
R E V I E W

Regulated Cell Death of Alveolar Macrophages in 
Acute Lung Inflammation: Current Knowledge 
and Perspectives
Siwei Xia, Xiaoyan Gu, Gaojian Wang, Yizhi Zhong, Fengjie Ma, Qinxue Liu, Junran Xie

Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China

Correspondence: Junran Xie, Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s 
Republic of China, Email xiejunran@zju.edu.cn 

Abstract: Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common and serious clinical lung disease 
characterized by extensive alveolar damage and inflammation leading to impaired gas exchange. Alveolar macrophages (AMs) 
maintain homeostatic properties and immune defenses in lung tissues. Several studies have reported that AMs are involved in and 
regulate ALI/ARDS onset and progression via different regulated cell death (RCD) programs, such as pyroptosis, apoptosis, 
autophagic cell death, and necroptosis. Notably, the effects of RCD in AMs in disease are complex and variable depending on the 
environment and stimuli. In this review, we provide a comprehensive perspective on how regulated AMs death impacts on ALI/ARDS 
and assess its potential in new therapeutic development. Additionally, we describe the crosstalk between different RCD types in ALI, 
and provide new perspectives for the treatment of ALI/ARDS and other severe lung diseases. 
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Introduction
Acute lung injury (ALI) and its more severe form acute respiratory distress syndrome (ARDS) are serious diseases 
caused by excessive and uncontrolled systemic inflammatory responses triggered by direct or indirect lung injury.1 

Clinical manifestations include decreased lung compliance, severe hypoxemia, and dyspnea.2 Critically, these syndromes 
are associated with high morbidity and mortality rates and place severe strains on healthcare systems. Currently, ALI/ 
ARDS treatments are mainly supportive; they improve oxygenation, reduce lung injury, and treat the primary disease.3 

Therefore, effective interventions are required to improve prognosis outcomes for affected patients.
Regulated cell death (RCD) is required for homeostatic maintenance in organisms.4 Cell death plays a central role in 

tissue development, aging, tissue damage and cancer prevention, and tissue homeostasis. However, hyperactive RCD can 
induce a systemic inflammatory state with pathological consequences.5 A considerable number of experiments have 
revealed that various cell types in the lungs undergo regulated cell death, which affects the progression of ALI/ARDS, 
including alveolar type 2 epithelial cells, neutrophils, and T cells involved in adaptive immunity, as well as alveolar 
macrophages.6–9 As one of the most active cell types in the immune response, alveolar macrophages not only play 
a crucial role in defending aga/inst infections and clearing damaged cells but also participate in the repair process of 
tissue damage as part of the body’s immune regulatory pathways.10 Previous studies have reported that in ALI/ARDS, 
alveolar macrophages (AMs) may undergo multiple RCD programs, including apoptosis, autophagic cell death, pyr-
optosis, and necroptosis.8,11

A growing body of research now suggests mutually reinforcing relationships between RCD and inflammation, which 
together drive a regionally self-reinforcing feedback loop that exacerbates ALI severity.12 AMs have key roles in ALI 
pathogenesis, and their regulatory death is a key strategy to address inflammation.13 Currently, we lack effective 
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pharmacological treatments to improve the survival of patients with ALI/ARDS, thus targeting multiple RCD pathways 
in AMs may help in the treatment of several currently incurable lung diseases, such as pulmonary fibrosis and COPD.

The aim of this review is to summarize the core mechanisms whereby different types of AMs death, and their 
crosstalk, have influenced ALI development, and to highlight the potential therapeutic value of targeting RCD pathways 
involved in these processes.

AMs Characteristics and Functions
AMs are resident macrophages in the airways and lungs with very low turnover rates and long lifespans.14 AMs have key 
roles in defenses against airborne particles and microorganisms, in apoptotic cell clearance, wound healing regulation, 
and eliciting immune responses to lung pathogens.15 As the primary immune sentinels of the respiratory tract, AMs have 
unique phenotypic and transcriptional profiles; they express specific surface markers (eg, Siglec-F and CD11) and are 
involved in surfactant clearance.16,17 AMs have excellent plasticity and are susceptible to epigenetic and immunometa-
bolic microenvironment factors, and also exhibit significant functional differences.18,19

AMs have key roles regulating lung inflammation and maintaining immune homeostasis, and remain relatively 
stationary under healthy airway epithelial cell maintenance.20 AMs, through pathogen-recognizing receptors on their 
surfaces, become rapidly activated after inflammatory episodes, releasing a wide range of cytokines and chemokines to 
abate inflammation and promote tissue repair.21 AMs also have important roles clearing dead alveolar cells and excess 
alveolar surfactants.22 Early apoptotic neutrophil recognition and phagocytosis by AMs can effectively prevent the 
uncontrolled release of toxic substances from dead neutrophils, thereby affecting lung injury outcomes.23,24 Recent 
studies have found a relationship between an impairment in AMs efferocytosis and the polarization of AMs in patients 
with ARDS. IL-8 induces classical activation of macrophages, thus blocking IL-8 may promote the clearance of 
apoptotic cells and reduce inflammation.25 Additionally, AMs inhibit excessive inflammation by regulating other immune 
cells,26 while AMs depletion elicits stronger inflammatory responses in animals.27

RCD has vital roles regulating macrophage functions at multiple levels of macrophage generation, recruitment, and 
differentiation levels, thereby affecting the course of many diseases. For example, autophagy affects macrophage 
polarization, phagocytosis, and antigen presentation.28 RCD in AMs is closely related to lung innate immune functions, 
and RCD dysfunction or imbalance has been associated with a pathological state in several lung diseases (Figure 1). 
Lipopolysaccharide (LPS) promotes apoptosis and inflammation in AMs, which aggravates lung fibrosis in mice.29 

Apoptosis levels in AMs are also significantly elevated in ALI models.30 Additionally, in inflammasome-dependent AMs, 
pyroptosis has key roles in endotoxin or mechanical ventilation-induced ALI.31 Many studies have shown that AMs- 
mediated RCD is induced in different ALI models, thus targeting these RCD pathways may be effective for ALI/ARDS 
treatment.

