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Purpose: Studies consistently show abnormally high levels of lactate acid in cardiovascular disease patients, suggested that targeting 
lactate production may serve as potential strategies for the treatment in the future. However, observational results may be subject to 
residual confounding and bias.
Methods: This study used the dataset from GWAS database to examine confounding in epidemiologic associations between lactate 
and cardiovascular diseases. A genome-wide genetic association study using Mendelian randomization (MR) was performed from 
December 02, 2023 to January 15, 2024 to reduce confounding and enhance causal inference. Primary analysis was conducted using 
inverse-variance-weighted MR. All studies included patients predominantly of European ancestry.
Results: The association between lactate and cardiovascular diseases, including 60801 cases from coronary heart disease, 7018 cases 
from myocardial infarction, 14334 cases from coronary atherosclerosis, 60620 cases from atrial fibrillation, 54358 cases from 
hypertension, 71 cases from hypertrophic cardiomyopathy, 47309 cases from heart failure, 7055 cases from stroke, 7193 cases from 
cardioembolic ischemic stroke, 4373 cases from ischemic stroke caused by large vascular atherosclerosis, 2118 cases from pulmonary 
embolism, 1230 cases from peripheral artery disease, and 4620 cases from venous thromboembolism. Genetically predicted coronary 
atherosclerosis was associated with a higher risk of lactate level (OR = 1.950; 95% CI (0.087, 1.249); P = 0.024); this association was 
also evident for peripheral artery disease (OR = 1.003; 95% CI (0.000, 0.005); P = 0.021). No genetically predicted associations were 
noted for the other cardiovascular diseases.
Conclusion: The findings of this study provide genetic evidence supporting a higher risk of lactate level only in coronary 
atherosclerosis and peripheral artery disease. However, no genetic association between lactate level and the other cardiovascular 
diseases.
Keywords: Mendelian randomization, atherosclerosis, peripheral artery disease, GWAS, single nucleotide polymorphisms

Introduction
Since cardiovascular diseases (CVDs) continue to be the world’s leading cause of mortality, there is a pressing need to 
find new and targeted diagnostic and therapeutic approaches.1 With an estimated yearly impact of more than $200 billion 
and an exponential growth in estimates by 2060, CVDs are the leading public health problems.2,3 CVDs include 
atherosclerosis (AS), myocardial infarction (MI), heart failure (HF), coronary heart disease (CHD) and so on, which 
effect the structure and function of the heart.

Since its discovery in 1780, lactate has been believed to be a metabolic waste product resulting from glycolysis with 
no primary physiological role.4,5 Recent years have seen a progressive identification of lactate’s cryptic significance as 
study has become more thorough. The relationship between lactate levels and CVDs has been controversial.6 Even 
though there have been many observational studies looking at the connections between LA level and CVDs, the results 
have been skewed due to confounding variables and uncertain causal direction.7–9
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By reducing residual confounding and reverse causation, the Mendelian randomization (MR) strategy can enhance the 
causal inference when genetic variations are used as instrumental variables for an exposure (in this example, lactate).10 

This approach uses genetic risk of disease as a stand-in for the actual disease within the context of instrumental variant 
analysis. In a manner comparable to a randomized clinical trial, this results in effective randomization to either high or 
low genetic risk of a disease, reducing the possibility of confounding and reverse causation.11 MR estimates may be seen 
as the projected impact of the exposure on the result, given a set of assumptions.12

Since allelic randomization always occurs before the start of disease, the MR analysis can avoid reverse causation bias 
when compared to typical observational research.13 Furthermore, by integrating genetic markers as instrumental variables 
(IVs) of exposures, random segregation and the independent assortment of genetic polymorphisms at conception allow the 
MR analysis to reduce the influence of confounding factors.14 The investigation of causation is made possible in part by the 
availability of extensive genome-wide association studies (GWASs).15 Because genetic data is publicly available, MR 
analysis is being routinely used to evaluate possible causal links between different exposures and CVDs.16

Therefore, the aim of this MR study was to comprehensively investigate the association of lactate level with the risk 
of 13 CVDs, including CHD, MI, coronary AS, atrial fibrillation (AF), hypertension, hypertrophic cardiomyopathy 
(HCM), HF, stroke, cardioembolic ischemic stroke (IS), IS caused by large vascular AS, pulmonary embolism (PE), 
peripheral artery disease (PAD), and venous thromboembolism (VTE).

