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Abstract: Silica nanoparticles (SiNPs) are widely used in biomedical fields, such as drug delivery, disease diagnosis, and molecular 
imaging. An increasing number of consumer products containing SiNPs are being used without supervision, and the toxicity of SiNPs 
to the human body is becoming a major problem. SiNPs contact the human body in various ways and cause damage to the structure 
and function of genetic material, potentially leading to carcinogenesis, teratogenicity and infertility. This review summarizes SiNPs- 
induced genetic and epigenetic toxicity, especially to germ cells, and explore their potential mechanisms. SiNPs cause genetic material 
damage mainly by inducing oxidative stress. Furtherly, the molecular mechanisms of epigenetic toxicity are discussed in detail for the 
first time. SiNPs alter DNA methylation, miRNA expression, histone modification and inhibit chromatin remodeling by regulating 
epigenetic-related enzymes and transcription factors. This review is beneficial for investigating potential solutions to avoid toxicity and 
provide guidance for better application of SiNPs in the biomedical field. 
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Introduction
Silica nanoparticles (SiNPs) are among the three most commonly used nanomaterials in the world. Owing to their 
controllable particle size, large specific surface area, and presence of silanol groups, SiNPs exhibit unique physicochem-
ical properties and excellent biocompatibility.1 In the biomedical field, SiNPs have been introduced into the human body 
for drug delivery, disease diagnosis and molecular imaging.2–4 SiNPs can contact the human body through intravenous 
injection, lung inhalation, skin contact and gastrointestinal routes and have toxic effects on many organs, including the 
lungs, liver, heart, brain, spleen, and kidneys.5–10 As an increasing number of consumer products containing nanomater-
ials are used without supervision, the toxicity of nanomaterials to the human body is becoming a major problem.

SiNPs are mainly divided into two types: crystalline SiNPs and amorphous SiNPs. Crystalline SiNPs are released 
from the natural environment and from construction and industrial processes. Amorphous SiNPs are divided into 
mesoporous SiNPs and nonporous SiNPs on the basis of the presence or absence of pores.3 Amorphous SiNPs are 
widely used in food, cosmetics, the automotive industry, and construction, among other industries.11 The commonly 
reported toxicities of SiNPs are respiratory toxicity, immunotoxicity, cardiovascular toxicity, etc.12–14 Therefore, it has 
become necessary to understand the effects and hazards of SiNPs upon exposure to the human body. Recently, the genetic 
and epigenetic toxicity of SiNPs has attracted widespread attention and are important parts of evaluating SiNPs’ safety. 
Any abnormal changes in gene information can affect gene expression and pose a threat to human health.

The DNA sequence is the basis of inheritance and the skeleton of genes.15 Genotoxicity refers to genetic material damage 
at the base, molecular, and chromosome levels, including gene mutations, DNA damage and chromosomal damage.16 

Epigenetics refers to heritable changes in gene expression that occur without altering the DNA structural sequence, including 
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modifications of DNA or chromatin structures or proteins related to them.17 Therefore, genetic and epigenetic abnormalities 
may affect gene expression and induce toxicity. Genetic and epigenetic toxicity can cause harm, such as cancer, teratogeni-
city, and infertility, by affecting biological genetic information, resulting in serious health consequences. In this review, we 
summarize the genetic and epigenetic toxicity induced by SiNPs, elucidate the potential adverse effects of such toxicity 
(Figure 1), and further discuss the potential underlying molecular mechanisms involved. Considering the genetic effects of 
reproductive system toxicity on offspring, we paid special attention to genetic and epigenetic toxicity in the reproductive 
system. This review provides guidance for evaluating the safety of SiNPs and preventing their potential adverse effects on the 
human body so that they can be better applied in the biomedical field in the future.