AMs Apoptosis in ALI
The Apoptosis Pathway
Apoptosis is the most widely recognized and major RCD type in mammals.32 Apoptosis is further classified into 
extrinsic and intrinsic types. Several studies have reported crosstalk between intrinsic and extrinsic apoptosis33 

(Figure 2). Bcl-2 homology 3 interacting domain death agonist (BID), a BH3-only Bcl-2 family member, provides 
a basis for crosstalk between extrinsic and intrinsic pathways. When a death ligand binds to the death receptor, 
caspase-8 cleaves BID to form tBID, which activates Bax and Bak on outer mitochondrial membranes.34 Additionally, 
FLIP, a major apoptosis-regulating protein, not only binds Fas-associated death domain (FADD) in the extrinsic 
apoptosis pathway to regulate cell death, but also affects the intrinsic apoptosis pathway by regulating BID 
activation.35 Gajate et al reported that during Fas/CD95-mediated apoptosis, the Fas/CD95 death receptor recruited 
FADD, formed Death-inducing signaling complex (DISC), and aggregated into lipid rafts. BID and apoptosome 
components are also translocated to lipid rafts,36 where rafts act as support structures to intersect death receptor and 
mitochondrial apoptosis signaling pathways.
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Apoptosis in AMs
In ALI, Apoptosis Levels are Increased in AMs
In LPS-induced in vivo and in vitro ALI models, apoptosis-related proteins Bax and caspase-3 are significantly up-regulated, 
whereas anti-apoptosis-related Bcl-2 is significantly down-regulated, suggesting that apoptosis is significantly activated in 
AMs.30 Previous studies reported that circular RNAs are differentially expressed in lung macrophages in mice and involved in 
ALI regulation.37 Wei et al observed that up-regulated circ-Phkb expression inhibited AMs proliferation via TLR4/MyD88/NF- 
ĸB/CCL2 signaling, thereby promoting apoptosis and pro-inflammatory factor release.30 Thus, Circ-Phkb promotes lung 
inflammation and may be a potential target for ALI therapy. Another intriguing study found that the activation of the Wnt/β- 
catenin pathway may be one of the key mechanisms underlying LPS-induced apoptosis in AM cells. Bone marrow mesenchymal 
stem cells (BMSCs) can effectively inhibit LPS-triggered phosphorylation of GSK-3β and prevent the expression of β-catenin in 
AMs.38 Therefore, the transplantation therapy with BMSCs holds promise as an effective strategy for treating ALI/ARDS.

Another study reported that Resveratrol, a potent SIRT-1 (silent mating-type information regulation 2 homolog-1) 
activator, significantly alleviates sepsis-induced ALI by decreasing apoptosis and autophagy levels in AMs via VEGF-B 
signaling and inhibiting LPS-dependent C5aR gene expression.39 Interestingly, this study suggested that the inhibitory 
effects on LPS-induced apoptosis in AMs were possibly, and partly, via inhibited LPS-induced autophagy.

AMs Apoptosis Impairs Body Immune Competence
Interestingly, apoptosis in AMs reduces their ability to phagocytose inflammatory effector cells, that may weaken the 
self-repairing capacity in lung tissue. Lu et al reported a significant reduction in AMs and a time-dependent increase in 

Figure 1 Alveolar macrophages. Macrophages resident in different organs can be derived from embryonic monocyte progenitors that originate in the yolk sac or fetal liver 
during embryonic development and then migrate to different tissues. Circulating monocytes that develop from haematopoietic stem cells in the bone marrow can also 
differentiate into tissue-resident macrophages. They exhibit diverse functions. When resident alveolar macrophages are exposed to external stimuli (such as environmental 
factors, drugs, genetic factors, etc), they undergo regulated cell death, which affects their phenotype and function, thereby either exacerbating or alleviating pulmonary 
inflammation. Created in BioRender. Xia, S. (2024) https://BioRender.com/e15t922.
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apoptotic AMs in an advanced sepsis-induced lung injury rat model, which partly explained reduced defenses in septic 
lungs, and also superimposed on the susceptibility of septic lungs.40 Another study showed that relatively high 
dexamethasone doses induced AMs apoptosis in vitro, weakening lung immune functions and increasing secondary 
infection risks in patients.41

Apoptosis is a highly coordinated process that maintains tissue health by balancing cell proliferation or death. Although 
the mechanisms of apoptosis have been extensively studied, the link between apoptosis in AMs and various pathological 
states needs to be further explored. A more comprehensive analysis of the key molecules that play specific roles in ALI/ 
ARDS is needed in the future to reveal the specific mechanisms and roles of apoptosis in AMs in these diseases.

AMs Pyroptosis in ALI
The Pyroptosis Pathway
Pyroptosis is a specific RCD widespread in several infectious and inflammatory respiratory diseases, including ALI, chronic 
obstructive pulmonary disease, and asthma.42,43 Inflammatory vesicle complex assembly is a key step in cellular pyroptosis.44 

When a host is subjected to abnormal conditions, such as a microbial infection, stress, and/or tissue damage, pyroptosis is 
activated, which initiates a series of signaling cascades to activate the inflammasome, prompting inflammatory factor release 
from immune cells, and executing the effector protein gasdermin (GSDM)45 (Figure 3). Although pyroptosis is initiated by 
different pathways, it is ultimately performed by the GSDM protein family, most of which share highly conserved N- and 
C-terminal structural domains (NTDs and CTDs, respectively).46 NTDs are activated via CTD dissociations, which effectively 
solubilizes the phospholipid bilayer and forms pores in membranes, disrupting cellular membrane integrity and osmotic 
potential, leading to membrane rupture, chromatin condensation, and DNA fragmentation.47,48 Thus, pyroptosis is defined as 
a GSDM-mediated regulated necrosis.