Materials and Methods
Study Design and Data
We performed a comprehensive two-sample bidirectional MR study to investigate the causality between lactate levels 
and CVDs (Figure 1A). The schematic view of the study design, and the three key assumptions of MR are as follows: (I) 
single nucleotide polymorphisms (SNPs) are strongly associated with lactate level; (II) SNPs only affect CVDs via 
lactate level; (III) SNPs are independent of known confounders (Figure 1B). The validity of the MR method depends on 
the IVs being satisfied for the three key assumptions in two-stage approach. Initially, SNPs associated with lactate levels 
will be identified from the database and confirmed in our dataset. These SNPs will be considered valid IVs if they are 
associated with lactate level at a genome-wide significance level (P < 5×10^-6) and are not in linkage disequilibrium with 
each other (R^2 < 0.01).

All data used in this genome-wide genetic association study are deidentified publicly available. All cited data sources 
obtained participant informed consent and relevant ethical approval. The study was conducted from December 28, 2023 
to July 15, 2024. Details of the studies used as data sources are outlined in eTable 1. This study is reported following 
recommendations by the Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian 
Randomization (STROBE-MR) reporting guideline.17

Instrumental Variants for Exposures
The exposure of this study considered lactate. Genome-wide SNPs associated with lactate levels were obtained from the 
MR Base GWAS Catalog (https://gwas.mrcieu.ac.uk/datasets/met-d-Lactate/). It included 114,802samples (males and 
females) and 12,321,875 SNPs from Europe, released in 2020 by Borges CM. Instrumental variants were selected if they 
were associated with exposure at a genomewide significance threshold of P < 5×10^-6. This was achieved by packages 
“VariantAnnotation”, “gwasglue”, “dplyr”, “tidyr”, and “CMplot” in R software. The Manhattan figure was shown in 
eFigure 1.

Harmonization and Clumping
Data harmonization will be conducted to ensure that SNP alleles are consistently coded with respect to the effect on 
lactate levels. Clumping will be performed to prune out SNPs in linkage disequilibrium with more strongly associated 
IVs. Since two-sample MR methods require that the instruments be independent and do not have Linkage Disequilibrium 
(LD) between them, we used the “clump_data” function in R available via the “TwoSampleMR” package. We pruned 
SNPs in LD (R^2 < 0.01) within a clumping distance of 1000 kb. Next, to test the strength and validity of the IVs, we 
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Figure 1 Flow chart (A) and assumptions (B) of this Mendelian study. 
Abbreviations: GWAS, genome-wide association studies; CHD, coronary heart disease; MI, myocardial infarction; CAS, coronary atherosclerosis; AF, atrial fibrillation; HP, 
hypertension; HCM, hypertrophic cardiomyopathy; HF, heart failure; CIS, cardioembolic ischemic stroke; ISAS, IS caused by large vascular atherosclerosis; PE, pulmonary 
embolism; PAD, peripheral artery disease; VTE, venous thromboembolism; UKB, UK Biobank; EBI, European Bioinformatics Institute; IEU, Integrative Epidemiology Unit; 
IVW, inverse-variance-weighted; WM, weighted median; MR, Mendelian randomization; SNP, number of single nucleotide polymorphisms.
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calculated F-statistics for each variant and only included the variants associated with lactate at an F-statistic > 10.18 All 
effect alleles were aligned to the LA-increasing allele. Finally, the package “MendelianRandomization” in R software 
and PhenoScanner website (http://www.phenoscanner.medschl.cam.ac.uk/) were used to remove confounding factors 
(P < 1×10^-5). A list of instrumental variants used in the analysis for the exposures can be found in eTable 2.

