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Objective: To explore the types of pathogens causing lower respiratory tract infections (LTRIs) in children and construction of 
a predictive model for monitoring secondary asthma caused by LTRIs.
Methods: Seven hundred and seventy-five children with LTRIs treated from June 2017 to July 2024 were selected as research 
subjects. Bacterial isolation and culture were performed on all children, and drug sensitivity tests were conducted on the isolated 
pathogens; And according to whether the child developed secondary asthma during treatment, they were divided into asthma group 
(n = 116) and non-asthma group (n = 659); Using logistic regression model to analyze the risk factors affecting secondary asthma in 
children with LTRIs, and establishing machine learning (ie nomogram and decision tree) prediction models; Using ROC curve analysis 
machine learning algorithms to predict AUC values, sensitivity, and specificity of secondary asthma in children with LTRIs.
Results: 792 pathogenic bacteria were isolated from 775 children with LTRIs through bacterial culture, including 261 Gram positive 
bacteria (32.95%) and 531 Gram negative bacteria (67.05%). Logistic regression model analysis showed that Glycerophospholipids, 
Sphingolipids and radiomics characteristics were risk factors for secondary asthma in children with LTRIs (P < 0.05). The AUC, 
sensitivity, and specificity of nomogram prediction for secondary asthma in children with LTRIs were 0.817(95CI: 0.760–0.874), 
82.3%, and 76.6%, respectively; The AUC of decision tree prediction for secondary asthma in children with LTRIs is 0.926(95% CI: 
0.869–0.983), with a sensitivity of 96.7% and a specificity of 87.8%.
Conclusion: LTRIs in children are mainly caused by Staphylococcus aureus, Streptococcus pneumoniae, Staphylococcus epidermidis, 
Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa; In addition, machine learning combined with multi-omics 
prediction models has shown good ability in predicting LTRIs combined with asthma, providing a non-invasive and effective method 
for clinical decision-making.
Keywords: children, lower respiratory tract infection, pathogenic bacteria, radiomics, untargeted metabolomics, asthma, prediction 
model

Introduction
Lower respiratory tract infections (LRTIs), as the most common respiratory disease among school-age children, account 
for up to 4 million deaths worldwide each year.1–3 On the one hand, the reason is that the respiratory system in children is 
not yet mature, such as tracheal stenosis, bronchial stenosis, poor ciliary movement, and a small number of alveoli, which 
can easily lead to adhesions and blockages.4,5 On the other hand, due to the weaker resistance of children’s bodies, 
favorable conditions are provided for the invasion of pathogens.6 Given this, it is extremely urgent to implement effective 
treatment for LRTIs as soon as possible, especially in order to control the progression of the child’s condition and 
improve prognosis. It is alarming that currently, antibiotics are used in clinical practice to treat LRTIs in children.7 

Although they can stabilize the condition, blindly using antibiotics may lead to drug resistance, thereby increasing the 
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difficulty of treatment.8,9 Moreover, it is highly possible to successfully induce asthma under the influence of LRTIs. 
Unfortunately, the pathogenesis of LRTIs combined with asthma in children is not yet clear in clinical practice, and there 
is a lack of effective predictive tools.

Previous scholars have attempted to explore the risk factors for asthma associated with LRTIs, focusing on factors 
such as the child’s personal history and family history or leaning towards the inflammatory cytokine storm theory.10–13 In 
fact, the mechanism of LRTIs combined with asthma is very complex, and there are significant differences among 
individual patients. Relying solely on medical history collection and serological clinical indicators cannot construct an 
accurate and reliable prediction model for LRTIs combined with asthma. Given this, it is extremely urgent to seek a new 
and reliable biomarker that can be used for the development of LRTIs combined with asthma prediction models. In recent 
years, multi-omics has made rapid progress in medical clinical practice. For example, metabolomics, as an important 
component of systems biology, can be used to identify and quantify metabolites in biological samples or analyze their 
metabolic pathways.14,15 Radiomics, as an emerging field of quantitative image analysis, aims to correlate large-scale 
extracted image information with clinical and biological endpoints.16 However, the mechanism exploration and pre
dictive biomarker exploration of LRTIs combined with asthma in pediatric patients based on metabolomics and radiomics 
have not yet been implemented. Previous studies have shown that metabolomics is highly suitable for addressing this 
limitation through comprehensive analysis of metabolites and plays a positive role in biological signal transduction 
related to respiratory diseases.17 Encouraged by this, we hope to construct a multimodal LRTIs combined with asthma 
candidate biomarker mining through multi-omics (ie metabolomics, radiomics), in order to construct highly accurate 
personalized LRTIs combined with asthma clinical prediction model.

