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Introduction: The rapid growth of flexible and wearable electronics has created a need for materials that offer both mechanical 
durability and high conductivity. Textile electronics, which integrate electronic pathways into fabrics, are pivotal in this field but face 
challenges in maintaining stable electrical performance under mechanical strain. This study develops highly stretchable silver multi- 
walled carbon nanotube (Ag-MWCNT) composites, tailored for screen printing and heat-transfer methods, to address these challenges.
Methods: Silver flakes dispersed in a thermoplastic polyurethane (TPU) matrix formed the base composite, which was initially 
evaluated under tensile and cyclic stretching conditions. Resistance drift observed in these tests prompted the incorporation of multi- 
walled carbon nanotubes (MWCNTs). Leveraging their high aspect ratio and conductivity, MWCNTs were homogenized into the 
composite at varying concentrations. The resulting Ag-MWCNT composites were assessed through cyclic stretching and thermal 
shock tests to evaluate electrical and mechanical performance.
Results: Incorporating MWCNTs improved composite performance, reducing resistance change amplitude by 40% and stabilizing 
resistance within 2–8 Ohms under mechanical stress. These materials demonstrated superior electrical stability and durability, 
maintaining consistent performance over extended use compared to Ag/TPU alone.
Discussion: This study highlights the critical role of MWCNTs in enhancing the reliability of conductive composites for textile 
electronics. By addressing resistance drift and stabilizing electrical properties, these advancements enable more robust and long-lasting 
wearable technologies. The demonstrated feasibility of combining screen-printing and heat-transfer techniques provides a scalable 
approach for manufacturing flexible electronics, paving the way for further innovation in industrial applications.
Keywords: stretchable electronics, wearables, Ag-MWCNT composite, screen printing, textile electronics, IoT

Introduction
With the advancement of personal electronics, there is a growing demand for mechanically durable and flexible electronic 
systems and stretchable conductors and signal pathways.1–4 Over the years, numerous methods have been developed for 
manufacturing stretchable electronic systems. Based on a review of the existing solutions, two leading concepts for 
producing stretchable structures can be observed.

The first method involves a design-oriented approach to impart complex shapes to a structure in 3D or 2D form, such 
as spirals, accordions, coils, or meanders.5–13 These shapes aim to mitigate and temporally offset the adverse effects of 
material stress. However, this approach has a significant drawback in that it consumes more space and material, which is 
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undesirable given the increasing demand for mass reduction, cost efficiency, and component integration in electronic 
systems.

The second method focuses on applying, developing, and modifying material properties, primarily composite 
materials, to ensure appropriate electrical and mechanical properties in response to longitudinal deformation.14–20 

These methods can be combined to improve mechanical strength, electric properties, and longevity.
In recent years, carbon-based nanostructures, such as carbon nanotubes (CNTs), have gained significant attention as 

additives in conductive pastes. These materials are known for their exceptional electrical conductivity, mechanical 
strength, and high aspect ratios, making them ideal for enhancing the performance of composites under mechanical 
stress. By forming secondary conductive networks within composites, carbon nanotubes bridge gaps between conductive 
fillers such as silver flakes, improving both the conductivity and mechanical resilience of the material.21,22 However, 
achieving uniform dispersion and functionalization of these nanomaterials remains a critical challenge. Inadequate 
dispersion can result in agglomeration, reducing the efficiency of the conductive network and compromising mechanical 
properties.

Creating electrically conductive pastes faces several challenges, including balancing conductivity with mechanical 
flexibility, ensuring stability under mechanical deformation, and minimizing resistance drift over time. Additionally, 
conductive pastes often require high curing temperatures, which limit their compatibility with heat-sensitive substrates 
like textiles. Variability in paste formulation and manufacturing processes can also result in inconsistent performance, 
further complicating large-scale adoption in wearable and flexible electronics.22–24

Considering the continuous evolution of the Internet of Things (IoT) and the Fourth Industrial Revolution (4IR), 
coupled with the emergence of textile and stretchable electronics,25–28 there is a notable gap in the literature regarding 
manufacturing such electronics using intermediate printing with thermal transfer.29–32 This method can offset the 
drawbacks of direct printing by increasing the reliability and ease of manufacturing. Therefore, this study aims to 
address this gap by developing novel composites for stretchable electronics on textiles and conducting research to 
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analyze the influence of different compositions on electrical and mechanical parameters. It aims to devise methods to 
improve mechanical properties without compromising electrical conductivity.

