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Objective: To develop and validate a deep learning-based automatic segmentation model and combine with radiomics to predict post- 
TACE liver failure (PTLF) in hepatocellular carcinoma (HCC) patients.
Methods: This was a retrospective study enrolled 210 TACE-trated HCC patients. Automatic segmentation model based on nnU-Net 
neural network was developed to segment medical images and assessed by the Dice similarity coefficient (DSC). The screened clinical 
and radiomics variables were separately used to developed clinical and radiomics predictive model, and were combined through 
multivariate logistic regression analysis to develop a combined predictive model. The area under the curve (AUC), calibration curve, 
and decision curve analysis (DCA) were applied to compare the performance of the three predictive models.
Results: The automatic segmentation model showed satisfactory segmentation performance with an average DSC of 83.05% for tumor 
segmentation and 92.72% for non-tumoral liver parenchyma segmentation. The international normalized ratio (INR) and albumin (ALB) 
was identified as clinically independent predictors for PTLF and used to develop clinical predictive model. Ten most valuable radiomics 
features, including 8 from non-tumoral liver parenchyma and 2 from tumor, were selected to develop radiomics predictive model and to 
calculate Radscore. The combined predictive model achieved the best and significantly improved predictive performance (AUC: 0.878) 
compared to the clinical predictive model (AUC: 0.785) and the radiomics predictive model (AUC: 0.815).
Conclusion: This reliable combined predictive model can accurately predict PTLF in HCC patients, which can be a valuable 
reference for doctors in making suitable treatment plan.
Keywords: hepatocellular carcinoma, TACE, liver failure, deep learning, radiomics

Introduction
Primary liver cancer (PLC) is one of the most common malignant tumors, ranking sixth in incidence and third in cancer-related 
mortality in the world,1 and hepatocellular carcinoma (HCC) accounts for approximately 90% of PLC cases.2 Due to its 
insidious onset and rapid progression, most patients are diagnosed with HCC at an advanced stage, with only 30–40% eligible 
for potentially curative treatments such as liver transplantation or hepatic resection.3,4 For those unsuitable for surgical 
intervention, transarterial chemoembolization (TACE) has been recommended as a standard therapy by several guidelines,5–7 

as it is effective in controlling tumor growth, prolonging survival, and improving the quality of life for unresectable HCC 
patients. In addition, TACE also builds a bridge for connection with other therapies, such as hepatectomy8 and targeted 
therapy.9 A meta-analysis that included 101 papers with a total of 10,108 HCC cases noted that the objective remission rate 
after TACE is 52.5%, and the 1-year and 5-year overall survival (OS) rates are 70.3% and 32.4%, respectively, with a median 
OS of 19.4 months.10 Nevertheless, TACE can lead to significant complications, with liver failure being one of the most severe 
and a common cause of mortality after TACE.11 Approximately 7.5% (range: 0–48.6%) of patients experienced post-TACE 
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liver failure (PTLF), with an associated mortality rate of 2.4% (range: 0–9.5%).12 Although TACE is generally considered safe 
for patients with Child-Pugh class A or B liver function, liver failure still occurs in those patients, emphasizing the need for 
additional reliable predictors to diminish this risk.

Deep learning segmentation algorithms have shown significant promise in segmenting solid organs and tumors,13–15 

offering a robust tool for accurately distinguishing between non-tumoral liver parenchyma and tumors. Radiomics 
extracts a large volume of quantitative features from medical images, providing critical pathological and physiological 
insights that otherwise are unavailable through conventional imaging techniques and offering novel opportunities for 
disease diagnosis and prognosis.16 Bernat17 developed a predictive model by combining radiomics features and clinical 
risk scores to assess patients’ response to TACE and overall survival, while Hu18 successfully differentiated hepatic 
hemangiomas from HCC on CT images by radiomics and Zhao19 integrated intra- and peri-tumoral radiomics features 
into a clinical-radiomics nomogram to predict post-TACE response in HCC patients. Furthermore, it has been demon-
strated that there is a strong correlation between radiomics features, liver function and the biological behavior of 
tumors.20 Therefore, we hypothesized that a radiomics model incorporating radiomics features of non-tumoral liver 
parenchyma and the tumor could be effective in predicting PTLF. To our knowledge, previous studies mainly focused on 
predicting post-hepatectomy liver failure or post-TACE treatment response,21–23 Only a few studies have attempted to 
predict post-TACE liver failure (PTLF) using clinical or imaging features,11,24 and no research has yet combined deep 
learning with radiomics for PTLF prediction.