In this study, we retrospectively analyzed candidate biomarkers for plasma metabolomics and non-enhanced CT 
imaging differences in children with LRTIs and used machine learning algorithms to construct multimodal LRTIs 
combined with asthma early prediction model, in order to provide more clues for early diagnosis and health monitoring 
of LRTIs combined with asthma, as well as experimental evidence for elucidating metabolic differences in disease 
progression and clinical decision-making.

Materials and Methods
Study Population
We retrospectively selected 775 children with LRTIs who were diagnosed and treated from June 2017 to July 2024 as the 
research subjects. Bacterial isolation and culture were performed on all children, and drug sensitivity tests were 
conducted on the isolated pathogens. According to whether the child has secondary asthma during treatment, they are 
divided into asthma group and non-asthma group. Inclusion criteria: (1) Children diagnosed with LRTIs clinically and 
exhibiting clinical symptoms such as pulmonary rales, fever, and cough; (2) Children aged 3–7 years old; (3) Children 
with first-time onset of illness; (4) Children with clinical data and follow-up cooperation. Exclusion criteria: (1) Children 
with important organ dysfunction; (2) Children with congenital heart disease; (3) Children who have already been treated 
with antibiotics before admission. The diagnostic criteria for asthma are as follows: (1) Children with recurrent 
wheezing; (2) Wheezing sounds can be heard during wheezing attacks; (3) Positive bronchial dilation test. This project 
has been approved by the Medical Ethics Committee of Jiangxi Maternal and Child Health Hospital and has agreed to 
conduct this retrospective study. All patients have obtained informed consent from their guardians and signed informed 
consent forms, and their clinical information is strictly confidential. In addition, this study strictly adheres to the Helsinki 
Declaration. The visualization summary of the inclusion process and prediction model construction for pediatric patients 
is shown in Figure 1.

Liquid Chromatography-Mass Spectrometry (LC-MS)
We extracted 5mL of peripheral blood from the children (10 children with LRTIs and 10 children with secondary asthma 
caused by LRTIs) included in the study and placed it in a dry test tube without anticoagulants. After standing for 1 hour, 
the blood was allowed to coagulate and stratify. Then, it was centrifuged for 5 minutes (3000r/min) and the supernatant 
was taken and centrifuged for another 5 minutes (5000r/min). The supernatant was divided into 2mL centrifuge tubes, 
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with 0.2mL of each tube labeled and stored in a −80 °C freezer. LC-MS detection was performed under the following 
chromatographic conditions: (1) C18 column, 40 °C, 0.2mL/min; (2) The normal mode is 0.1% formic acid (mobile 
phase A) and methanol (mobile phase B); Negative mode: 5mM ammonium acetate, pH 9.0 (mobile phase A); (3) 
Elution procedure: 0.1% formic acid to methanol volume ratio 98:2, 0min → 0.1% formic acid to methanol volume ratio 
98:2, 1.5min → 0.1% formic acid to methanol volume ratio 0:100, 3min → 0.1% formic acid to methanol volume ratio 
0:100, 10min → 0.1% formic acid to methanol volume ratio 98:2, 10min to 12min, repeated 3 times. Finally, we 
annotated the identified metabolites using the Small Molecule Pathway Database (SMPDB) and performed principal 
component analysis on relevant meaningful variables.