Materials and Methods
Materials
This study examined six conductive printing pastes: five commercial pastes, NR_1-5, and a custom composition, NR_6. 
Table 1 summarizes the key characteristics of the composites, with the custom composition highlighted in bold. The 
developed printing composition was fabricated using commercial silver flakes AX 20LC with an average diameter of 
approximately 2 µm (Amepox Microelectronics, Poland) and thermoplastic polyurethane (TPU) Elastollan 1170A with 
a density of 1.18 g/cm3 (BASF, Germany). TPU was dissolved in a 1:2 mixture of tetrahydrofuran (THF) and N, 
N-dimethylformamide (DMF) (Carl Roth GmbH + Co. KG, Germany).

Multi-walled carbon nanotubes (MWCNTs) were produced using the floating catalyst chemical vapor deposition (FC 
CVD) method using a reactor at the Center for Advanced Materials and Technologies (CEZAMAT, Warsaw University of 
Technology, Poland)), with Ferrocene serving as catalyst material. The MWCNTs had diameters ranging from 40 to 180 
nm and a length of 160 µm. Carbon nanotubes were deagglomerated using a MALIALIM® SC-0505K surfactant (NOF 
EUROPE GmbH, Germany).

SPTN 150 Sicoplast Plastisol paint (SICO, Poland) was used as a transfer layer on a textile substrate during the heat- 
transfer process. Using direct screen printing, the samples were printed on stretchable TPU foil (Adhesive Films, Inc., 
USA). This substrate consisted of a laminated layered structure developed to produce stretchable medical sensory 
devices. In the lamination process, a high-quality TPU film with a constant thickness and smooth surface with low 
roughness was layered on a rigid PET foil, which allowed defect-free, repeatable patterns to be printed in a controlled 
manner. After curing the composite layers, low-temperature delamination of the substrate allowed for the formation of 
conductive layers on the highly elastic films. The method of indirect screen printing with a heat-transfer process uses two 
types of substrate: matte 2C-CP transfer film (Texo Trade Services, The Netherlands) and cotton textiles with 140 g/m2 of 
grammage.

Methods
Fabrication of Custom Ag/TPU Composition
A custom Ag/TPU paste was prepared by combining silver flakes with TPU and dissolving it in a 1:2 ratio mixture of 
THF and DMF. The solution was homogenized using a speed mixer Kakuhunter SK-350TII (Shashin Kagaku Co., Ltd., 
Japan) and rolled in a three-roll mill (Exakt 80E, EXAKT Advanced Technologies, Germany) with silicon carbide (SiC) 
rolls with a gap of 5 μm between the rolls as displayed in diagram in Figure 1. The composition of the paste ensured that 
the rheological properties were appropriate for the selected printing technique, that is, screen printing.

Fabrication of Ag+CNT/TPU Compositions and Samples
Carbon nanotubes (CNTs) are nanomaterials with good electrical conductivity, excellent mechanical properties, and 
a high aspect ratio. Therefore, they are used in polymer composites that undergo significant mechanical deformations to 

Table 1 A Summary of the Key Characteristics of Silver Conducting Pastes Applied Using Indirect Printing

Silver 
Conducting 
Paste

Viscosity 
[mPa·s]

Functional Phase 
Content [%]

Sheet Resistance 
[Ω/sq.]

Density 
[kg/l]

Minimum Curing 
Temperature [°C]

Curing Time 
[min]

NR_1 14,500 69.0 <0.01 2.08 120 10

NR_2 12,000 74.6 <0.02 2.56 93 15

NR_3 12,500 60.0 ≤0.015 2.14 120 15

NR_4 10,000–50,000 70–80 <0.03 1.5–2.5 100–120 15–30

NR_5 26,000–30,000 >82.0 0.025 ND 125 15–30

NR_6 12,000–18,000 70.0 <0.03 2.1 120 15
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act as additional conductive network elements. This increases the number of connections between silver flakes and 
accelerates the flow of electrons.33–35