Genetic Associations for Outcomes
Publicly available summary statistics from UK Biobank (UKB), European Bioinformatics Institute (EBI), and Integrative 
Epidemiology Unit (IEU) GWAS from the MR Base GWAS Catalog were used to obtain genetic variants associated with 
CVDs as the outcome. If multiple catalogs were available for extracting summary statistics for a given outcome, we 
chose the most recent and the one containing the most significant number of cases/controls to keep our analysis robust.

The association between the IVs for lactate and cardiovascular outcomes were evaluated using genetic association 
analysis. Cardiovascular outcomes included CHD, MI, coronary AS, AF, hypertension, HCM, HF, stroke, cardioembolic 
IS, IS caused by large vascular AS, PE, PAD, and VTE. Association tests were performed using logistic regression, 
adjusting for age, sex, principal components of ancestry, and other relevant confounders. The final lists of SNPs used of 
different CVDs in the analysis were shown in eTable 3–eTable 15.

Statistical Analysis
The primary method used for analysis was inverse-variance-weighted (IVW) MR with multiplicative random effects in 
all instances,19 the other four methods including MR Egger regression, weighted median (WM) analysis, simple mode 
method, and weighted mode method were also performed. Multiple MR methods allow robust estimates even if potential 
violations are encountered in the MR approach. In addition, using different methods allows for optimal MR analysis as 
they differ in efficiency, limitations, and strengths.20 IVW is the most efficient MR method and has the most considerable 
statistical power, but it assumes that all variants are valid or have no pleiotropy.21 On the other hand, the MR Egger 
regression is used to detect violations of assumptions or the presence of outliers in the MR method and performs well in 
terms of bias under the null and Type I error rate, but it lacks precision and has the lowest power to detect a positive 
effect.22,23 The WM method is robust in the presence of outliers and can provide firm estimates even when 50% of the 
IVs are invalid, but has high Type I error rate.22,23 The weighted mode-based estimation method generally has low bias 
and low Type I error rate inflation with up to 40 invalid instruments, but also has low power to detect a causal effect.23 If 
the results of five MR methods are different, we referred to the IVW result.

Heterogeneity in inverse-variance-weighted analyses and MR-Egger methods were estimated using the Cochran 
Q statistic. Additional sensitivity analyses were performed through MR-Egger regression to assess and address the key 
MR assumptions regarding instrumental variants. The MR-Egger intercept test to verify the potential pleiotropy. The 
assumptions were explored by removing confounding factors (P < 1×10^-5) and quantifying the strength of instruments 
using genome-wide significance level (P < 5×10^-6), R^2 (< 0.01) and F statistics (> 10).24

All statistical analysis was conducted in R software (version 4.3.2, R Foundation for Statistical Computing) using 
different packages, including “TwoSampleMR”, “MendelianRandomization”, “VariantAnnotation”, “gwasglue”, “dplyr”, 
“tidyr”, and “CMplot”. Results are presented as ORs with 95% confidence intervals. For all analyses, a p-value of less 
than 0.05 at 2- sided will be considered statistically significant.

Results
High Risk of Lactate Level in CVDs
Genetically predicted a higher risk of lactate level (OR = 1.950; 95% CI (0.087, 1.249); P = 0.024) associated with 
coronary AS, as illustrated in Figure 2C and Table 1. Sensitivity analyses revealed no evidence of directional pleiotropy 
for genetically predicted coronary AS (MR-Egger intercept P = 0.949) and no heterogeneity was noted (Q statistic = 
10.961, P = 0.140 in IVW method; Q statistic = 10.968, P = 0.204 in MR Egger method) in eTable 16. The results of 
single SNP analysis are reported in eFigure 2C.
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Table 1 MR Estimates for the Effect of Lactate of CVDs