CT Image Analysis and Radiomics Feature Extraction
We imported all the chest thin-layer CT images of the children upon admission into 3D Slicer software in DICOM format 
from the PACS system and used a lung window (window level −500HU, window width 1500HU) to delineate the three- 
dimensional volume of interest (3D-VOI) of the lungs layer by layer. Next, we used the 3D Slicer amplification software 
package Pyradiomics to extract radiomic features from suspicious lesion images, including morphological features, gray 
level co-occurrence matrix, gray level correlation matrix, first-order statistical features, and gray level run length matrix 
features. Finally, we used Mann Whitney U-test to compare the inter-group differences in radiomics, and performed 
Pearson correlation coefficient analysis on features with statistically significant differences. High redundancy features 
with r > 0.8 were excluded. In order to eliminate the influence of different scales on radiomics features, we standardized 
the radiomics features using Z-score and used 10-fold cross-validation lasso regression to screen features selected 
through single-factor analysis. Finally, we repeated the Lasso regression 500 times and selected features that were 
selected more than 100 times by Lasso regression to establish radiomics signals through multiple logistic regression and 
shapely additive explanations.18

Construction and Validation of Predictive Models
In order to construct a predictive model for LRTIs combined with asthma, we used a nomogram of a generalized linear 
regression model and a decision tree visualization prediction model. By integrating the clinical baseline data, peripheral 

Patients with lower respiratory tract 
infections (LTRIs) (N=787)

Not meeting inclusion criteria:
• Incomplete information(N=10);
• Unclear diagnosis(N=10);
• Loss of follow-up information(N=2).

Include patients who ultimately meet 
the criteria(N=775)

Training set
(N=542)

Testing set
(N=233)

Building secondary asthma caused 
by LTRIs prediction model

DTM GLRM

Efficiency evaluation of prediction model
• ROC;
• DCA;
• Calibration curve.

Evaluation of internal queue assistance 
effectiveness in secondary asthma 
caused by LTRIs prediction model

Acquisition of patient radiomics and 
metabolomics parameters

Extraction of secondary asthma 
caused by LTRIs prediction model

Figure 1 The workflow for screening of pediatric patients and construction of LRTIs secondary asthma prediction model.
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blood metabolomics (LC-MS), and radiomics characteristics of the patient, and comparing and screening the dominant 
model (as shown in Figure 1 for the construction process of the predictive model). Next, we evaluate the accuracy of the 
prediction model using the subject’s working characteristic curve and related indicators, and evaluate the consistency and 
calibration performance of the prediction model using a calibration curve. Decision curve analysis evaluates the clinical 
net benefit values under different threshold probabilities to determine the clinical practicality of multimodal prediction 
models in metabolomics and radiomics.

Statistical Analysis
All statistical analysis and visualization were completed using R software (version 4.2.3). Independent sample t-test, 
Mann Whitney U-test, and chi-square test are used to compare continuous variables and categorical variables. DeLong 
test, calibration curve, and Hosmer Lemeshow (H-L test) are used to evaluate the predictive performance of the 
prediction model. A bilateral P value <0.05 is considered statistically significant.

Results
Clinical Demographic and Multi-Omics Parameter Analysis of Children with LRTIs
The distribution characteristics of pathogens in LRTIs showed that 792 strains of pathogens were isolated from 775 
children with LRTIs through bacterial culture, including 261 Gram positive bacteria (32.95%) and 531 Gram negative 
bacteria (67.05%). The drug sensitivity results showed that Staphylococcus aureus had no resistance to vancomycin and 
had the highest resistance rate to penicillin G, followed by ciprofloxacin and levofloxacin; Streptococcus pneumoniae is 
not resistant to imipenem and vancomycin but has the highest resistance rate to penicillin G, followed by levofloxacin 
and benzylpenicillin; Staphylococcus epidermidis is not resistant to imipenem and vancomycin but has the highest 
resistance rate to benzylpenicillin, followed by penicillin and tetracycline; Escherichia coli is not resistant to imipenem 
but has the highest resistance to azuron, followed by ampicillin and ceftriaxone; Klebsiella pneumoniae has no resistance 
to imipenem, no resistance to meropenem, and the highest resistance to ampicillin, followed by ampicillin and 
cefotaxime; Pseudomonas aeruginosa has no resistance to imipenem and the highest resistance to ampicillin, followed 
by cefoperazone and cefuroxime. As shown in Table 1 and Supplementary Table 1, there was no statistically significant 
difference (P > 0.05) between the asthma group and the non-asthma group in terms of baseline data such as gender, age, 
body mass index (BMI), mode of delivery (MOD), premature delivery, and feeding method. There was a statistically 
significant difference (P < 0.05) in the comparison of glycerophospholipids, sphingolipids, and radiomics factors. In 
addition, through enrichment analysis of differential metabolites in plasma metabolomics, we found that differential 
metabolites were mainly enriched in Sphingolipid Metabolism, Glycerolipid Metabolism, and Phospholipid Biosynthesis 
(Supplementary Figure 1).