Figure 2 The extrinsic and intrinsic apoptotic pathways. The extrinsic apoptotic pathway is activated when the ligand activates the death receptor, recruiting FADD and 
Caspase-8/10 to form the death-inducing signalling complex (DISC). Subsequent activation of Caspase-8/10 and death effector Caspase-3/7 induces apoptosis. The intrinsic 
apoptotic pathway involves the activity of the BCL-2 family of proteins located in the outer mitochondrial membrane, and many stimuli lead to permeability of the 
mitochondrial outer membrane (MOMP) and further release of cytochrome C. The latter binds to APAF-1 to form the DISC. The latter binds APAF-1 to form apoptotic 
bodies, which then activate Caspase-9 and downstream Caspase-3/7. In some cells, Bid cleavage also activates BAK/BAX thereby leading to the release of cytochrome c from 
mitochondria and promoting apoptosis. Created in BioRender. Xia, S. (2024) https://BioRender.com/z40q507.
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Pyroptosis in AMs
Elevated AMs-Mediated Pyroptosis Levels in ALI
A growing body of evidence now suggests that cellular pyroptosis has key roles in inflammatory responses to respiratory 
diseases. In particular, AMs pyroptosis, in response to intratracheal LPS administration, significantly enhances lung 
inflammation.49 Elevated NLRP3, ASC, LI-1β, and IL-18 expression levels were identified in a severe sepsis-induced 
lung injury model, as well as higher GSDMD precursor and spliceosome levels in lung tissue.50 NLRP3 inflammatory 
vesicle activation in AMs led to caspase-1 activation and IL-1β production, further exacerbating lung injury during 
mechanical ventilation in ALI patients.51 Critically, the specific caspase-1 inhibitor Ac-YVAD-CMK prevents AMs- 
induced pyroptosis and lung injury.49

During in vitro cardiopulmonary bypass, NLRP3/ASC-mediated pyroptosis in AMs was shown to enhance High 
mobility group box 1 (HMGB1) secretion, thereby exacerbating pulmonary ischemia-reperfusion (I/R)-associated ALI.52 

HMGB1, in turn, mediated AMs activation via toll-like receptor 4 (TLR4).53 Inhibited Nlrp3 inflammatory vesicles then 
attenuated AMs death and HMGB1 release from AMs, thereby alleviating lung inflammation.

Recent studies reported that interferon regulatory factor-1 (IRF-1) activated caspase-1-dependent pyroptosis and 
inflammatory factor release in AMs in a mechanical lung injury model.54 In in vivo studies, Wu et al showed that IRF-1 
deficiency inhibited pyroptosis in AMs during LPS-induced ALI and confirmed the importance of TLR4 signaling for 
IRF-1 expression and subsequent caspase-1 activation.55

Xu et al reported that LPS simultaneously induced pyrin expression by activating NLRP3 inflammasomes in AMs.56 

Pyrin acts as a PRR that triggers caspase-1 inflammasome assembly.57 LPS mediates IL-10 up-regulation in AMs, which 
enhances pyrin expression in an autocrine manner and inhibits inflammasome activation, which may be a self-regulatory 
mechanism to alleviate inflammation. Hemorrhagic shock (HS) inhibits LPS-induced IL-10 expression, which in turn 

Figure 3 The canonical and non-canonical inflammasome pathways in pyroptosis. In the canonical pyroptosis pathway, active NLRP3 binds Pro-caspase-1 via ACS to form 
NLRP3 inflammasome, followed by activation of Caspase-1. Active Caspase-1 mediates the maturation and cleavage of IL-18 and IL-1β from the GSDMD, which forms 
membrane pores and releases cytoplasmic inflammatory contents, leading to cellular pyroptosis. In the non-canonical pyroptosis pathway, lipopolysaccharide (LPS) derived 
from Gram-negative bacteria directly activates Caspase-4/5/11. Activated Caspase-4/5/11 cleaves the GSDMD to induce pore formation, while activating the NLRP3 
inflammasome through K efflux, leading to pyroptosis. Created in BioRender. Xia, S. (2024) https://BioRender.com/y83o292.

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S497775                                                                                                                                                                                                                       

DovePress                                                                                                                      
11423

Dovepress                                                                                                                                                               Xia et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://BioRender.com/y83o292
https://www.dovepress.com
https://www.dovepress.com


decreases pyrin expression to promote inflammatory vesicle activation and increase IL-1β secretion in the lungs, leading 
to increased lung inflammation.56

AMs Affect Pyroptosis via TLR4/Myd88/NF-ĸB Signaling
He et al demonstrated that LPS-induced IL-1β release had a profound effect on AMs pyroptosis and lung inflammation 
development.58 In AMs, LPS–TLR4 signaling activates NLRP3 inflammatory vesicles and releases IL-1β. Simultaneous 
IL-1 receptor I (IL-1RI) up-regulation on AMs surfaces via MyD88 and NF-ĸB dependent signaling was shown to 
sensitize AMs to IL-1β, which subsequently caused the formation of ASC pyroptosome and the amplification of the 
pyroptosis of the AMs, thereby exacerbating ALI.58

Myeloid differentiation protein 2 (MD-2) acts as a co-receptor for the classical TLR4 and regulates NLRP3 
inflammatory vesicle activation and IL-1β secretion in LPS-treated AMs.59 In AMs, MD-2 gene knockdown reduces 
LPS-induced increases in NLRP3, caspase-1 protein, and IL-1β secretion via MyD88/NF-ĸB signaling.60