Outcomes MR Method nSNP OR (95% CI) P value

CHDa MR Egger 5 1.638 (−0.539, 1.526) 0.418

Weighted median 5 0.808 (−0.512, 0.085) 0.160

Inverse variance weighted 5 0.815 (−0.482, 0.073) 0.148

Simple mode 5 0.993 (−0.481, 0.467) 0.978

Weighted mode 5 0.812 (−0.580, 0.164) 0.334

MIb MR Egger 8 1.009 (−0.034, 0.053) 0.693

Weighted median 8 1.003 (−0.006, 0.012) 0.499

Inverse variance weighted 8 1.007 (−0.004, 0.017) 0.219

Simple mode 8 1.005 (−0.010, 0.019) 0.534

Weighted mode 8 1.005 (−0.005, 0.014) 0.359

CASc MR Egger 9 1.805 (−1.799, 2.980) 0.643

Weighted median 9 1.662 (−0.171, 1.187) 0.142

Inverse variance weighted 9 1.950 (0.087, 1.249) 0.024

Simple mode 9 2.317 (−0.361, 2.042) 0.208

Weighted mode 9 1.485 (−0.724, 1.515) 0.508

AFd MR Egger 6 1.650 (−0.997, 1.999) 0.548

Weighted median 6 1.073 (−0.190, 0.331) 0.596

Inverse variance weighted 6 1.346 (−0.067, 0.662) 0.109

Simple mode 6 1.022 (−0.499, 0.543) 0.937

Weighted mode 6 1.022 (−0.251, 0.295) 0.881

HPe MR Egger 10 1.039 (−0.177, 0.254) 0.734

Weighted median 10 1.009 (−0.014, 0.031) 0.448

Inverse variance weighted 10 1.033 (−0.012, 0.078) 0.155

Simple mode 10 1.006 (−0.022, 0.034) 0.678

Weighted mode 10 1.005 (−0.021, 0.031) 0.715

HCMf MR Egger 10 0.999 (−0.005, 0.999) 0.615

Weighted median 10 1.000 (−0.001, 0.001) 0.389

Inverse variance weighted 10 1.001 (0.000, 0.002) 0.081

Simple mode 10 1.001 (−0.001, 0.002) 0.535

Weighted mode 10 1.000 (−0.001, 0.002) 0.633

(Continued)

Vascular Health and Risk Management 2024:20                                                                                https://doi.org/10.2147/VHRM.S488424                                                                                                                                                                                                                       

DovePress                                                                                                                         
545

Dovepress                                                                                                                                                           Chang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 (Continued). 