Multi-Omics Feature Selection and Prediction Model Construction
Based on the candidate variables with statistical differences mentioned above, as shown in Figure 2A, Pearson correlation 
analysis was conducted to retain features with r values greater than 0.8. The dataset was randomly divided into training 
and testing sets in a ratio of 7–3. Next, we further screened the features using LASSO and obtained 7 non-zero weight 
coefficient features with the optimal parameter λ=0.017 (Figure 2B and C and Supplementary Table 2), namely 
glycerophospholipids, sphingolipids, wavelet_LLH_glcm_Cluster Shade (Feature2), wavelet_LHL_glcm_Cluster 
Prominence (Feature6), wavelet_HLL_glcm_ldmn (Feature7), wavelet_LHL_glcm Correlation (Feature9), and 
wavelet_HLH_ glrlm Gray Level Variance (Feature11). In addition, we further confirmed through logistic regression 
analysis that seven potential candidate variables are independent risk factors for LRTIs combined with asthma (Table 2) 
and constructed a nomogram based on visual generalized linear regression algorithm (Figure 3A), where the candidate 
variables are assigned quantitative values, and the child can accept the scores assigned by the quantitative values. The 
comprehensive score is considered as the risk factor for the child to develop asthma. We also combined the binary 
discriminant analysis principle of decision trees to assign “node” weights to candidate variables, as shown in Figure 3B. 
Glycerophospholipids, sphingolipids, Feature2, Feature7, and Feature9 occupy certain weights in the risk prediction of 
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Table 1 Clinical and Multi-Omics Characteristics of Pediatric Patients in the Training and Testing Cohorts

Variables Training Cohort P-Value Testing Cohort P-Value

Overall(N=542) Yes(N=81) No(N=461) Overall(N=233) Yes(N=35) No(N=198)

Sex (%)

Male 276 (50.9) 38 (46.9) 238 (51.6) 0.508 98 (42.1) 12 (34.3) 86 (43.4) 0.409

Female 266 (49.1) 43 (53.1) 223 (48.4) 135 (57.9) 23 (65.7) 112 (56.6)

Age (%),year

≤5 264 (48.7) 38 (46.9) 226 (49.0) 0.818 107 (45.9) 17 (48.6) 90 (45.5) 0.875

>5 278 (51.3) 43 (53.1) 235 (51.0) 126 (54.1) 18 (51.4) 108 (54.5)

COD (median [IQR]),days 10.00 [7.00, 12.00] 9.00 [7.00, 12.00] 10.00 [7.00, 12.00] 0.999 9.00 [7.00, 12.00] 9.00 [7.00, 12.00] 9.00 [6.25, 12.00] 0.682

BMI (median [IQR]),kg/m2 10.26 [9.16, 11.27] 10.04 [9.01, 10.88] 10.31 [9.20, 11.33] 0.117 10.27 [9.17, 11.38] 11.10 [9.65, 11.92] 10.21 [9.16, 11.29] 0.017

PD (%)

Yes 258 (47.6) 40 (49.4) 218 (47.3) 0.82 107 (45.9) 12 (34.3) 95 (48.0) 0.189

No 284 (52.4) 41 (50.6) 243 (52.7) 126 (54.1) 23 (65.7) 103 (52.0)

MOD (%)

Vaginal delivery 267 (49.3) 35 (43.2) 232 (50.3) 0.289 108 (46.4) 9 (25.7) 99 (50.0) 0.013

Cesarean section 275 (50.7) 46 (56.8) 229 (49.7) 125 (53.6) 26 (74.3) 99 (50.0)

FP (%)

Breast-feeding 280 (51.7) 45 (55.6) 235 (51.0) 0.522 119 (51.1) 19 (54.3) 100 (50.5) 0.819

Artificial or assisted feeding 262 (48.3) 36 (44.4) 226 (49.0) 114 (48.9) 16 (45.7) 98 (49.5)

Smoking (%)

Yes 281 (51.8) 44 (54.3) 237 (51.4) 0.717 108 (46.4) 15 (42.9) 93 (47.0) 0.79

No 261 (48.2) 37 (45.7) 224 (48.6) 125 (53.6) 20 (57.1) 105 (53.0)