Materials and Methods
Study Population
This retrospective study approved by the ethics committees of The First Affiliated Hospital of Anhui Medical University 
(Center 1, Research Ethics No: PJ2023-13-50) and the First Affiliated Hospital of University of Science and Technology 
of China (Center 2, Research Ethics No: 2023-RE-373), and conducted in accordance with the Declaration of Helsinki. 
Informed consent was waived. The study design is illustrated in Figure 1a, and the flow chart of the radiomics study is 
illustrated in Figure 1b. A total of 500 HCC patients treated with TACE between February 2018 and February 2024 in 
two centers were retrospectively reviewed. The inclusion criteria were as follows: radiologically or pathologically 
confirmed HCC; TACE as the initial treatment; complete abdominal imaging and laboratory examinations within one 
week prior to TACE, along with one month follow-up records post-operation. Exclusion criteria included extrahepatic 
metastases; ruptured HCC with bleeding; metastatic liver tumors; pre-TACE liver failure, and perioperative anticoagulant 
use. Finally, 147 patients from Center 1 (age range: 30–86, median age: 61) and 63 patients from Center 2 (age range: 
28–86, median age: 59) were included in this study. Patients in Center 1 served as the training cohort and patients in 
Center 2 served as the validation cohort.

Figure 1 (a) The depict of study design (b) Flow chart of the radiomics study.
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TACE Procedure
TACE procedure was conducted under local anesthesia using percutaneous femoral artery puncture, following the 
modified Seldinger technique. Superselective catheterization was performed via the right or left hepatic arteries, targeting 
tumor-feeding vessels under digital subtraction angiography (Allura Xper FD 20, Philips) guidance. Initial hepatic 
arteriography, utilizing a 5 Fr (RH or Yashiro) catheter, was employed to assess the tumor’s location, size, number, 
and vascular supply. Iohexol or iodixanol was used as the contrast agent. Upon confirming the tumor-feeding artery, an 
iodized oil–chemotherapeutic agent emulsion (eg, piroxicam, raltitrexed, lopressor) was injected through a 2.7/2.8 Fr 
microcatheter. The dosage was determined based on tumor size and blood supply. Tumor vessels were embolized using 
gelatin sponges, polyvinyl alcohol (PVA) particles, or blank microspheres until blood flow ceased.

Diagnosis of PTLF
According to the 2019 Asia-Pacific Association for the Study of the Liver (APASL) consensus on acute-on-chronic liver 
failure (ACLF),25 the diagnostic criteria for PTLF are as follows: jaundice (serum total bilirubin of 85 mmol/L or more), 
coagulation dysfunction (INR > 1.5 or PTA < 40%), and concomitant clinical ascites and/or hepatic encephalopathy 
within 4 weeks. PTLF was diagnosed when one of the above conditions was met.

Image Processing and Manual Segmentation
The CT scanning protocol is detailed in Supplementary Material 1. For volume of interest (VOI) segmentation, the 
intravenous phase images were selected, and the window level and window width were adjusted to 30 HU and 300 HU, 
respectively. Two radiologists (HYL with 7 years of experience and ZYJ with 5 years of experience in diagnostic 
abdominal imaging) manually segmented the non-tumoral liver parenchyma and tumor, layer by layer, using ITK-SNAP 
software (version 3.8.0; http://www.itksnap.org). A third radiologist, with 20 years of experience, reviewed all segmenta-
tions. To assess the intra- and inter-observer agreement, the two radiologists independently segmented the non-tumoral 
liver parenchyma and tumor for randomly selected 20 patients one week later.