The motif described in the literature of bridging silver flakes with carbon nanotubes has been employed to stabilize 
the electrical parameters (by eliminating unfavorable resistance drift) of conductive silver composites produced by 
indirect printing on textile substrates.36

A paste with a hybrid functional phase consisting of commercially available silver microflakes AX 20LC (Amepox 
Microelectronics, Poland) combined with carbon nanotubes (µAg + CNT) was developed. Carbon nanotubes have been 
functionalized by the addition of 5% by weight of MALIALIM® SC-0505K surface-active agents. In the conductive 
composition, which consisted of a TPU matrix with 70% by weight silver flakes, functionalized multi-walled carbon 
nanotubes were incorporated at concentrations of 0.05%, 0.1%, and 0.2% by weight of the entire composite mixture.The 
compositions were then homogenized using three roll mill as displayed on Figure 2. Afterwards, the composition was 
printed on cotton fabrics using an indirect printing method involving a heat-transfer process.

Application of Composite Layers
The composite layers were fabricated using a screen-printing technique with an Aurel C920 screen printer (Aurel 
Automation, Italy) on polyester screens with a purposed design with a density of 77T and using a squeegee with 75H 
hardness. First, the conducting layers were printed onto the transfer film and dried at 120 °C for 20 min in an SLW 115 
STD dryer (POL-EKO Aparatura sp.k., Poland). The transferred plastisol layer was then printed and dried at 130 °C for 
5 min. The heat-transfer process was conducted using a Secabo TC7 membrane heat press (Nepata Vertrieb GmbH, 
Germany) with medium pressure at 180 °C for 30s onto the textile substrate. Once the structure had cooled, the transfer 
film was removed, leaving the layer intact and well-combined with the textile substrate. The whole process was displayed 
in Figure 3.

Using polyester screens with a density of 70T and the same silver pastes, the samples were printed directly on to 
stretchable TPU foils and dried at 120 °C for 15 min as shown on Figure 4.

Figure 1 The diagram of the Ag/TPU composition manufacturing process.

Figure 2 The diagram of the Ag/MWCNT composition manufacturing process.
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Characterization
Scanning electron microscopy (SEM) was conducted using a Hitachi SU8230 (Hitachi High-Tech Europe GmbH, 
Krefeld, Germany) instrument with an accelerating voltage of 7.0 kV and an upper secondary electron detector.

Transmission electron microscopy (TEM) was conducted using an LEO 912 Omega (LEO Elektronenmikroskopie 
GmbH, Oberkochen, Germany) instrument. Samples were prepared by diluting 0.1 g of carbon nanotubes functionalized 
with surface-active agents in 10 mL of acetone and shaking vigorously by hand until evenly distributed.

Electrical measurements were performed using a digital meter with a range of up to 40 MΩ. As an unambiguous 
measurement of electrical parameters, the sheet resistance expressed in ohms per square (Ω/□) was calculated by 
multiplying the measured resistance by the ratio of the width to length of the measured track.

Mechanical measurements are essential for the application of printed polymer composites as signal paths in personal 
electronics and wearable devices.

The mechanical properties were assessed by establishing the influence of tensile testing and cyclic stretching on the 
electrical parameters of the structure, and tests were conducted using a fatigue-testing machine. Tensile testing involved 
stretching the sample at a rate of 0.9 cm/min until rupture, with simultaneous measurement of the resistance of the 
sample. Cyclic stretching consisted of subjecting the sample to 200 cycles of 10% elongation at a stretching speed of 
30 cm/min without stopping at the ends while concurrently measuring the resistance.

An accelerated aging process in a thermal shock chamber was induced to assess the stability of the obtained results 
over time. Conductive paths created using direct and indirect screen printing were subjected to 400 h of alternating cycles 
in chambers set at –40°C and +120 °C. Subsequently, the mechanical properties of the samples were re-examined.

Results and Discussion
SEM and TEM Imaging
The SEM images in Figure 5 depict the layers printed with composites NR_1–6. In all these composites, silver flakes 
were utilized as conductive particles. The functional phase consisted of silver flakes with sizes ranging from 0.5 to 
10 µm. Large flakes, approximately 10 µm in size, dominate in all compositions, forming a dense and effective 
conductive network. Additionally, smaller flakes, with an average diameter of 2–5 µm, are present in significant 
quantities. These smaller flakes play a crucial role in enhancing the layer’s conductivity.

