understanding of QS. The regulation of 
physiological functions by QS in Gram-negative bacteria has been studied extensively. This review provides a brief 
overview of QS systems in gram-negative bacteria and summarizes the regulation of chemotaxis, biofilm formation, 
resistance, virulence, and other QS aspects. This helps us to understand the role of the QS system in the physiological 
regulation of gram-negative bacteria.

Currently, research on QS systems of gram-negative bacteria has mainly focused on AHL signaling molecules, and 
P. aeruginosa has become a model strain. In contrast, relatively little research has been conducted on the AI-2 QS system 
in Gram-negative bacteria, and many aspects of AI-2 regulation remain unclear, posing numerous questions worthy of 
further investigation: 1) There is limited research on the interaction of AI-2 with the host, and the role of AI-2 signaling 
molecules in the microbial-host interaction process remains unclear. 2) Existing studies on the interaction of AI-2 with 
the host are mainly confined to in vitro cell culture experiments, and there is an urgent need for animal experiments to 
understand whether AI-2 can exert harmful biological effects by coordinating microbial behavior and regulating 
microbial networks or individual bacteria. 3) As an inter-species signaling molecule, there is currently limited research 
on the role of AI-2 in bacterial–bacterial interactions. 4) With the development of advanced technologies, AI-2-related 
research should focus on the combined use of metagenomics, transcriptomics, proteomics, metabolomics, and other 
multiomics technologies to elucidate the regulatory role of AI-2. Addressing these issues can help researchers gain 
a better understanding of the microbial world and provide a theoretical basis for the prevention and control of related 
pathogenic bacteria as well as the development of antimicrobial drugs.

This article focuses on the regulatory role of QS in Gram-negative bacteria, but QS, as a ubiquitous form of 
communication in microbial communities, also exerts significant effects on Gram-positive bacteria and fungi. Gram- 
positive bacteria, for instance, regulate the production of toxins and extracellular enzymes through QS. S. aureus, for 
example, utilizes a QS system known as the Agr system to regulate the expression of toxins (such as α-hemolysin) and 
other virulence factors. This enables the bacteria to coordinate the expression of virulence in response to population 
density during host infection, thereby enhancing their infectivity. In fungi, such as Candida albicans, virulence often 
depends on QS signals. When the population density increases, QS activates virulence-related genes, promoting the 
transition of the fungus from a yeast form to a filamentous form, thus enhancing its invasiveness. Furthermore, QS also 
plays a regulatory role in biofilm formation and antimicrobial resistance in both Gram-positive bacteria and fungi. 
Through QS, microorganisms can more efficiently regulate gene expression, cooperate in attacking the host, and improve 
their competitive survival. In the context of antibiotic and antifungal treatments, QS mechanisms may serve as new 
therapeutic targets. Therefore, a deeper understanding of the mechanisms of QS could help develop new strategies for 
combating bacterial and fungal infections, especially in the face of growing antimicrobial resistance.
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