Deep Learning-Based Automatic Segmentation Model
The nnU-Net is a deep-learning neural network for image segmentation,26 which was designed to automatically configure the 
segmentation pipeline by analyzing the specific characteristics of biomedical segmentation task. This includes data pre-process, 
network architecture, and post-process. Our automatic segmentation model is based on 3D U-Net-like 22 architecture, composing of 
encoder and decoder paths, which are connected via skip connections, allowing for efficient feature extraction and reconstruction. In 
this study, the nnU-Net was utilized without any modification to segment the non-tumoral liver parenchyma and tumor in 3D. The 
nnU-Net architecture used in this study is illustrated in Figure 2. The code for nnU-Net is publicly available at https://github.com.

Predictive Model Development
The VOIs of non-tumoral liver parenchyma and tumors were obtained using the automatic segmentation model. Radiomic 
features, including the first-order features, texture features, and shape-based features, were extracted by the PyRadiomics 
package in Python. All the extracted features were Z-score normalized to eliminate dimensional differences before feature 
analysis. First, Spearman correlation analysis was used to exclude redundant features with intra-group correlation coefficients 
(ICC) >0.8. Then, features with P <0.05 were retained based on univariate analysis. Finally, the least absolute shrinkage and 
selection operator (LASSO) analysis was employed to select features with non-zero coefficients, and ten most valuable radiomics 
features were selected to calculate radiomics score (Radscore) for each patient and develop a radiomics predictive model.

Demographic characteristics and pre-treatment laboratory data of each patient were collected from the medical record 
system. The univariate analysis was used to identify factors associated with PTLF, and those factors with P <0.05 were 
further analyzed through multivariate logistic regression analysis to screen out the clinically independent predictors for 
PTLF, culminating in the development of a clinical predictive model.

A combined predictive model was developed by combining the Radscore and the clinically independent predictors 
through multivariate logistic regression analysis and visualized as a Clinical-Radiomics nomogram.
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Statistical Analysis
SPSS 26.0 and R software (version 4.0.5) were used for data analyses. Normally and non-normally distributed 
continuous variables were analyzed using the t-test and Mann–Whitney U-test, respectively, with values expressed as 
mean ± standard deviation or median and interquartile range. Categorical variables were compared using chi-square tests, 
using numerical or percentage tables. Receiver operating characteristic (ROC) curves were used to evaluate the predictive 
performance of three models, and the area under the curve (AUC) was also calculated. Model accuracy and clinical utility 
were assessed through calibration curves and decision curve analysis (DCA). Differences in AUCs between the models 
were assessed using DeLong test. A two-sided of P <0.05 was considered statistically different.

Results
Demographic Characteristics in the Segmentation Cohort and Categorized Dataset
The segmentation cohort is consisted of 100 HCC patients, including 32 patients with PTLF and 68 patients without 
PTLF. The demographic characteristics of the segmentation cohort is detailed in Supplementary Table 1. For the 
categorized dataset, PTLF occurred in 52 patients, 36 of whom were included in the training cohort and 16 in the 
validation cohort. The clinical and demographic characteristics of all patients in both the training and the validation 
cohorts are shown in Supplementary Table 2. No statistically significant differences were found between the training and 
the validation cohorts (all P > 0.05).

Development of Automatic Segmentation Model
We developed an automatic segmentation model based on the nnU-Net neural network using manually segmented VOIs 
of the non-tumoral liver parenchyma and the tumors of 100 HCC patients. The segment dataset was divided into 80 
patients for training and validation sets and 20 patients for testing set. Results of the 5-fold cross-validation and the 
testing sets are presented in Table 1. The average DSC, accuracy, and recall were 83.05%, 92.15%, and 88.37% for the 
tumor segmentation and 92.72%, 92.65%, and 94.24% for the non-tumoral liver parenchyma segmentation, respectively. 
Supplementary Figure 1 gives two examples of automatic segmentation results for both tumor and non-tumoral liver 
parenchyma.