HOA (%)

Yes 234 (43.2) 62 (76.5) 172 (37.3) <0.001 100 (42.9) 24 (68.6) 76 (38.4) 0.002

No 308 (56.8) 19 (23.5) 289 (62.7) 133 (57.1) 11 (31.4) 122 (61.6)

Allergy (%)

Yes 273 (50.4) 42 (51.9) 231 (50.1) 0.866 119 (51.1) 14 (40.0) 105 (53.0) 0.216

No 269 (49.6) 39 (48.1) 230 (49.9) 114 (48.9) 21 (60.0) 93 (47.0)

Glycerophospholipids (median 
[IQR]),ng/mL

0.88 [0.74, 1.06] 2.43 [1.90, 3.00] 0.84 [0.71, 0.98] <0.001 0.90 [0.70, 1.08] 2.48 [2.05, 3.14] 0.84 [0.68, 1.02] <0.001

Sphingolipids (median [IQR]),ng/mL 0.60 [0.47, 0.72] 1.38 [1.13, 1.69] 0.56 [0.44, 0.67] <0.001 0.61 [0.50, 0.73] 1.27 [0.98, 1.56] 0.58 [0.48, 0.68] <0.001

Feature1 (median [IQR]) 28.30 [19.40, 37.40] 31.30 [22.50, 39.60] 27.70 [19.10, 37.00] 0.032 28.00 [18.20, 38.00] 37.70 [21.15, 41.25] 26.85 [17.83, 36.17] 0.014

Feature2 (median [IQR]) 161.00 [121.00, 191.00] 89.00 [78.00, 99.00] 170.00 [141.00, 195.00] <0.001 159.00 [119.00, 188.00] 82.00 [67.50, 94.00] 166.00 [139.25, 193.00] <0.001

Feature3 (median [IQR]) 3.40 [2.33, 4.39] 3.25 [1.95, 4.25] 3.46 [2.41, 4.39] 0.095 3.32 [2.21, 4.48] 3.32 [2.68, 4.39] 3.32 [2.20, 4.47] 0.807

Feature4 (median [IQR]) 3.52 [2.51, 4.47] 3.50 [2.30, 4.52] 3.53 [2.57, 4.45] 0.555 3.36 [2.25, 4.41] 3.61 [2.20, 4.64] 3.33 [2.27, 4.34] 0.446

Feature5 (median [IQR]) 32.50 [22.33, 43.88] 34.10 [21.70, 44.00] 32.30 [22.60, 43.80] 0.748 34.20 [24.10, 44.70] 30.70 [23.90, 44.85] 35.30 [24.22, 44.65] 0.62

Feature6 (median [IQR]) 0.96 [0.89, 1.04] 2.38 [1.83, 2.76] 0.94 [0.87, 1.00] <0.001 0.98 [0.89, 1.04] 2.42 [1.69, 2.88] 0.95 [0.88, 1.01] <0.001

Feature7 (median [IQR]) 9.60 [8.90, 10.40] 21.90 [17.80, 26.80] 9.40 [8.80, 10.00] <0.001 9.50 [8.90, 10.40] 23.20 [18.45, 27.50] 9.40 [8.90, 10.00] <0.001

(Continued)
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Table 1 (Continued). 

Variables Training Cohort P-Value Testing Cohort P-Value

Overall(N=542) Yes(N=81) No(N=461) Overall(N=233) Yes(N=35) No(N=198)

Feature8 (median [IQR]) 1.40 [0.98, 1.80] 1.30 [0.94, 1.85] 1.40 [1.01, 1.78] 0.86 1.32 [0.94, 1.71] 1.38 [1.13, 1.86] 1.29 [0.89, 1.68] 0.052

Feature9 (median [IQR]) 1.19 [1.01, 1.39] 0.47 [0.32, 0.70] 1.25 [1.10, 1.41] <0.001 1.16 [0.99, 1.38] 0.50 [0.28, 0.66] 1.25 [1.06, 1.41] <0.001

Feature10 (median [IQR]) 66.10 [43.65, 89.80] 70.90 [44.10, 91.30] 66.10 [43.30, 89.80] 0.732 68.70 [43.80, 89.20] 67.20 [33.70, 78.50] 69.15 [43.97, 89.52] 0.354