Figure 1 Genetic and epigenetic toxicity and potential risks of silica nanoparticles. SiNPs enter the human body and induce genetic material damage and abnormal epigenetic 
changes, causing potential risks such as carcinogenesis, teratogenesis and infertility.
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Genetic and Epigenetic Toxicity of SiNPs Causes Potential Risks
SiNPs Increase the Risk of Cancer Occurrence
The occurrence of cancer is closely related to genetic mutations. Gene mutations affect the steady-state development of 
key cell functions, causing uncontrolled cell growth and driving the occurrence of cancer.18 These cancer-driving genes 
include oncogenes and tumor suppressor genes, which are affected by point mutations, translocations or copy number 
changes.19 Previous studies have shown that NPs are harmful components of pollution particles in the air.20 Inhaling 
tungsten carbide cobalt NPs can lead to “hard metal lung disease”, doubling the risk of lung cancer.21 Long-term 
exposure to inhalable crystalline silica can induce silicosis and may even lead to lung tumors.22 Amorphous SiNPs 
increase the frequency of gene mutations and induce the malignant transformation of some somatic cells, leading to the 
loss of growth inhibition signals or cell dysfunction.23–25 Therefore, the genotoxicity of SiNPs causes precancerous 
transformation and increases the risk of cancer. However, whether genetic material damage caused by SiNPs leads to 
cancer is related to the dose, exposure time, cell sensitivity, etc.

SiNPs Cause Embryonic Malformation and Behavioral Changes
Embryonic development is tightly regulated by genes, and DNA damage is considered the main mechanism leading to 
abnormalities in embryonic development.26 SiNPs may penetrate the placental barrier, accumulate in fetal tissue, induce 
DNA damage, and lead to embryonic developmental abnormalities, including pericardial and yolk sac edema, blood clots 
and delays in embryonic development.27,28

A low concentration of SiNPs does not cause changes in the developmental morphology of zebrafish embryos, but it 
causes behavioral changes in embryonic light movement and the larval motor response.29 However, SiNPs can enrich 
pollutants. When absorbing environmental pollutants such as cadmium and tetrabromobisphenol A, SiNPs amplify the 
teratogenic toxicity of these pollutants and cause abnormal embryonic development.30–32 In addition, large SiNPs are 
blocked by placental chorionic villi and do not cause embryonic development abnormalities, whereas small SiNPs, such 
as those that are ≤ 70 nm, can penetrate the placental barrier and accumulate in the placenta, fetal liver, and brain, causing 
malformations of the embryo.33 Therefore, exposure to small SiNPs should be avoided during pregnancy.

SiNPs Increase the Risk of Infertility
DNA damage and histone modification abnormalities in germ cells induced by SiNPs can lead to infertility.34,35 Many 
studies have reported the negative impact of SiNPs on fertility.36,37 In the male reproductive system, SiNPs can penetrate 
the blood‒testis barrier and accumulate in the testes and epididymis, leading to abnormal sperm morphology, decreased 
sperm count, and spermatogenesis dysfunction.34,36 In the female reproductive system, SiNPs are internalized and 
accumulate in the ovaries, leading to granulosa cell apoptosis and follicular atresia, impairing the survival and devel-
opmental ability of ovarian cells.32,37 One study revealed that damage caused by Stöber SiNPs to the reproductive system 
could be reversed after exposure was stopped, suggesting that the adverse effects of SiNPs may be temporary.35

Other Diseases
The genotoxicity induced by SiNPs may also promote the occurrence of autoimmune diseases, endocrine diseases, etc. 
For example, SiNPs damage macrophage DNA and chromosomes, induce immune system toxicity, and may cause 
immune system diseases.13 DNA hypermethylation leads to abnormal insulin secretion and promotes the occurrence of 
type 2 diabetes mellitus.38

The Genetic and Epigenetic Toxicity of SiNPs
Genetic Material Damage
SiNPs cause genetic material damage, which has been reported to occur mainly in human lung epithelial cells, 
fibroblasts, and germ cells.35,39 SiNPs can cause damage to genetic material at the base, DNA molecular and chromo-
somal levels, leading to genotoxicity. DNA damage induced by SiNPs includes gene mutation, oxidative modification of 
bases, or DNA strand breaks.40–44 For example, exposure to spherical amorphous-SiNPs causes gene mutation and 
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comet-like nuclear changes (Figure 2A and D).41,45 Comet-like nuclear changes are caused by DNA breakage and 
migration away from the nucleus. In addition, SiNPs induce the phosphorylation of histone family member X (γ-H2AX), 
which is a specific biomarker of DNA double-strand breaks (Figure 2B and C).43 The type of DNA damage is influenced 
by the size of the NPs. Smaller NPs are prone to insertion into DNA molecules, causing base mismatch, whereas larger 
NPs tend to bind to the DNA strand, causing DNA strand breakage.46,47

In addition, DNA damage caused by NPs also includes abasic sites and DNA adducts. Graphite oxide induces abasic 
sites in DNA, ie, sites with neither a purine base nor a pyrimidine base.49 NPs with electrophilic groups, such as magnetic 
nanoparticles, combine covalently with DNA to form DNA adducts.50 However, whether SiNPs induce abasic sites and 
DNA adducts is unclear.