Development of Clinical Model, Radiomics Model and Combined Model
Univariate analysis based on the training cohort demonstrated that Neutrophil, RBC, ALB and INR were the clinical 
factors associated with PTLF (all P < 0.05) (Table 2). Multivariate analysis further indicated that INR (OR: 1992.169 

Figure 2 The network architecture of nnU-Net for non-tumoral liver parenchyma and tumor segmentation.
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Table 1 Automatic Segmentation Performance of the 5-Fold Cross-Validation 
and the Testing Sets

Metric Object Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Test

DICE(%) Liver 94.58 87.30 93.81 94.59 93.33 94.00

Tumor 79.79 85.18 85.39 86.15 78.76 85.06

Jaccard(%) Liver 89.80 81.92 88.44 89.78 87.56 88.83
Tumor 70.00 78.53 75.25 76.43 69.13 75.98

Precision(%) Liver 94.17 90.35 92.21 94.39 92.15 93.67

Tumor 91.45 91.88 93.30 92.05 92.05 93.47
Recall(%) Liver 95.26 91.05 95.30 94.98 94.63 94.77

Tumor 87.07 94.33 83.89 87.69 88.85 93.25

Table 2 Univariate Analysis Based on the Training Cohort

Characteristics PTLF(n=36) NPTLF(n=111) P

Sex(Male/Female) 32/4 96/15 0.709
Age(year) 59.00(51.00, 70.00) 63.00(53.00,70.00) 0.556

Tumor location(n%) 0.641

Right lobe 30(83.40) 93(84.50)
Left lobe 3(8.30) 13(11.00)

Right and Left lobe 3(8.30) 5(4.50)

Number of tumors(n%) 0.378
1 24(66.70) 61(55.00)

≥2 12(33.30) 50(45.00)

Sun of tumor diameters(cm) 9.41(4.40, 14.39) 9.68(6.04, 14.41) 0.681
Liver cirrhosis(n%) 24(66.70) 64(57.70) 0.338

Hydroperitoneum(n%) 9(25.00) 26(23.40) 0.847

WBC(×109) 4.48(3.27, 6.26) 5.71(3.92, 6.96) 0.069
Neutrophil(n%) 63.35(56.00,68.78) 66.40(60.40, 74.10) 0.041

RBC(×1012) 4.37(3.84, 4.86) 4.03(3.60, 4.47) 0.017

Hb(g/l) 131.33 ± 23.70 124.41 ± 23.14 0.131
ALB(g/l) 40.48 ± 7.74 37.05 ± 4.77 <0.01

PLT(×1012) 128.50(97.75, 211.00) 151.00(92.00, 204.00) 0.783

PT(s) 13.15(12.00, 14.13) 12.60(11.80, 14.00) 0.345
TT(s) 17.95(16.83, 19.00) 18.30(16.90, 19.50) 0.341

INR 1.21(1.07, 1.29) 1.01(0.94, 1.10) <0.01

APTT(s) 31.00(27.13, 37.80) 29.50(26.90, 35.70) 0.257
AST(IU/L) 53.00(34.93, 85.00) 55.00(33.00, 81.00) 0.887

ALT(IU/L) 54.00(24.20, 111.75) 40.00(23.00, 65.00) 0.154
TB(umol/L) 16.80(13.73, 23.85) 19.30(15.00, 24.10) 0.198

GLU(mmol/L) 4.97(4.33, 5.82) 5.07(4.48, 5.66) 0.792

GGT(IU/L) 119.50(70.00, 229.25) 120.30(69.00, 255.00) 0.729
AFP(ng/mL) 219.24(10.14, 2942.00) 221.50(16.40, 1594.32) 0.866

Embolus(n%) 11(30.60) 45(40.54) 0.284

CTP(n%) 0.853
Class A 30(83.30) 91(82.00)

Class B 6(17.60) 20(18.00)

Abbreviations: PTLF, post-TACE liver failure; NPTLF, non-post-TACE liver failure; WBC, white blood cell; 
RBC, red blood cell; Hb, hemoglobin; ALB, albumin; PLT, platelet count; PT, prothrombin time; TT, 
thrombin time; INR, international standardized ratio; APTT, activated partial thromboplastin time; AST, 
glutamate transaminase; ALT, alanine aminotransferase; TB, total bilirubin; GLU, glucose; GGT, gamma- 
glutamyl transferase; AFP, alpha-fetoprotein; CTP, Child-Turcotte-Pugh.
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(95% CI: 46.629, 85,113.563, P≤ 0.01)) and ALB (OR: 1.117 (95% CI: 1.043, 1.327, P≤ 0.01)) were the clinically 
independent predictors of PTLF (Table 3), resulting in the development of a clinical predictive model.