AMs Pyroptosis Induction via the cGAS–STING Pathway
Growing evidence now suggests that NLRP3 inflammatory vesicle activation and pyroptosis are regulated by mitochon-
drial processes.61 LPS-induced mitochondrial dysfunction and cytoplasmic mitochondrial DNA release triggered inflam-
matory responses upon cGAS–STING axis activation, and consequently activation of the interferon regulatory factor 3 
(IRF3) or NF-ĸB pathway.62 It has been mentally demonstrated that the cGAS-STING pathway may participate in LPS- 
induced ALI by regulating NLRP3 and macrophage pyroptosis.63 Thus, activation of the cGAS-STING-IRF3 pathway is 
involved in the regulation of pyroptosis in AMs, which reveals a novel regulatory mechanism in AMs. A recent study 
suggested that 4-OI, a cell-permeable intrinsic clathrin derivative, may inhibit NLRP3 inflammatory vesicle activation in 
a STING–IRF3-dependent manner. Also, 4-OI pretreatment significantly inhibited up-regulated cGAS and STING 
protein expression, and TBK1 and IRF3 phosphorylation, both in vivo and in vitro, resulting in inhibition of NLRP3 
inflammasome activation to ameliorate ARDS.64 Thus, activation of the cGAS-STING-IRF3 pathway is involved in the 
regulation of pyroptosis in AMs, which reveals a novel regulatory mechanism in AMs.

AMs Pyroptosis is Regulated via Mitogen-Activated Protein Kinase (MAPK) Signaling
In ALI / ARDS, p38 MAPK signaling is activated, leading to significant increases in inflammatory factor expression 
levels.65,66 p38 MAPK inhibitors significantly reduce NLRP3 inflammatory vesicle formation, decrease AMs pyroptosis 
and inflammatory factor release. Interestingly, more apoptosis was observed when p38 MAPK signaling was blocked. 
Therefore, p38 MAPK signaling blockade may induce a shift from pro- to non-inflammatory apoptosis in AMs, thereby 
alleviating ALI and preventing excessive inflammation.67 Thus, balancing AMs pyroptosis and apoptosis may provide 
new therapeutic strategies for treating uncontrolled lung inflammation in patients with ALI/ARDS.

Extracellular Vesicles (EVs) Release from AMs During Pyroptosis Influence ALI Progression
Several new studies have reported that specific EVs are released during pyroptosis, which are key intercellular 
communication mediators involved in biological processes such as inflammation, immunomodulation, and 
tumorigenesis.68,69 Micron-sized vesicles (1–5 μm) called pyroptotic bodies (PyrBDs) are formed during pyroptosis.70 

In early ALI stages, PyrBDs derived from pyroptotic AMs trigger exacerbated inflammatory responses. PyrBDs 
formation is dependent on caspase-1-mediated pyroptosis of AMs, and contain high Mitochondrial damage-associated 
molecular patterns (DAMPs) and inflammatory factors, such as TNF-α, IL-6, and IL-1β. These EVs promote epithelial 
cell activation via p38 MAPK signaling which induces interstitial vascular edema and facilitates neutrophil recruitment.71 

PyrBDs production is associated with inflammatory spread and requires more in-depth studies to examine their properties 
and functions.

Pyroptosis, an important component of innate immunity, plays a key role in fighting infection and responding to 
intrinsic danger signals. The current experiments found that pyroptosis of AMs exacerbated lung inflammation in ALI/ 
ARDS, whereas inhibition of pyroptosis of AMs attenuated lung inflammation by reducing cellular and lung tissue 
damage and decreasing the expression of inflammatory factors. Given the critical role of AMs in maintaining lung 
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homeostasis, further investigation of the potential mechanism of AMs pyroptosis in acute lung injury and effective 
regulation of AMs pyroptosis maybe an effective clinical strategy to prevent or treat ALI.

AMs Necroptosis in ALI
The Necroptosis Pathway
Necroptosis is a newly discovered cell death type; it is mechanistically similar to apoptosis but morphologically similar 
to necrosis.72,73 Necroptosis is activated as an alternative death pathway when cells undergo inflammatory, oxidative, or 
hypoxic stresses that prevent them from dying via apoptosis.74 This process involves dead cell aggregation, cell 
membrane rupture, organelle swelling, cytoplasm and nucleus breakdown, and inflammatory vesicle formation.75 

Unlike apoptosis, necroptosis is generally regarded as a pro-inflammatory response and independent of cysteine 
asparaginase activity. Key factors in its regulation include receptor-interacting serine-threonine kinase 1 (RIPK1), 
RIPK3, and mixed-spectrum kinase structural domain-like proteins (MLKL)76,77 (Figure 4).

Necroptosis in AMs
Increased AMs Necroptosis in ALI
It has been reported that RIPK3-mediated necrotizing apoptosis and inflammasome pathways are activated in ALI 
induced by LPS.78 RIPK3-mediated necroptosis and inflammatory vesicle pathways are reportedly activated in LPS- 
induced ALI. Elevated RIPK3 levels may represent a ventilator-induced ALI marker.79

A recent important study reported that AMs specifically expressed high leptin receptor (Lepr) levels in several tissue- 
resident macrophages.80 Lepr, as the receptor for the important metabolic hormone leptin, efficiently regulates plenary 
lipid quality, with high leptin levels associated with several immune and inflammatory disorders.81 In AMs, Lepr-specific 
expression may be related to AMs roles degrading lipids to maintain surfactant homeostasis. Lepr signaling maintains 
lipid homeostasis in AMs and plasma membrane integrity, while inhibiting necroptosis by maintaining AMPK signaling, 

Figure 4 Necroptosis pathway. TNFα is the predominant upstream signalling component of necroptosis apoptosis.TNF-α activates TNFR1, which recruits scaffolding 
proteins TRADD, TRAF2, RIPK1 and cIAP1/2 to form plasma membrane-associated complex I. Linear ubiquitination stabilises complex I, which activates the NF-κB signalling 
pathway, leading to cell survival. When NF-κB is inhibited, complex IIa is activated, initiating apoptosis. Disruption of the signalling checkpoint early in cell survival leads to 
induction of complex IIb, which induces apoptosis via activated Caspase-8. When Caspase-8 is inhibited, phosphorylated RIPK1 and phosphorylated RIPK3 recruit and 
phosphorylate their substrate MLKL to form the necrosome complex. Activated MLKL oligomerises and migrates to the plasma membrane, thereby triggering necroptosis. 
Created in BioRender. Xia, S. (2024) https://BioRender.com/d66m064.
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thereby limiting inflammatory cell content release (eg, IL-1α) and neutrophil recruitment, and also attenuating lung 
inflammation by regulating AMs metabolism.80