In the image of composition NR_2, a fine fraction of particles smaller than 1 µm with irregular shapes can also be 
observed. Differences in the shape and size of the functional materials used, likely resulting from variations in the 
manufacturing processes of the silver fillers, may contribute to differences in the conductivity of the composite layer and 

Figure 3 The diagram of the process of manufacturing samples on textile substrate.

Figure 4 The diagram of the process of manufacturing samples on TPU substrate.
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the amplitude of changes in its conductivity during stretching. The images also confirm that the silver flakes are 
homogeneously distributed throughout the composites.

Samples printed with a composite consisting of 70% by weight of silver flakes and 0.2% by weight of multi-walled 
carbon nanotubes were subjected to cyclic stretching. The structure of the layer after these tests is shown in the SEM 
images in Figure 6. In the 10 µm scale SEM image in Figure 6(A), there are some visible cracks, which are the result of 
cyclic mechanical loads of low intensity. However, the fractures and gaps do not result in a loss of conductivity due to 
bridge formation between silver flakes by carbon nanotubes, as depicted in the 1 µm scale SEM image shown in 
Figure 6(B).

Small flakes present in used silver microflakes improve the electrical conductivity of the composite but do not 
necessarily enhance its stretchability, as larger flakes play a crucial role in maintaining the electrical network during 
deformation. Therefore, a multimodal distribution of flakes within the composite increases the number of electric 

Figure 5 The SEM images of layers printed with NR_1–6 pastes.

Figure 6 The SEM images of layers printed with Ag/CNT paste; (A) structure of the layer printed with Ag/CNT paste in 10 μm scale; (B) SEM image showing CNT bridge 
formation between silver flakes.
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connections while also enhancing packing density. This effect is further strengthened by the inclusion of CNTs, which act 
as bridging elements between conductive particles.

The TEM images in Figure 7 depict the carbon nanotubes used in preparing the Ag-MWCNT composites. Despite 
functionalization with a surfactant agent, the nanotubes still form clumps of agglomerates, which can hinder their even 
dispersion within the Ag/TPU composite. However, a sufficient number of untangled CNTs are present to function 
effectively within the prepared composite. Employing a more effective deagglomeration method could further improve 
the formation of connections between the silver flakes, enhancing the composite’s overall performance.

Sheet Resistance Results
Surface resistance measurements of layers made on a transfer substrate and, after the heat-transfer process, onto a textile substrate 
revealed that this process is not noninvasive for all investigated compositions. As Table 2 reveals, pastes numbered 1, 2, 4, and 5 
exhibited an increase in measured resistance ranging from 29–310% after the heat-transfer process. Composition NR_3 proved to 
be insensitive to the high temperature and pressure involved in transfer to the textile substrate. In the case of custom composition 
based on thermoplastic PU (NR_6 – highlighted in bold in Table 2), a decrease in resistance of over 60% was observed after the 
heat-transfer process. The measurement results indicate that, by using a plastisol transferring layer and heat-transfer process, it is 
possible to consistently create prints on textile substrates that are characterized by good flexibility, and electrical properties.

Tensile Testing
The effect of sample elongation on the resistance of the layer was examined using tensile testing. The research revealed 
that, for each of the investigated compositions, the resistance exponentially increased with an increase in elongation, as 
shown in Figure 8.

Figure 7 The TEM images of CNT samples in (A) 500 nm and (B) 200 nm scale.

Table 2 The Impact of the Heat Transfer Process on the Resistance of Conductive Paths Applied on Textile 
Substrate

Silver Conducting Paste Sheet Resistance on  
Transfer Film [Ω/sq.]

Sheet Resistance on Textile  
[Ω/sq.]