At the chromosome level, SiNPs induce chromosomal aberrations, including structural and numerical aberrations.51 

Amorphous SiNPs of four sizes (100 nm, 50 nm, 25 nm, and 10 nm) induce dose-dependent micronucleus frequency 
changes (Figure 2E).45 SiNPs may also cause chromosomal numerical aberration by inhibiting chromosome segregation 
or inducing whole chromosome loss in the cell division stage.52–54 In conclusion, SiNPs induce DNA and chromosomal 
damage, posing potential risks to the human body, such as cancer, deformities, and infertility.

Abnormal Epigenetic Changes
Changes in DNA Methylation
SiNPs can induce abnormal DNA methylation, regulate gene expression and cause toxicity. DNA methylation is 
currently the most widely studied epigenetic mechanism.55 DNA methylation inhibits gene expression by altering 
transcription factor binding and chromatin conformation.56 It regulates many cellular processes, including cell differ-
entiation, embryonic development, and gene transcription.57 Abnormal (high or low) methylation affects genomic 
stability and has many adverse consequences. Hypermethylation of specific promoter regions and global DNA hypo-
methylation are closely related to the occurrence of cancer. In addition, abnormal methylation can lead to autoimmune 
diseases, respiratory diseases, skin diseases, etc.38

SiNPs induce extensive DNA methylation changes in GC-2 cells, including 51.0% hyperdifferentially methylated 
regions and 49.0% hypodifferentially methylated regions.58 This abnormal DNA methylation leads to abnormal tran-
scription and translation, mitochondrial damage, and sperm apoptosis. SiNPs also induce abnormal DNA methylation 
changes in specific genes. SiNPs inhibit outer dense fiber 1 (Odf1) and Bcl-xl in spermatocytes by inducing Crem 
hypermethylation, leading to sperm bundle structure and spermatocyte apoptosis, thereby disrupting spermatogenesis.59 

Notably, abnormal DNA methylation induced by SiNPs can affect offspring. Prenatal exposure to high-dose food-grade 
SiNPs E 551 can lead to hypermethylation in the maternal and fetal liver, causing liver metabolic disorders and 
teratogenicity (Figure 3).60 Long interspersed element-1 (LINE-1) and Alu elements are important noncoding elements 
in the human genome, and changes in their methylation levels are closely related to the development of cancer and 
autoimmune diseases. SiNPs have been shown to induce DNA hypomethylation of Alu elements in HaCaT cells but have 
no effect on the DNA methylation levels of LINE-1.61 These findings suggest that the impact of SiNPs on DNA 
methylation is DNA sequence specific. However, the current research on the impact of SiNPs on DNA methylation is 
mostly based on in vitro experimental models, and further verification is needed to determine whether abnormal 
methylation occurs in vivo and causes corresponding adverse consequences.

Changes in microRNA Expression
MicroRNAs (miRNAs) can affect gene expression by binding to the 3ʹ untranslated region (3ʹ-UTR) of mRNAs to 
increase the degradation of posttranscriptional mRNAs or inhibit gene translation.62 miRNAs play important roles in cell 
differentiation, proliferation, apoptosis, and angiogenesis. SiNPs induce abnormal expression of miRNAs. The abnormal 
expression of these miRNAs leads to reproductive dysfunction, endothelial dysfunction, and even tumorigenesis.25,63–66