A total of 1874 radiomics features were separately extracted from the non-tumoral liver parenchyma and the tumor of 
each HCC patient, and those two sets of radiomics features were fused together for analysis. All extracted features were 
Z-score normalized before radiomics analysis. Of the 3748 radiomics features, 410 features remained following the 
removal of redundant features (ICC > 0.8) using Spearman correlation analysis; 45 radiomics features with non-zero 
coefficients were screened out through univariate and LASSO analyses (Figure 3a); the top 10 radiomics features with 
the highest weights (Figure 3b) were selected for the multivariate logistic regression analysis to develop a radiomics 
predictive model. As detailed in Supplementary Material 2, the Radscore of each patient was calculated by multiplying 
the selected features by a linear combination of their respective coefficients.

Finally, a combined predictive model was developed by combining the ALB, INR and the Radscore through 
multivariate logistic regression analysis.

Model Comparison and Nomogram Development
Model comparisons were all conducted in the validation cohort. The ROC curves of the three predictive models are 
shown in Figure 4a, and the combined predictive model (AUC: 0.878, 95% CI: 0.761, 0.994) exhibited the best 
discrimination power between PTLF and non-PTLF patients compared to the clinical predictive model (AUC: 0.785, 
95% CI: 0.653, 0.916) and the radiomics predictive model (AUC: 0.815, 95% CI: 0.690, 0.940). The DCA (Figure 4b) 
further demonstrated that the combined predictive model provided a greater net clinical benefit in the 0.1–0.95 risk 
threshold. Additionally, as shown in Figure 4c and d, the combined model showed good consistency between predicted 
and actual probabilities in both the training and the validation cohorts. Above results confirmed the superiority of the 
combined predictive model. Thus, we visualized the combined predictive model as a nomogram for clinical application 
(Figure 5). Supplementary Figure 2 shows an example of using a nomogram for the risk prediction of PTLF.

Table 3 Multivariate Analysis Based on the Training Cohort

variables β Odds ratio(95% CI) P

Neutrophil(n%) 0.124 1.014 (0.743, 1.962) 0.463
RBC(×1012) 0.273 1.314 (0.703, 2.456) 0.392

ALB 0.163 1.117 (1.043, 1.327) <0.01

INR 7.597 1992.169 (46.629, 85,113.563) <0.01
Radscore 0.317 1.373 (1.190, 1.584) <0.01

Abbreviations: OR, odds ratio; CI, confidence interval; ALB, albumin; RBC, 
red blood cell; INR, international standardized ratio.

Figure 3 (a) LASSO path of radiomics. (b) Selected radiomics features and their corresponding weights.
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Discussion
Previous study has indicated that PTLF is an independent risk factor for the lower survival rate of liver cancer patients.27 

Hence, an effective mean to predict PTLF is of great importance. Our study demonstrated that a radiomics model, which 

Figure 4 (a) ROC curves for the three models in the validation cohort. (b) DCA for the three models in the validation cohort. (c) Calibration curve of the combined model 
in the training cohort. (d) Calibration curve of the combined model in the validation cohort.

Figure 5 Clinical-Radiomics nomogram.
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integrates radiomics features of the non-tumoral liver parenchyma and tumor for fusion analysis, can effectively predict 
PTLF in HCC patients prior to TACE. On the one hand, the incorporation of clinical factors further improved the 
predictive performance; on the other hand, the deep learning-based automatic segmentation techniques enhanced the 
clinical utility of this predictive model. This valuable and reliable predictive model can assists clinicians identify PTLF 
risk at an early stage, allowing timely adjustments of treatment plan.