Outcomes MR Method nSNP OR (95% CI) P value

HFg MR Egger 9 1.397 (−1.067 1.736) 0.654

Weighted median 9 0.992 (−0.245, 0.229) 0.946

Inverse variance weighted 9 1.187 (−0.122, 0.465) 0.252

Simple mode 9 0.937 (−0.367, 0.238) 0.686

Weighted mode 9 0.923 (−0.365, 0.205) 0.596

STROKEh MR Egger 7 0.975 (−0.064, 0.014) 0.256

Weighted median 7 1.001 (−0.007, 0.010) 0.752

Inverse variance weighted 7 0.999 (−0.008, 0.006) 0.806

Simple mode 7 1.005 (−0.010, 0.019) 0.562

Weighted mode 7 1.004 (−0.010, 0.018) 0.617

CISi MR Egger 11 0.340 (−2.963, 0.805) 0.291

Weighted median 11 0.931 (−0.650, 0.506) 0.808

Inverse variance weighted 11 1.299 (−0.275, 0.797) 0.339

Simple mode 11 0.612 (−1.880, 0.897) 0.503

Weighted mode 11 0.625 (−1.459, 0.518) 0.373

ISASj MR Egger 11 3.851 (−0.933, 3.630) 0.277

Weighted median 11 1.474 (−0.278, 1.474) 0.253

Inverse variance weighted 11 1.606 (−0.134, 1.081) 0.127

Simple mode 11 2.199 (−0.410, 1.986) 0.226

Weighted mode 11 1.590 (−0.642, 1.569) 0.430

PEk MR Egger 12 0.995 (−0.023, 0.012) 0.552

Weighted median 12 1.002 (−0.003, 0.007) 0.537

Inverse variance weighted 12 1.004 (−0.001, 0.009) 0.112

Simple mode 12 1.003 (−0.007, 0.013) 0.548

Weighted mode 12 1.001 (−0.005, 1.001) 0.667

PADl MR Egger 12 1.005 (−0.003, 0.014) 0.261

Weighted median 12 1.003 (0.000, 0.007) 0.064

Inverse variance weighted 12 1.003 (0.000, 0.005) 0.021

Simple mode 12 1.004 (−0.002, 0.010) 0.180

Weighted mode 12 1.004 (−0.001, 1.004) 0.137

(Continued)
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As shown in Figure 2L and Table 1, genetically predicted a higher risk of lactate level (OR = 1.003; 95% CI (0.000, 
0.005); P = 0.021) associated with PAD. Sensitivity analyses revealed no evidence of directional pleiotropy for 
genetically predicted PAD (MR-Egger intercept P = 0.570). Significant heterogeneity was also not noted for PAD (Q 
statistic = 8.670, P = 0.564 in IVW method; Q statistic = 9.015, P = 0.620 in MR Egger method) in eTable 16. The 
results of single SNP analysis are reported in eFigure 2L.

Not Associated with High Risk of Lactate Level in CVDs
No association with lactate level genetically predicted in CHD (OR = 1.950; 95% CI (0.087, 1.249); P = 0.024) 
(Figure 2A), genetically predicted MI (OR = 1.950; 95% CI (0.087, 1.249); P = 0.024) (Figure 2B), genetically predicted 
AF (OR = 1.950; 95% CI (0.087, 1.249); P = 0.024) (Figure 2D), genetically predicted hypertension (OR = 1.950; 95% 
CI (0.087, 1.249); P = 0.024) (Figure 2E), genetically predicted HCM (OR = 1.950; 95% CI (0.087, 1.249); P = 0.024) 
(Figure 2F), genetically predicted HF (OR = 1.950; 95% CI (0.087, 1.249); P = 0.024) (Figure 2G), genetically predicted 
stroke (OR = 1.950; 95% CI (0.087, 1.249); P = 0.024) (Figure 2H), genetically predicted cardioembolic IS (OR = 1.950; 
95% CI (0.087, 1.249); P = 0.024) (Figure 2I), genetically predicted IS caused by large vascular AS (OR = 1.950; 95% 
CI (0.087, 1.249) (Figure 2J); P = 0.024), genetically predicted PE (OR = 1.950; 95% CI (0.087, 1.249); P = 0.024) 
(Figure 2K), and genetically predicted VTE (OR = 1.950; 95% CI (0.087, 1.249); P = 0.024) (Figure 2M) were not 
associated with lactate level, as shown in Table 1.

Sensitivity analyses revealed no evidence of directional pleiotropy for genetically predicted CHD (MR-Egger 
intercept P = 0.265), MI (MR-Egger intercept P = 0.908), AF (MR-Egger intercept P = 0.796), hypertension (MR- 
Egger intercept P = 0.958), HCM (MR-Egger intercept P = 0.377), HF (MR-Egger intercept P = 0.822), stroke (MR- 
Egger intercept P = 0.265), cardioembolic IS (MR-Egger intercept P = 0.181), IS caused by large vascular AS (MR- 
Egger intercept P = 0.455), PE (MR-Egger intercept P = 0.302), and VTE (MR-Egger intercept P = 0.879) as shown in 
Table 1.

No significant heterogeneity was noted for CHD (Q statistic = 3.554, P = 0.314 in IVW method; Q statistic = 5.765, 
P = 0.217 in MR Egger method), HCM (Q statistic = 10.851, P = 0.210 in IVW method; Q statistic = 12.034, P = 
0.211 in MR Egger method), stroke (Q statistic = 5.232, P = 0.388 in IVW method; Q statistic = 6.881, P = 0.332 in 
MR Egger method), IS caused by large vascular AS (Q statistic = 15.638, P = 0.075 in IVW method; Q statistic = 
16.697, P = 0.081 in MR Egger method), PE (Q statistic = 20.044, P = 0.029 in IVW method; Q statistic = 22.423, P = 
0.021 in MR Egger method), VTE (Q statistic = 1.640, P = 0.440 in IVW method; Q statistic =1.670, P = 0.644 in MR 
Egger method), although some heterogeneity was noted for MI (Q statistic = 17.857, P = 0.007 in IVW method; 
Q statistic = 17.900, P = 0.012 in MR Egger method), AF (Q statistic = 20.864, P < 0.001 in IVW method; Q statistic 

Table 1 (Continued). 