Recent studies have indicated that MLKL is also prominently expressed in AMs, in particular when compared with 
monocyte-derived macrophages. In LPS-induced ALI, Triggering receptors expressed on myeloid cell-1 (TREM-1) acts 
as a PRR that induces necroptosis in AMs. TREM-1 blockade attenuates MLKL expression in AMs, and TREM-1 
blocker treatment attenuates septal lung thickening and alveolar congestion in ALI mice.82 Also, the mechanistic target of 
Rapamycin (mTOR)-dependent mitochondrial fission underlies TREM-1-triggered necroptosis and inflammation, and is 
one of the conditions required for mitochondrial autophagy, which seems to suggest that TREM-1 may mediate the death 
of AMs from multiple pathways.83

Osteopontin (OPN) is a major regulator involved in cell death and immunity.84 Wang et al reported that in mice with 
ALI caused by influenza virus infection, Osteopontin knockdown significantly reduced P-MLKL levels in AMs, which 
alleviated necroptosis levels and attenuated ALI.85

Alveolar macrophages necroptosis is an important factor in the enhancement of lung inflammation in patients with 
inflammatory respiratory diseases. There has been a steady advancement of research on necroptosis in AMs. Although 
necroptotic signalling pathways and induction mechanisms have been well documented, their specific mechanisms in 
ALI/ARDS and their effective role in AMs are still worth exploring. The blockade of necroptosis is expected to alleviate 
inflammatory respiratory diseases such as ALI, and studies targeting the blockade of RIPK1 have progressed, but more 
clinical trials are still needed to determine the feasibility of targeting necroptosis in therapy.

AMs Autophagic Death in ALI
The Autophagic Cell Death Pathway
Autophagy, as the primary intracellular degradation system, is a cell protective mechanism under unfavorable conditions 
(eg oxidative stress) and acts via the lysosomal degradation of dysfunctional/damaged proteins, organelles, and 
intracellular pathogens.86,87 Excessive autophagy activation often leads to cell death or inhibits cell proliferation in an 
apoptosis-independent manner.88,89 The Cell Death Nomenclature Committee has recognized autophagic cell death 
(ACD) as an independent “subprogram of cell death”, whose mechanism is significantly different from traditional 
apoptosis and is highly dependent on the autophagic pathway (or its components).90 ACD can be further subdivided 
into three modes: autophagy-associated (coexistence of autophagy and apoptosis or other cell death), autophagy- 
mediated (autophagy promoting apoptotic cell death or other cell death modalities) and autophagy-dependent (autophagy 
as a distinct cell death pathway independent of apoptosis or necroptosis).91 Increasing evidence indicates that the 
autophagic mechanism plays a direct role in determining specific cell death patterns3.92 Therefore, in the following 
content, we not only delve into ACD in macrophages (AMs) but also supplement the functional study of AMs autophagy 
in ALI/ARDS.

Three autophagy types exist: macroautophagy, microautophagy, and chaperone-mediated autophagy.87,93 In micro-
autophagy, cytoplasmic components are directly transported into lysosomes and cytosolic organelles by inducing 
lysosomal membrane invagination.94 Chaperone-mediated autophagy, on the other hand, allows for the direct entry of 
target proteins across lysosomal membranes via the recognition of specific target protein sequences by lysosomal 
chaperone proteins, without vesicle formation.95 Macroautophagy is the most prominent version; it wraps and transports 
cytoplasmic materials to the lysosome for degradation via double-membrane structures called autophagosomes96,97 

(Figure 5). The key step in classical macroautophagy induction is UNC-51-like kinase (ULK) complex activation, 
followed by downstream Autophagy-related protein (Atg) recruitment and modification to initiate the process.98

Autophagic Cell Death in AMs
In ALI, AMs Autophagy Levels are Elevated
The effects of autophagy on ALI/ARDS are variable and may be either protective or injurious, depending on the 
physiological context.99 It was reported that autophagy-related gene (eg, Atg7, Atg5, and Atg4b) deletions significantly 
exacerbated ALI development in mice.100 Many autophagy-related regulators such as LC3B-II, Beclin 1, p62, and mTOR 
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have key autophagy induction roles during lung injury.101 A recent study found that Hydrogen-rich saline (HRS) 
regulated AMs polarization and inhibited apoptosis by inhibiting autophagy in rat AMs, thereby alleviating lung 
inflammation.102 Thus, autophagy may impact ALI/ARDS progression by influencing AMs phenotypes and functions 
and helping regulate inflammatory responses.

It was previously shown that transforming growth factor-β-activated kinase-1 binding protein 2 (TAB2) interacted 
with the essential autophagy mediator Beclin-1 to regulate autophagy. Under different autophagy-inducing stimuli, TAB2 
dissociated from Beclin1 and bound to TAK1, leading to downstream IKK/NF-ĸB signaling activation, thus allowing 
Beclin1 to initiate autophagy.103 Another study also found that miR-155 overexpression inhibited TAB2 expression in 
AMs, induced autophagy, and reduced caspase-1 expression in cells and IL-1β and TNF-α levels in supernatants.104 

Thus, AMs autophagy may be activated by inhibiting TAB2 expression to reduce inflammation during septic lung injury.
The complement system functions as a first-line defense mechanism against pathogen invasion, and its activation 

product, C5a, directly activates neutrophils and macrophages and induces strong pro-inflammatory mediator 
expression.105,106 Hu et al reported that in intestinal I/R-induced ALI, C5a activated AMs, as evidenced by MHC 
class II molecule expression and increased CD11b expression in AMs. Subsequent C5a binding to C5aR initiated Bcl-2 
degradation and deregulated the inhibitory effects of Beclin-1, a key autophagy regulator, thereby increasing autophagy 
levels and inducing AMs apoptosis, which further contributed to ALI development. Critically, inhibited autophagy in 
AMs, using the autophagy inhibitor 3-Methyladenine or autophagy protein (Atg5) knockdown, largely prevented 
apoptosis.107 Therefore, C5a-mediated autophagy in AMs induces but does not inhibit macrophage apoptosis, thereby 
increasing lung injury.