Change in Resistance [%]

NR_1 0.042±0.003 0.054±0.004 +29

NR_2 0.058±0.002 0.098±0.005 +69

NR_3 0.044±0.002 0.044±0.002 0
NR_4 0.043±0.002 0.069±0.004 +60

NR_5 0.056±0.002 0.23±0.02 +310

NR_6 0.27±0.03 0.10±0.01 –63
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During stretching, both the number of contacts between conductive particles and the cross-section and length of the 
conductive pathway undergo significant changes. These changes collectively influence the shape and behaviour of the 
resistance curve as a function of elongation. Typically, the resistance curve exhibits an exponential trend, driven by the 
increasing distance between particles in the functional phase as elongation progresses. The objective, however, is to 
achieve a resistance change that remains linear over selected ranges of elongation, ensuring predictable and stable 
electrical performance under mechanical stress in such area.

The maximum elongation values and dynamics of the resistance changes depend on the composition type and layer 
printing method. The maximum elongation values were determined as the elongations above which a rapid increase in 
path resistance occurred, and these values for each composition are presented in Table 3.

An analysis of the obtained results shows that, for the four investigated pastes, including the custom composition, the 
mechanical resistance of the layer increases owing to the application of thermocompression. The most significant 
difference in maximum elongation, from 3% to 26%, was observed for paste NR_2. The highest value of maximum 
elongation on both substrates (40% on TPU film and 60% on cotton substrate) was exhibited by the custom composition 
NR_6 (highlighted in bold in Table 3).

Figure 8 Graphs showing the result of tensile testing – the correlation between the elongation and the resistance of conductive paths printed on (A) TPU foil and (B) 
textile substrate.
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Cyclic Stretching
The results of fatigue testing demonstrated that the types of composition and printing method significantly influenced the 
electrical parameters of the layers subjected to cyclic stretching. The dependencies obtained for the TPU films are shown 
in Figure 9. For clarity, pastes with maximum elongation during tensile testing of less than 20% were not included in the 
graph. Layers printed with paste NR_2 (maximum elongation, 5%) were damaged in the initial cycles, whereas layers 
from paste NR_3 (maximum elongation, 17%) experienced damage after approximately 10–15 fatigue test cycles. For the 
remaining samples, an increase in resistance amplitude was observed in successive cycles. The most stable results were 
achieved for NR_1, and the least stable for the custom composition NR_6. Thus, it was demonstrated that, in the case of 
compositions fabricated by the direct printing method on a stretchable TPU film, a high value of maximum elongation 
does not ensure stable electrical parameters under low-intensity cyclic loads.

Resistance graphs during cyclic stretching of the samples heat transferred to the cotton substrate are shown in 
Figure 10. Based on these results, it can be concluded that, for pastes NR_1 and NR_4, the thermal compression process 
had a minimal impact on the resistance change of the composite layers compared with the samples on the TPU foil. 
However, for paste NR_5, a significant acceleration of the layer degradation process was observed. In the case of other 

Table 3 Comparison of Maximum Elongation Values for Composite Layers Applied with Indirect and Direct 
Screen-Printing Methods

Silver Conducting Paste Maximum Elongation Value [%]

Direct Screen Printing on TPU Foil Indirect Screen Printing on Cotton Textile

NR_1 17 10
NR_2 3 26

NR_3 16 23

NR_4 33 47
NR_5 24 10

NR_6 40 60

Figure 9 Graph showing the resistance of conductive paths printed on the TPU foil during cyclic stretching.
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compositions, a positive effect of changing the printing method on fatigue durability was observed. Composition NR_2, 
with a very low resistance to cyclic stretching on the TPU foil, exhibited a significant improvement on the textile 
substrate, undergoing damage after approximately 80–90 cycles, but was still characterized by high and increasing 
amplitude of resistance changes over time. The best results and significant improvement compared to the layers on TPU 
foil were observed for the commercial compositions NR_3 and NR_1, as well as for the custom composition NR_6. For 
all tested pastes, after completing fatigue testing, a stabilization of resistance over time was observed at a level much 
lower than the readings in the last cycle but significantly higher than the initial values. The custom composition NR_6 
based on silver flakes in a TPU matrix showed a higher resistance drift over time; however, the upward trend stabilized, 
and the layer exhibited a visibly smaller amplitude of resistance change compared with commercial compositions, 
making it a promising material for further research.