SiNPs induce abnormal miRNA expression in germ cells. These abnormal changes in miRNA expression interfere 
with DNA replication, DNA repair, fatty acid metabolism, and autophagy, resulting in damage to reproductive system 
function. SiNPs increase the expression of 10 types of miRNAs and decrease the expression of 5 types of miRNAs, 
which are functionally enriched in DNA replication and fatty acid metabolism, in GC-2 spd cells (Figure 4). Among 
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Figure 2 Genetic material damage induced by SiNPs. (A) Mutant frequencies in MEF-LacZ cells exposed to (a) 10-nm and (b) 30-nm spherical A-SiNPs. The 30-nm SiNPs increased the 
mutation frequency in a dose-dependent manner. *P < 0.05. Source: Park MVDZ, Verharen HW, Zwart E, et al. Genotoxicity evaluation of amorphous silica nanoparticles of different sizes 
using the micronucleus and the plasmid lacZ gene mutation assay. Nanotoxicology. 2011;5(2):168–181. reprinted by permission of the publisher (Taylor&FrancisLtd, http://www. 
tandfonline.com).41 (B) Effect of SiNPs on the expression of γ-H2AX in GC-2 cells after 24 h of exposure. γ-H2AX (marked with red arrows) is a biomarker of DNA strand breaks. 
Obvious γ-H2AX-positive staining was observed in the 25 and 50 μg/mL SiNPs groups. Source: Reprinted from Zhang J, Liu J, Ren L, et al. Silica nanoparticles induce abnormal mitosis and 
apoptosis via PKC-delta mediated negative signaling pathway in GC-2 cells of mice. Chemosphere. 2018;208:942–950. With permission from Elsevier.43 (C) Western blot analyses of γ- 
H2AX proteins in the ovaries of Balb/c female mice after exposure to SiNPs by intratracheal instillation. On the 15th day after the first dose, the expression of γ-H2AX significantly 
increased. On the 30th day after the first dose, the γ-H2AX level did not obviously differ among the groups. C, control group; L, 7 mg/kg SiNPs group; M, 21 mg/kg SiNPs group; H, 35 mg/ 
kg SiNPs group. *P < 0.05. Source: Reprinted with permission from Liu J, Yang M, Jing L, et al. Silica nanoparticle exposure inducing granulosa cell apoptosis and follicular atresia in female 
Balb/c mice. Environ Sci Pollut Res Int. 2018;25(4):3423–3434. Springer Nature.48 (D) Changes in the nuclear shape of HUVECs, as determined by the alkaline comet assay. The typical 
“comet” shapes of the cell nuclei were observed in the A-SiNPs group (exposed for 4 h). DNA damage was interpreted by the OTM. The OTM values revealed the dose- and size- 
dependent effects on DNA damage induced by SiNPs. *P < 0.05, **P < 0.01. Source: Reprinted with permission from Zhou F, Liao F, Chen L, Liu Y, Wang W, Feng S. The size-dependent 
genotoxicity and oxidative stress of silica nanoparticles on endothelial cells. Environ Sci Pollut Res Int. 2019;26(2):1911–1920. Springer Nature.45 (E) Chromosomal damage in HUVECs 
was detected via a cytokinesis-block MN assay. MNs in binucleated cells (marked with white arrows) exposed to A-SiNPs. A-SiNPs (exposed for 24 h) had dose-dependent effects on MN 
%. The results are presented as the percentage of micronucleated cells (MN%) per 1000 binucleated cells. *P < 0.05, **P < 0.01. Source: Reprinted with permission from Zhou F, Liao F, 
Chen L, Liu Y, Wang W, Feng S. The size-dependent genotoxicity and oxidative stress of silica nanoparticles on endothelial cells. Environ Sci Pollut Res Int. 2019;26(2):1911–1920. Springer 
Nature.45 MEF-LacZ, containing lacZ as a reporter gene; A-SiNPs, amorphous silica nanoparticles; γ-H2AX, histone family member X phosphorylation; OTM, olive tail moment; GC-2 
cells, spermatocyte lines; MN, micronucleus.
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Figure 3 Food-grade SiNPs (E 551) induce genome-wide DNA methylation changes in mothers and fetuses. (A) E 551 accumulated in maternal and fetal liver tissues, 
causing genome-wide DNA methylation changes in liver tissues after high-dose prenatal exposure. The methylation and altered expression of genes are related mainly to 
glycolipid metabolism, which impairs glucose tolerance in pregnant mice. E 551 has a risk of inducing metabolic disorders in both the maternal and fetal liver, leading to fetal 
resorption. (B) (a) Representative uterine morphology after E 551 exposure at GD19. The red arrows indicate that low-dose and high-dose E551 resulted in fetal 
resorption. (b) Normal fetal rates after E551 exposure. High-dose exposure decreased normal fetal rates. (c) Representative fetal and placental morphology at GD19. (d and 
e) Weights (d) and body lengths (e) of all fetuses in the control group (n = 14), low-dose E 551 group (n = 7), and high-dose E 551 group (n = 7). (C) Genomic 5-mC and 
5-hmC levels in the maternal liver and fetal liver, n=7 for each group. 5-mC levels increased in high-dose E 551-exposed livers. The 5-hmC levels in the maternal liver 
increased only in the high-dose E 551 group. *P < 0.05, ***P < 0.001, compared with the control group. Source: Reprinted from Zhan Y, Lou H, Shou R, et al. Maternal 
exposure to E 551 during pregnancy leads to genome-wide DNA methylation changes and metabolic disorders in the livers of pregnant mice and their fetuses. J Hazard 
Mater. 2024;465:133233. Copyright 2024, with permissions from Elsevier.60 GD19, gestational day 19; 5-methylcytosine; 5-hmC, 5-hydroxymethylcytosine.
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Figure 4 SiNPs-induced changes in the miRNA expression profile of GC-2 spd cells. (A) The expression levels of 15 miRNAs changed in GC-2 spd cells after SiNPs (5 μg/ 
mL, 24 h) exposure. The relative up- and downregulation of miRNAs are indicated by yellow and blue, respectively. (B) Percentages of differentially expressed miRNAs in 
GC-2 spd cells. Fifteen miRNAs (0.08%) were differentially expressed. Among them, 5 were upregulated (33.3%), and 10 were downregulated (66.7%). (C) Pathways 
associated with significantly up- and downregulated miRNAs according to the GO enrichment database. Top 30 significant GO terms for the 15 miRNAs. (a) Biological 
processes of upregulated miRNA target genes. Biological processes primarily involve small-molecule metabolic processes. (b) Cellular components of upregulated miRNA 
target genes. Cellular components primarily include intracellular components. (c) Molecular functions of upregulated miRNA target genes, which involve mainly nucleoside 
phosphate binding. (d) Biological processes of downregulated miRNA target genes, which primarily involve the regulation of tyrosine phosphorylation of the Stat1 protein. 
(e) Cellular components of downregulated miRNA target genes, which primarily involve the membrane. (f) Molecular functions of downregulated miRNA target genes, 
which involve mainly core promoter sequence-specific DNA binding. X-axis, negative logarithm of the P value (-LgP); the larger the number is, the smaller the P value. Source: 
Reprinted from Zhou G, Ren L, Yin H, et al. The alterations of miRNA and mRNA expression profile and their integration analysis induced by silica nanoparticles in 
spermatocyte cells. NanoImpact. 2021;23:100348. Copyright 2021, with permission from Elsevier.67 GC-2 spd cells, spermatocyte lines.