Feature11 (median [IQR]) 1.56 [1.32, 1.89] 0.91 [0.81, 1.02] 1.66 [1.43, 1.93] <0.001 1.57 [1.33, 1.85] 0.98 [0.79, 1.08] 1.63 [1.45, 1.89] <0.001

Feature12 (median [IQR]) 0.86 [0.47, 1.24] 0.89 [0.44, 1.21] 0.86 [0.49, 1.25] 0.811 0.85 [0.45, 1.23] 0.79 [0.50, 1.18] 0.85 [0.44, 1.23] 0.903

Abbreviations: COD, course of disease; BMI, body mass index; PD, premature delivery; MOD, mode of delivery; FP, feeding pattern; Smoking, smoking history of parents; HOA, history of asthma; Allergy, history of allergy; FA, fatty 
Acyls; SSD, steroids and steroid derivatives; OC, organooxygen compounds; PL, prenol lipids; UH, unsaturated hydrocarbons; OPAD, organic phosphoric acids and derivatives; UM, unrecognized metabolites; Feature1, 
wavelet_LLL_glcm_Cluster Prominence; Feature2, wavelet_LLH_glcm_Cluster Shade; Feature3, wavelet_LHH_ glszm_Gray Leve Variance; Feature4, wavelet_LLH_firstorder_Variance; Feature5, 
wavelet_LHH_glszm_LowGrayLevelZoneEmphasis; Feature6, wavelet_LHL_glcm_Cluster Prominence; Feature7, wavelet_HLL_glcm_ldmn; Feature8, wavelet_HLH_glszm_Smal Area High Gray Level Emphasis; Feature9, 
wavelet_LHL_glcm Correlation; Feature10, wavelet_HLH_glrlm_Low Gray Level Run Emphasis; Feature11, wavelet_HLH_ glrlm Gray Level Variance; Feature12, wavelet_HLH_glszm_Large Area Low Gray Level Emphasis.
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LRTIs combined with asthma, indicating that the LRTIs combined with asthma prediction model based on multi-omics 
has visual advantages and clinical operability.

Evaluation of the Efficacy of LRTIs Combined with Asthma Prediction Models
As shown in Table 3, in the prediction model constructed based on the generalized linear regression algorithm, the AUC 
value of the ROC curve in the training set is 0.817 (0.760–0.874), and the AUC value in the test set is 0.799 
(0.742–0.856); The AUC values of the prediction model based on decision trees in the training and testing sets are 
0.926 (0.869–0.983) and 0.917 (0.860–0.974), respectively. As for the robustness evaluation of the two prediction 
models, we compared them using the C-Index in the calibration curve mode. The C-Index values of the generalized linear 
regression prediction model (ie nomogram) in the training and testing sets were 0.799 and 0.872, respectively. The 

Figure 2 Selected features of multi-omics model. (A) Heatmap describing the correlation coefficient matrices of seven selected radiomics features; (B) Screening of optimal 
combination candidate predictor variables based on Lasso algorithm; (C) Shapley value method displays the weight allocation of candidate variables.
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C-index values of the decision tree prediction model in the training and testing sets are 0.767 and 0.883, respectively. 
Consistent with the calibration curve results, we found that decision curve analysis showed that decision trees were more 
robust and accurate than nomograms in predicting the performance and net benefits of LRTIs combined with asthma 
(Figure 4). The above results indicate that although LRTIs combined with asthma prediction models constructed based on 
different machine learning algorithms can distinguish the risk of asthma occurrence, the prediction model constructed by 
combining decision trees with multi-omics has better performance and is therefore more suitable for clinical decision- 
making assistance.

Discussion
The etiology and pathogenesis of pediatric respiratory infections combined with asthma have always been very complex, 
making it an urgent research hotspot in clinical practice.19 Due to the unclear etiology and triggering factors, as well as 
the fact that children often exhibit sudden and recurrent characteristics, it poses a great challenge to the diagnosis and 
treatment of clinical physicians. Previous studies have shown that pediatric asthma is essentially limited to chronic non- 
specific changes in the airway and airway hyperresponsiveness.20,21 However, there is insufficient understanding of lower 
respiratory tract infections as an independent risk factor, resulting in a high mortality rate in children diagnosed with 
LRTIs combined with asthma in the early stages. In view of this, this study analyzed for the first time the risk factors of 
LRTIs combined with asthma in children, innovatively used multi-omics analysis to screen the molecular mechanisms 
and potential biomarkers associated with LRTIs combined with asthma, and constructed a multimodal machine learning 
prediction model to guide clinical decision-making, especially for early identification of children with high-risk LRTIs 
combined with asthma, which has crucial guiding significance.