Mechanical Measurements After Aging in a Thermal Shock Chamber
Tensile testing was repeated after accelerated aging in the thermal shock chamber. The obtained results, along with 
a comparison with the initial values of maximum elongation, are presented in Table 4. Based on these results, it can be 

Figure 10 Graph showing the resistance of conductive paths printed on the textile substrate during cyclic stretching.

Table 4 Comparison of Maximum Elongation Values for Composite Layers Applied with Indirect and Direct 
Screen-Printing Methods After Aging in a Thermal Shock Chamber

Silver Conducting Paste Maximum Elongation Value [%] (Change [%])

Direct Screen Printing on TPU Foil Indirect Screen Printing on Cotton Textile

NR_1 22 (+30) 12 (+20)
NR_2 3 (0) 17 (–34)

NR_3 <5 (–70) 29 (+25)

NR_4 40 (+20) 3 (–90)
NR_5 28 (+16) 5 (–50)

NR_6 75 (+87) 70 (+16)
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concluded that, in most cases, commercial pastes are susceptible to changes resulting from cyclic thermal shocks. It was 
also demonstrated that, depending on the applied composition, the chosen printing method significantly influenced the 
observed changes in the maximum elongation values due to material aging. At the same time, it was noted that there is no 
regularity in the observed changes in maximum elongation values.

Composites NR_2, NR_4, and NR_5 exhibited a slight influence of the aging process on the change in the maximum 
elongation values of the samples made on the TPU film. However, in the case of samples prepared using the indirect 
method, significant deterioration of this parameter was observed. For composition NR_3, we observed the opposite 
situation—samples made on the textile substrate remained insensitive to tests in the thermal shock chamber, while 
samples made by the direct printing method showed a decrease in maximum elongation value by 70%. The custom- 
composition NR_6 exhibited the highest elongation values before the loss of conductivity. The observed improvement in 
the parameters for paste NR_6 may have resulted from the heating of the composite layers, causing the moisture 
absorbed from the surroundings by the TPU matrix to evaporate. The custom composition based on silver flakes and TPU 
matrix exhibited a maximum elongation more than 240% greater than the best among investigated commercial pastes, 
confirming the potential for further research.

Figure 11 Graphs showing the resistance during cyclic stretching of conductive paths printed with Ag+CNT composites on the textile substrate.
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Cyclic Stretching for Ag+CNT Samples
Samples indirectly screen-printed with a composite based on silver flakes with the addition of multi-walled carbon 
nanotubes (MWCNTs) underwent cyclic mechanical exposure, and the results are shown in Figure 11. The analysis of the 
results indicates that even a small addition of functionalized MWCNTs in the amount of 0.05% by weight allows for the 
stabilization of the electrical parameters of the composite over time. It was also demonstrated that the content of 
MWCNTs at the level of 0.2% by weight allowed for the complete elimination of resistance drift and reduced the 
amplitude of resistance changes by up to 40%. A literature review revealed a lack of reports on composites designed for 
printing conductive paths on textile substrates with similar electrical parameter stability, fully compatible with the 
indirect printing technique and heat-transfer process.

Conclusions
Based on initial testing, a set of Ag/TPU composites with different amounts of Ag microflakes was prepared. Each 
composite was characterized in terms of suitability for screen printing and homogeneity. The composites were then 
printed on textiles using two different methods: direct printing and heat transfer printing. In both methods, the electrical 
and mechanical properties were tested during rest, single stretching, and cyclic stretching.

From all tested samples, the best results were achieved for composite NR_6, which contained 70% wt. of Ag. It 
achieved maximum elongation of 60%, while maintaining sheet resistance of 0.100 Ω/sq. However, although the 
developed composite was applicable to stretchable electronics, it exhibited a noticeable drift during cyclic stretching.

A new composite was proposed and prepared by adding MWCNTs to improve the stability and reliability of 
MWCNTs. This modification eliminated the drift of resistance values during cyclic stretching, while also lowering the 
amplitude of resistance changes by 40%, to 2–8 Ohm. The study demonstrated the feasibility of creating electrically 
stable conductive paths on textile substrates. The use of screen printing combined with the heat-transfer method allowed 
the process to be automated and significantly reduced the number of defects and waste. The use of small amounts of 
MWCNT as reinforcing additives stabilized the properties of the layer and extended its lifespan.
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