Outcomes MR Method nSNP OR (95% CI) P value

VTEm MR Egger 4 0.997 (−0.039, 0.034) 0.895

Weighted median 4 1.000 (−0.012, 0.012) 0.959

Inverse variance weighted 4 1.000 (−0.009, 0.010) 0.946

Simple mode 4 0.995 (−0.022, 0.013) 0.631

Weighted mode 4 0.998 (−0.018, 0.013) 0.784

Notes: aThe MR-Egger intercept (SE) was −0.033 (0.024); P = 0.265. bThe MR-Egger intercept (SE) was 
< −0.001 (<0.001); P = 0.908. cThe MR-Egger intercept (SE) was 0.003 (0.048); P = 0.949. dThe MR- 
Egger intercept (SE) was −0.007 (0.026); P = 0.796. eThe MR-Egger intercept (SE) was < −0.001 (0.003); 
P = 0.958. fThe MR-Egger intercept (SE) was < −0.001 (<0.001); P = 0.377. gThe MR-Egger intercept (SE) 
was −0.006 (0.026); P = 0.822. hThe MR-Egger intercept (SE) was < 0.001 (<0.001); P = 0.265. iThe MR- 
Egger intercept (SE) was 0.052 (0.036); P = 0.181. jThe MR-Egger intercept (SE) was −0.034 (0.044); P = 
0.455. kThe MR-Egger intercept (SE) was < 0.001 (<0.001); P = 0.302. lThe MR-Egger intercept (SE) was 
< −0.001 (<0.001); P = 0.570. mThe MR-Egger intercept (SE) was < 0.001 (<0.001); P = 0.879.
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= 21.261, P = 0.001 in MR Egger method), hypertension (Q statistic = 98.478, P < 0.001 in IVW method; Q statistic = 
98.514, P < 0.001 in MR Egger method), HF (Q statistic = 25.671, P = 0.001 in IVW method; Q statistic = 25.871, P = 
0.001 in MR Egger method), cardioembolic IS (Q statistic = 18.124, P = 0.034 in IVW method; Q statistic = 22.350, 
P = 0.013 in MR Egger method) in eTable 16. The results of single SNP analysis are reported in eFigures 2A, B, D–K 
and M.

Discussion
Researchers have long been interested in the relationship between lactate level and CVDs. This work has made progress 
in clarifying the genetic relationships between lactate levels and different cardiovascular diseases by utilizing the GWAS 
database dataset. In order to give a more comprehensive picture of the function of lactate in CVDs, we sought to address 
the shortcomings of observational research, such as biases and residual confounding, by utilizing the MR approach.

Figure 2 Causal associations between lactate levels and CHD (A), MI (B), CAS (C), AF (D), HP (E), HCM (F), HF (G), stroke (H), CIS (I), ISAS (J), PE (K), PAD (L), and VTE (M). 
Abbreviations: OR, odds ratio; CHD, coronary heart disease; MI, myocardial infarction; CAS, coronary atherosclerosis; AF, atrial fibrillation; HP, hypertension; HCM, 
hypertrophic cardiomyopathy; HF, heart failure; CIS, cardioembolic ischemic stroke; ISAS, IS caused by large vascular atherosclerosis; PE, pulmonary embolism; PAD, 
peripheral artery disease; VTE, venous thromboembolism.
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Our results point to a correlation between genetically predicted lactate levels and coronary AS and PAD. This 
suggests that these diseases are more likely to occur in those who have a genetic propensity to produce more lactate. 
Despite the small confidence intervals, the ORs of 1.950 for PAD and 1.950 for coronary AS indicate a statistically 
significant association that calls for more research. These findings are consistent with previous research suggesting 
lactate is not only a metabolic waste product but also a signaling molecule that affects vascular smooth muscle cells and 
vascular remodeling.25–27 Blood lactate levels were found to be positively correlated with carotid atherosclerosis in 
a cross-sectional investigation of 1496 people, regardless of other cardiovascular risk factors.28