Yang et al11 developed a mathematical model based on clinical risk factors to predict PTLF. However, their model could 
not be used alone to exclude patients for TACE because of the low positive predictive value (28.9%). Radiomics provides 
a powerful method for extracting information that beyond the perception of the human eyes and enables the assessment of 
tumor biology features and prognosis.28 Some research has demonstrated the utility of radiomics in predicting liver failure 
after hepatectomy29 and post-TACE response in HCC patients.30,31 It confirmed the feasibility of radiomics in predicting 
PTLF. However, they all use manual segmentation or semiautomatic segmentation of the ROI, which brings some obstacles to 
clinical application. In our study, we integrated automatic segmentation into the radiomics study, which significantly reduced 
labor work and potential human error. The nnU-Net-based automatic segmentation model that developed in our study reduced 
the segmentation task for 100 HCC cases from 10 days to a few minutes with high accuracy (average DSC: 83.05% for tumor 
segmentation and 92.72% for non-tumoral liver parenchyma segmentation), highlighting its efficiency and reliability 
compared to the traditional manual segmentation, which is time-consuming and prone to variability. In our study, the DCS 
of this automatic segmentation model for tumor segmentation was lower than that of non-tumoral liver parenchyma 
segmentation, it may be attributed to the blurred boundaries of tumors and confusion with surrounding tissues, which 
makes tumor segmentation on CT images relatively difficult, and the heterogeneity of tumors in terms of morphology and 
density increased the complexity of tumor segmentation. In addition, the 5-mm layer thickness of CT images may result in loss 
of detail, especially affecting smaller tumors with blurred borders, whereas non-tumoral liver parenchyma is less sensitive to 
resolution changes due to its larger area.

In our study, 8 radiomics features extracted from non-tumoral liver parenchyma and 2 radiomics features extracted 
from tumor were selected as the most valuable features to develop radiomics predictive model. As shown in Figure 3b, 
the non-tumoral liver parenchyma features have a greater weight in the model, indicating that the non-tumoral liver 
injury, rather than tumor necrosis, is the main contributor to PTLF, and it aligns with the previous research32. This may 
be related to TACE-induced cytolysis.33

In order to improve the predictive performance of the radiomics predictive model, we further introduced clinical predictors 
that were highly correlated with PTLF into the radiomics predictive model. In our study, INR, and ALB were identified as 
clinically independent predictors for PTLF, which is consistent with previous studies.34,35 INR is the standardized display of 
the results of PT, which is one of the most commonly used indicators of the body’s coagulation function, and ALB is the 
performer of many important functions in the body, such as maintaining colloid osmotic pressure and transporting various 
substances. Since the liver synthesizes all of the ALB and most of the clotting factors in the body, the basal levels of both are 
directly proportional to the number of normal hepatocytes. Although TACE targets selective embolization of tumor-feeding 
vessels, it inevitably causes ischemic damage to some normal liver parenchyma. Lower preoperative ALB and higher INR 
indicate fewer healthy liver cells, making patients more susceptible to PTLF. This supports the view that liver function 
decompensation and failure post-TACE are due to non-tumoral liver injury rather than tumor necrosis, too.33

The addition of clinical factors into radiomics predictive model resulted in a combined model with superior predictive 
performance, as proved by its higher AUC(0.878) compared to the radiomics model (AUC: 0.815), and the DeLong test 
showed that there is a statistically significant difference between the AUCs of the two models (P<0.05). Additionally, 
DCA demonstrated that the combined model offered greater net benefit across a wide range of risk threshold, affirming 
its better clinical utility. Another study36 indicated that the PCCA variant rs16957301 was specifically associated with 
acute kidney injury in cancer patients after immune checkpoint inhibitors (ICIs) treatment and could serve as an 
significant predictor. Moreover, their findings highlighted the need to consider racial, ethnic, and genetic diversity in 
patients’ responses to ICI treatment. Similarly, is PTLF associated with genetic variation, race, ethnicity, and genetic 
diversity? More and larger studies are needed to confirm this in the future.

Our study has some limitations. First, the low incidence of PTLF9 limited the sample size, which may introduce 
inherent biases and hidden confounding factors. Additionally, most patients received concurrent systemic therapies after 
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TACE, and we did not account for variables such as drug type and dosage, which may impact the onset of PTLF. Lastly, 
our study followed a two-step process involving segmentation and prediction, and future research should explore the 
incorporation of deep learning methods for end-to-end risk prediction.

Conclusion
This combined predictive model proves to be a valuable tool for predicting PTLF. It can assist clinicians in conducting 
early intervention for patients at high risk of PTLF and improve the prognosis of HCC patients treated with TACE.
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