AMs Autophagy Attenuates ALI by Inhibiting NOD-Like Receptor (NLR) Protein Family Activity
Mitochondrial damage-associated molecular patterns (MTDs) occur due to mitochondrial rupture, are released into 
extracellular spaces during cell death, and are a major source of DAMPs.108,109 MTDs induce NLRP3 inflammatory 

Figure 5 Classical autophagy pathway. In stress-induced macroautophagy, AMPK activation or inhibition of mTORC1 activity leads to the activation of the ULK complex and 
class III PI3K complex, resulting in the formation of phagocytic carriers. Two different ubiquitin-like coupling systems are involved in phagocytic carrier elongation: one 
involves ATG5-ATG12-ATG16L, and the other involves LC3-PE (LC3II), which helps to seal off double-membrane autophagosome formation. Eventually, autophagosomes 
fuse with lysosomes to form autophagic lysosomes for degradation. Created in BioRender. Xia, S. (2024) https://BioRender.com/i71l142.
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vesicle activation, causing severe inflammatory responses in AMs, which leads to aseptic lung injury. Rapamycin- 
induced autophagy activation significantly reduces NLRP3 inflammasome activation in AMs stimulated by MTDs.110

Further studies also show that Up-regulated geranylgeranyl diphosphate synthase 1 (GGPPS1) was identified in 
a sepsis-induced lung injury mouse model and in MH-S cells stimulated with LPS.111 GGPPS1 has important roles in 
several cellular processes such as cell growth, differentiation, proliferation, and protein trafficking.112 GPPS1 depletion 
inhibits NLRP3 inflammasome activation by enhancing AMs autophagy, thereby attenuating sepsis-induced lung 
injury.111

Wen et al reported that HS, acting via HMGB1/TLR4 signaling, induced increased NOD2 expression in AMs, which 
enhanced lung inflammation. Additionally, up-regulated NOD2 signaling enhanced AMs autophagic activity, which in 
turn reduced NOD2 binding to RIP2 and inflammatory vesicle activation, thereby suppressing lung inflammation. This 
study also revealed that neutrophils were activated and migrated to alveolar spaces in the HS model, counteracting the 
anti-inflammatory effects of autophagy in AMs via Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase- 
dependent signaling, and enhancing lung inflammation after HS.113 Notably, these findings highlight complex inter-
cellular interactions underpinning ALI mechanisms.

AMs Autophagy Acts via MAPK and NF-ĸB Pathways
The release of injury-associated molecular patterns, such as HMGB1 and heat shock protein 60, is significantly increased 
during I/R injury.114,115 In lung tissue, DAMPs bind to TLR4, triggering inflammatory cytokine production (including IL-1β 
and TNF) and activating AMs autophagy. In turn, autophagy promotes inflammatory responses activated by TLR4 signaling 
during lung I/R. TNF receptor-associated factor 6 (TRAF6) ubiquitination is inhibited when 3-methyladenine (autophagy 
inhibitor) or autophagy-related protein (Atg7 and BECN1) knockdown is used. Additionally, Atg7 knockdown reduced 
MAPK phosphorylation levels and NF-ĸB signaling activation markers in AMs, and also significantly reduced pro- 
inflammatory cytokine expression.116 Thus, AMs autophagy is involved in TRAF6 ubiquitination in I/R-triggered ALI and 
has important roles in I/R injury-induced MAPK and NF-ĸB signaling activation and inflammatory responses.

Lipoproteins (LXs) are intrinsic anti-inflammatory lipid mediators synthesized in organisms via the arachidonic acid 
pathway.117 Lipoxin A4 (LXA4) exerts protective effects against LPS-induced lung injury by inhibiting CCL2 secretion and 
release from resident macrophages, and reducing recruited macrophage and neutrophil accumulation.118 Additionally, BML- 
111, an Lipoxin A4 receptor agonist, effectively inhibits MAPK1 and MAPK8 activation, thereby increasing AMs autophagy 
levels after LPS treatment, attenuating LPS-induced apoptosis, and decreasing pro-inflammatory factor levels in vivo.119 

Therefore, stimulating autophagy in AMs by targeting MAPK signaling may promote ALI regression.

AMs Autophagy Reduces Lung Injury by Modulating Endoplasmic Reticulum Stress (ERS)
Misfolded or immature protein accumulation in the endoplasmic reticulum (ER) lumen triggers a disease known as 
endoplasmic reticulum stress (ERS), which causes cellular damage and amplifies inflammatory responses.120 Fan et al 
reported that extrinsic autophagy enhancement using rapamycin significantly reduced ERS protein marker levels (BIP, 
XBP-1, and CHOP) and the apoptosis-related marker caspase-3.121 Another study demonstrated that the proteasome 
inhibitor MG132 elevated autophagy levels in hypoxia-reoxygenation (H/R)-treated cells, inhibited the ER/unfolded 
protein response stress pathway, and impeded apoptotic processes.122 Thus, by attenuating ERS and oxidative stress in 
AMs, autophagy reduces apoptosis and thus preserves immune homeostasis in lung tissues.