Previous studies have shown that metabolic disorders may be involved in the pathogenesis of pulmonary fibrosis, but 
the association between asthma pathogenesis and metabolomics has not been fully revealed.22–24 This study shows that 
differential metabolites are mostly glycerophospholipids, which are important components of cell membranes and can 
participate in mediating airway inflammation through phospholipase A2 to produce lysophosphatides, thereby participat
ing in signal transduction and immune responses. Recent studies have shown that glycerophospholipids are involved in 
lung infections, asthma, and chronic obstructive pulmonary disease, while lipids play a crucial role in the lungs as 
a structural component, energy storage, and surfactant molecular signaling mediator.25,26 As a broad class of compounds, 
sphingolipids mainly originate from 18 carbon amino alcohols, which are synthesized in the endoplasmic reticulum and 
participate in various pathological and physiological processes within cells, such as cell structure, storage, and signal 
transduction.27,28 At present, there is evidence to suggest that these molecules are key mediators of immune response, 
especially sphingolipids, which have become potential regulators of pulmonary fibrosis, as they can regulate cell 
migration, promote apoptosis, and facilitate epithelial and endothelial cell cycle arrest.29–31 Our study also suggests 

Table 2 Univariate and Multivariable Logistic Regression Analyses for Selecting Candidate 
Predictive Features

Variables Univariate Analysis P-Value Multivariate Analysis P-Value

OR 95% CI OR 95% CI

HOA 1.23 0.87–2.26 <0.05 1.29 0.77–2.41 0.12
Glycerophospholipids 1.09 0.72–2.14 <0.05 1.11 0.83–2.08 <0.01

Sphingolipids 2.03 1.02–4.79 <0.01 1.98 0.99–3.76 <0.01

Feature2 1.17 0.63–2.26 <0.01 1.14 0.71–2.81 <0.01
Feature6 2.11 0.89–3.42 <0.01 2.08 0.71–3.89 <0.01

Feature7 1.58 0.25–3.44 <0.01 1.61 0.35–3.71 <0.01

Feature9 1.67 0.82–2.73 <0.01 1.63 0.62–2.82 <0.01
Feature11 1.43 0.56–2.89 <0.01 1.52 0.61–2.87 <0.01

Abbreviations: OR, odds ratio; 95% CI, 95% confidence interval; HOA, history of asthma; Feature2, 
wavelet_LLH_glcm_Cluster Shade; Feature6, wavelet_LHL_glcm_Cluster Prominence; Feature7, 
wavelet_HLL_glcm_ldmn; Feature9, wavelet_LHL_glcm Correlation; Feature11, wavelet_HLH_ glrlm Gray Level Variance.
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that ceramides as predictive markers for LRTIs combined with asthma may affect the progression of LRTIs disease and 
participate in the pathophysiological processes of asthma. Therefore, the next step is to further explore the early 
biomarkers and potential molecular mechanisms of LRTIs combined with asthma using lipidomics.