Studies on the relationship between lactate and PAD are limited. Lactate’s significance in peripheral vascular health is 
further supported by the hereditary link with PAD in our results. We speculate that the possible reason is that lactate may 
impair limb perfusion and contribute to the pathophysiology of illness by influencing muscle metabolism and vascular 
function. However, a clinical study suggests that lactate production is not directly correlated with improvement of 
endothelial function and walking abilities in PAD.29 Based on these, personalized medicinal methods are necessary since 
the genetic link may also indicate that individuals with a tendency for greater lactate levels may suffer different disease 
progression or response to therapy. With this specificity, tailored treatments for PAD and coronary AS may be developed. 
These treatments may involve changing the signaling pathways or lactate levels.

It’s interesting to note that lactate levels were not shown to be genetically predicted to be associated with other eleven 
types of CVDs. This might imply that more important genetic and environmental variables predominate under these 
situations, making lactate’s impact either insignificant or invisible. The specificity of lactate as a biomarker or therapeutic 
target is also called into doubt given its lack of relationship with other types of CVDs. It is possible that lactate’s 
involvement in CVDs is more complex than previously believed, and that treating lactate transport or synthesis will only 
help some subgroups of cardiovascular diseases. We review articles about relationship between lactate and CVDs, such 
as HF. In recent years, basic and clinical studies have reported the role of lactate in HF. Many studies have shown that 
high levels of lactate in the blood are a marker of poor prognosis in patients with HF.2,8 The role of lactate in acute and 
chronic HF seems to be different. Blood lactate levels significantly increase during acute HF, while in patients with 
chronic HF, there is little change in their blood lactate levels.30 Maybe that is one reason we drew the conclusion of no 
association between lactate and HF. For another example, several clinical investigations have demonstrated the strong 
predictive usefulness of circulating lactate levels in predicting worse clinical outcomes in patients with MI.31,32 But 
according to a different study, during the early stages of MI, monocytes’ lactylation of H3K18la stimulates the 
production of genes involved in cardiac repair, including IL-10, VEGF-A, and LRG1, which helps to heal infarcted 
hearts.33 All things considered, there is disagreement regarding lactate’s advantageous function in MI patients. The 
specific impact of lactate could vary depending on the cell types implicated in myocardial infarction, the stage of the 
illness, the existence of coexisting conditions, etc.6

When interpreting our findings, several important limitations must be considered. First, the predominance of 
European ancestry within the study population may limit the generalizability of our results to other ethnic groups. 
Cardiovascular disease is influenced by a complex interplay of genetic, socioeconomic, and lifestyle factors, many of 
which vary significantly across populations. This homogeneity in genetic background may obscure variant-disease 
associations that are relevant in other ancestries, potentially biasing the study’s conclusions. Future research should 
prioritize including ethnically and geographically diverse cohorts to ensure broader applicability and to uncover 
population-specific genetic and environmental interactions. Second, pleiotropy presents a critical challenge to the 
reliability of MR findings. Although MR is a powerful tool for causal inference, the possibility that genetic variants 
used as instrumental variables influence multiple traits beyond the exposure of interest remains a concern. Such 
horizontal pleiotropy can introduce bias, leading to spurious associations or an overestimation of causal effects. While 
statistical methods to detect and adjust for pleiotropy are increasingly robust, they are not foolproof. Future studies 
should incorporate rigorous sensitivity analyses and employ multiple complementary methods to strengthen the validity 
of MR conclusions.
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Conclusion
In conclusion, our univariable MR analysis concludes that, with the exception of coronary AS and PAD, there is no evidence 
connecting lactate level to any of the 13 CVDs outcomes in the GWAS database. The genetic associations found with PAD and 
coronary AS may serve as a foundation for further investigation into the molecular mechanisms linking lactate to these 
illnesses. They also provide inspiring chances for the development of innovative therapeutic modalities. More study with 
a broader patient population and mechanistic studies is required to adapt these findings to therapeutic practice.
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