AMs Autophagy Induction via the Akt/mTOR Pathway
The PI3K/Akt/mTOR pathway is one of the most common pathways in inflammation and oxidative stress progression, 
and one of the major pathways activated by autophagy.123 CoB1, a novel antimicrobial drug, reduced p21-Activated 
kinase 1 (PAK1) expression via a ubiquitination-mediated degradation pathway in a Pseudomonas aeruginosa-induced 
ALI model. This novel antimicrobial drug. PAK1 inhibition also reduced Akt1 phosphorylation levels, which led to Akt/ 
mTOR signaling blockade and inhibited the ULK1/2-Atg13-FIP200 complex from undergoing autophagy precursor 
membrane translocation, thereby promoting AMs autophagy activation, cell survival, and bacterial clearance in AMs.124

Autophagy is a complex and dynamic process that plays different roles under different pathological conditions. In 
particular, targeted modulation of autophagy in AMs could be a strategy to address lung inflammation, but in-depth 
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studies on the specific mechanism of action of autophagy in AMs, how it is regulated, and its specific impacts (either 
benefits or harms) in the progression of acute lung injury (ALI) are still needed. Accordingly, there is a need to further 
elucidate the role and mechanisms of autophagy in acute lung injury in order to better utilise it for therapeutic purposes.

Crosstalk Between Different RCD Pathways in ALI/ARDS
In recent years, as RCD processes have become better understood, considerable attention has focused on the interactions 
(crosstalk) between different RCD modes. In an inflammatory disease context, multiple cell death types can be 
simultaneously induced, with interactions between the types influencing disease processes in a highly complex 
manner.12,125 PANoptosis is a recently defined RCD type that may be triggered by interactions between AIM2, pyrin, 
and ZBP1, and incorporates key features of pyroptosis, apoptosis, and/or necroptosis.126,127 PANoptosis manifestations 
are not explained by any of these three RCD pathways alone, suggesting interactions between RCD pathways. 
Additionally, ALI/ARDS is characterized by extensive inflammatory cell infiltration in lung tissue and excessive 
inflammatory responses, with neither apoptosis, pyroptosis, nor any of the other RCD types alone fully explaining the 
complex mechanisms underpinning the disease. These insights remind us that regulated and molecular crosstalk between 
RCD pathways dynamically influence ALI/ARDS progression.

Apoptosis and Autophagy
Autophagy and apoptosis pathways are interrelated as both appear to share common inducers and components. Both are 
affected by stimuli such as hypoxia, stress, and I/R, and share some key molecular regulators such as Bcl-2, p53, AKT, 
and mTOR.128 Autophagy and apoptosis usually occur in the same cell, mainly where autophagy precedes apoptosis.129 

A previous study reported that autophagy and apoptosis had different roles at different stages in LPS-induced ALI. In 
early ALI phases, autophagy-dominated cell death patterns peaked within 2 hours, while in contrast, apoptosis gradually 
increased at later phases and peaked at 6 hours.130

In most cases, apoptosis and autophagy appear to inhibit each other. Autophagy provides a protective mechanism 
against apoptosis. Autophagy also reduces apoptosis in AMs by inhibiting caspase activation via attenuated ERS and 
oxidative stress.121 In turn, activated apoptosis-associated proteins also inhibit autophagy by degrading autophagy- 
associated proteins. Atg3 degradation, induced by caspase-8 activation, was shown to restrict autophagic activity.131 

Beclin-1 is cleaved by caspase-8, thereby inhibiting autophagy.132 In some special cases, autophagy supports apoptosis or 
assists apoptotic processes without causing cell death. Martyniszyn et al reported that autophagy and apoptosis occurred 
simultaneously in macrophages during later infection stages, and that autophagy may have assisted macrophage death by 
enhancing apoptosis.133

Apoptosis and Pyroptosis
Extensive interactions appear to occur between pyroptosis and apoptosis. In macrophages, GSDMD is the only caspase-1 
substrate that induces pyroptosis, while in its absence, caspase-1-induced apoptosis triggers GSDMD-mediated second-
ary necroptosis/pyroptosis via the BID-caspase-9-caspase-3 axis.134 In an ALI model, inhibited p38 MAPK signaling 
appeared to promote a shift in macrophage death patterns from pyroptosis to apoptosis, thereby attenuating lung 
inflammation.67 Pro-inflammatory pyroptosis and non-inflammatory apoptosis are functionally distinct cellular responses, 
with the balance between them depending on the extent of the stimulus. Under intense stimulation, rapid pyroptosis 
predominates leading to neglect of the apoptotic response activated by inflammatory vesicles.135

Pyroptosis and Autophagy
Similar to apoptosis, autophagy may have key roles maintaining intracellular homeostasis by regulating pyroptosis. 
Numerous studies have reported interactions between NLRP3 inflammasomes and autophagy, with interrupted autophagy 
potentially causing over activated NLRP3 inflammasomes.136,137 SESN2 is a stress-inducible protein that inhibits NLRP3 
inflammasome activation in macrophages by inducing mitochondrial autophagy. Kim et al showed that in MTD-induced 
ALI, enhanced AMs autophagy inhibited NLRP3 inflammatory vesicle functions, thereby inhibiting caspase-1-mediated 
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pyroptosis signaling.138 Therefore, autophagy may be viewed as a negative regulator of pyroptosis, with activated 
autophagy improving sepsis-associated ALI.

Pyroptosis and NETosis
As a novel RCD pathway, NETosis is a neutrophil death pathway characterized by the release of “neutrophil extracellular 
trapping networks” (NETs) composed of proteins which made of chromatin and intracellular granule bodies released by 
dead neutrophils.139 A correlation was shown to exist between macrophage death and NET release. HMGB1 released 
from NETs promoted macrophage pyroptosis and inflammation in sepsis by forming inflammatory vesicles and activating 
caspase-1 via receptor for advanced glycation end products (RAGE) and dynamin-dependent signaling pathways.140 

Specific GSDMD deletion in neutrophils also prevented LPS-induced lung injury.141 In an ALI/ARDS model, NETs 
directly promoted alveolar macrophage pyroptosis by activating AIM2 inflammatory vesicles, which enhanced neutrophil 
chemotaxis in the alveolar lumen and increased cytokine (IL-6, TNF-α, and IL-1β) concentrations in the alveoli, creating 
a vicious circle that may have contributed to a cytokine storm and exacerbated lung injury.58,142