Figure 3 Constructing a visual prediction model for secondary asthma caused by LTRIs based on multi omics.(A) Nomogram;(B) Decision tree model. 
Notes: As for the nomogram, each predictor variable is assigned a value, and the risk of developing asthma in children can be considered as the risk coefficient for 
secondary asthma in LTRIs based on the total value assigned to each variable, ie the risk value corresponding to the “Risk” total score. Each step node of the decision tree is 
assigned candidate variables, which are selected one by one based on binary discriminant analysis of the candidate variables. The final outcome is the risk outcome of 
secondary asthma in LTRIs.
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Radiomics can extract image information features for high-throughput evaluation of the intrinsic heterogeneity and 
invasiveness of tumors and has been widely used in the differentiation of benign and malignant lung nodules, gene 
mutation prediction, and prognosis assessment.32,33 Nowadays, medical imaging has always been an effective tool for 
evaluating asthma, which can visualize the lungs of patients, evaluate local airway characteristics, and specifically 
display the location and cause of airway obstruction in asthma patients. However, there have been few reports in previous 
literature on radiomics studies of LRTIs, especially when LRTIs are associated with asthma. The traditional concept 
holds that asthma is mainly characterized by airway lesions and does not involve lung parenchyma.34 However, in this 
study, texture features of lesions were extracted from the CT lung window of pediatric patients, and a total of 156 usable 
feature parameters were extracted. Finally, 12 texture features with predictive significance were selected, covering first- 
order to higher-order texture features, which can better reflect the spatial properties of lesions. The results showed that 
the AUC of the decision tree prediction model based on texture features combined with metabolomics for diagnosing 
LRTIs combined with asthma in the training set and validation set were 0.926 and 0.917, respectively. This provides us 
with innovative insights that imaging indicators related to airway remodeling, bronchiectasis, and mucus embolism in 
children with asthma can serve as novel predictive indicators. Combined with clinical indicators, these indicators can be 
used to predict lung function and treatment responsiveness in children with LRTIs and asthma, providing new ideas for 
individualized treatment of LRTIs combined with asthma.

In this study, we also attempted to use machine learning algorithms to evaluate the predictive performance of different 
prediction models, which brought us new insights. The LRTIs merged asthma prediction model constructed using 
decision tree algorithm has better predictive performance, while the traditional generalized linear regression prediction 
model has significantly lower predictive performance than decision trees. Consistent with previous research results, 
decision trees, as a branch of random forest discriminant analysis, strictly follow the binary classification discriminant 
iterative analysis process in their decision-making process.35,36 In this study, we utilized radiomics and metabolomics 
candidate variables to achieve initial screening of high-risk asthma children, and their predictive value is self-evident. 
However, even if the same variable is applied to prediction models of different algorithms, its weights and effect values 
are not the same. Therefore, combining multiple candidate indicators and relying on advanced algorithms to construct 
LRTIs combined asthma prediction models has extremely important guiding value for clinical sorting of high-risk 
children. However, the extended training of the two common prediction models mentioned above still needs to be 
validated and optimized in the future.

This study also inevitably has the following limitations. First, as a single-center retrospective study, the patient cohort 
is bound to have geographical limitations and selection bias. Although we used multiple corrections and repeated 
sampling, as well as internal validation in our analysis, we still need multi-center, large sample prospective study cohorts 
for model expansion training in the future; Secondly, the combination of metabolomics and radiomics candidate 
parameters was used to screen for predictable LRTIs combined with asthma predictive factors. Although seven candidate 
predictive parameters have been screened, their clinical combined or single use predictive performance, as well as 
whether metabolic factors are affected by geography and detection technology, still need to be further validated. We plan 
to invest more funds to focus on valuable metabolic factors and conduct in-depth research on candidate biomarkers and 
pathogenesis; Thirdly, conventional machine learning algorithms such as generalized linear regression and decision trees 
are included in this study. In the future, more advanced algorithms (such as artificial neural networks, support vector 

Table 3 Predictive Performance of Predictive Models in the Training and Testing Cohort

Prediction Model Training Set International Set

AUC 95% CI PPV NPV AUC 95% CI PPV NPV

DTM 0.926 0.869–0.983 0.967 0.878 0.917 0.860–0.974 0.991 0.803

GLRM 0.817 0.760–0.874 0.823 0.766 0.799 0.742–0.856 0.816 0.786

Abbreviations: AUC, Area under the curve;95% CI, 95% confidence interval;PPV, Positive predictive value;NPV, negative 
predictive value; DTM, Decision tree model; GLRM, Generalized linear regression.
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machines, naive Bayes, etc.) need to be applied to the training of prediction models in order to find better prediction 
models and assist in the clinical decision-making of LRTIs combined with asthma.

Conclusion
In summary, a combination model that combines clinical radiological features with metabolomics can be an effective 
strategy for diagnosing LRTIs combined with asthma, especially the new fusion multimodal omics prediction model 

Figure 4 Decision curve analysis (DCA) for two predictive models in the training and testing cohort. (A) Training cohort; (B) Testing cohort. The curves indicated that the 
decision tree model had a higher clinical benefit when compared to the GLR model, with a threshold probability range of 0.35 to 0.9.
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based on decision trees, which will help provide decision support for early identification and treatment planning of high- 
risk asthma in LRTIs patients.
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