Necroptosis, Pyroptosis, and Autophagy
Currently, studies examining interactions between pyroptosis, autophagy, and necroptosis are relatively limited. Kang 
et al reported that necroptosis directly or indirectly promoted inflammasome activation, and that the TLR3-mediated 
activation of of NLRP3 inflammasomes required RIPK3/MLKL activity.143 Chen et al showed that RIPK3 and GSDMD 
signaling both amplified necroinflammation and tissue factor release in macrophages and endothelial cells, leading to 
tissue damage. RIPK3-mediated necrotic apoptosis and GSDMD-mediated pyroptosis both synergistically contributed to 
tissue injury during sepsis.144 Mitochondrial fission is believed to be required for mitochondrial autophagy. A recent 
study demonstrated that TREM-1 activated mTOR-dependent mitochondrial fission, which in turn led to necrotic 
apoptosis in AMs, thereby exacerbating ALI.82 Overall, pyroptosis and autophagy synergize with necrotic apoptosis to 
accelerate disease processes.

The Therapeutic Potential of Targeting RCD Pathways
Given the key impact of AMs regulated cell death on the progression of ALI/ARDS, the development of synthetic or 
natural products that can modulate key molecules in the cell death pathway is expected to become an effective strategy 
for treating this disease. Currently, Various RCD inhibitors have been developed, offering possibilities for further 
exploration of therapeutic strategies. The Bcl-2 inhibitor venetoclax alleviate ALI by increasing neutrophil 
apoptosis.145 Similarly, RIPK1-targeting inhibitors of necrotizing apoptosis show significant protection during ALI and 
may be a strategy against COVID-19.146 Matrine, a product purified from medicinal plants, can block ASC speck 
formation upon NLRP3 inflammasome activation, thereby inhibiting macrophage pyroptosis and increasing the survival 
rate of septic mice.147 Currently, in some complex disease models, the simultaneous and multiple inhibition of RCD 
pathways may be beneficial in effectively alleviating inflammation and treating the disease.

Through in-depth study of the molecular mechanisms of RCD in Ams, we are hopeful to uncover new therapeutic 
targets for the prevention or treatment of ALI/ARDS, thereby improving patient survival rates and optimizing their 
prognosis. Additionally, these studies may enable us to tailor personalized treatment plans based on the unique 
pathophysiological characteristics of each patient, significantly enhancing the survival chances of ALI/ARDS patients. 
At the same time, these findings may also provide important therapeutic insights and strategies for other lung diseases 
that currently lack curative methods.

Despite the theoretical therapeutic potential of targeted interventions in AMs RCD pathways, many practical 
application challenges exist. First, due to overlapping RCD pathways, inhibitors targeting single pathways may have 
limited effects. The inhibition of one pathway may trigger aberrant activation of alternative RCD pathways and caspases. 
Additionally, some inhibitors (eg, MLKL inhibitors) carry cytotoxicity risks and may have off-target effects.148 In an 
ALI/ARDS context, the regulatory mechanisms underpinning regulatory AMs death are highly complex, involving not 
only multiple signaling molecules and pathways, but also crosstalk between RCD pathways that can shift between 
synergy or inhibition due to different times, environments, and stimuli. Therefore, how do we precisely target specific 
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cellular and molecular pathways without affecting other important physiological processes? To answer this, future RCD 
pathway studies are required to identify overlapping processes and intersections. Additionally, the development of safe 
and effective interventions and appropriate drug delivery systems, ensuring therapeutic efficacy, is fundamental to 
achieving successful clinical outcomes.

Conclusions and Perspectives
Imbalanced AMs activation and function may lead to dysregulated immune responses and lung disease development. 
During inflammatory diseases, AMs intervene via several mechanisms, of which RCD pathway activation is decisive in 
maintaining lung homeostasis and modulating inflammation. Elevated apoptosis levels help AMs remove damaged cells 
and prevent excessive inflammation spread.25 However, AMs apoptosis may decrease effective immune cell functions 
and promote lung inflammation.40,41 Activated AMs pyroptosis exacerbates lung injury by activating inflammatory 
vesicles and inflammatory factor release.149 AMs autophagy removes detrimental inflammatory factors from the body 
and attenuates oxidative stress levels, resulting in protective effects.110,111,121 However, over-activated autophagy can 
lead to AMs dysfunction, thereby exacerbating lung injury.107,116 Necroptosis promotes inflammation, but its mechan-
isms in AMs remain unexplored.150 We now understand that crosstalk between different RCD types is both complex and 
flexible, especially during ALI/ARDS. Interactions between RCD pathways depend on cell type, the stimulus, and 
environmental conditions. Different RCD pathways may simultaneously occur because they share similar components. 
When one mode of death is inhibited, other replacement apoptosis mechanism can be triggered.151,152 Thus, targeting 
RCD pathways is a potential strategy in treating lung injury.

Translational and clinical studies examining regulatory death mechanisms in AMs are scarce, with most basic 
research on RCD effects in lung disease focusing on alveolar epithelial cells, endothelial cells, and in a broader sense, 
macrophages. In recent years, there are still many unknowns in RCD of AMs research have been identified, such as 
ferroptosis, parthanatos, and lysosome-dependent cell death, which have not been the focus of this review. We anticipate 
that future studies will address these knowledge gaps. However, some studies have demonstrated the unique performance 
of AMs in RCD pathways, which confirms the considerable research potential in this area. Additionally, ALI/ARDS 
disease processes are rapid and variable, and identifying which RCD pathways are predominant at different stages will be 
critical when determining precision and personalized therapies.

In conclusion, we must focus on AMs roles in maintaining healthy lung homeostasis and how they affect inflamma-
tory responses and tissue repair via RCD pathways in pathological states. This strategy should provide new concepts for 
treating ALI/ARDS and other lung disease.
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