International Journal of Nanomedicine 2024:19                                                                                   https://doi.org/10.2147/IJN.S486858                                                                                                                                                                                                                       

DovePress                                                                                                                      
13907

Dovepress                                                                                                                                                           Zheng et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


them, miRNA-450b-3p inhibits cell cycle progression, and miRNA-138-1-3p may inhibit fatty acid metabolism.67 Zhao 
et al reported that SiNPs inhibit the expression of the DNA repair-related protein zinc finger CW-type and PWWP 
domain containing 1 (ZCWPW1) by increasing the expression of miRNA-5622-3p, leading to DNA repair failure in GC- 
2 spd cells.65 SiNPs have also been shown to upregulate miRNA-494, which ultimately causes autophagy dysfunction 
and spermatocyte death.68 Moreover, another study revealed that SiNPs downregulated miRNA-450b-3p expression to 
increase cytoskeletal protein expression, thus disrupting the mitochondrial structure and inducing cell apoptosis, 
ultimately inhibiting sperm development.64 Notably, the reproductive dysfunction caused by miRNA deregulation is 
caused by short-term exposure (less than 3 months) to SiNPs, and long-term effects have not yet been reported. This may 
be because long-term tracking and observation require a significant amount of time and manpower.

SiNPs activate the IL6R/STAT/TF signaling pathway by downregulating miRNA-451a, leading to endothelial 
dysfunction and thrombosis.66 In addition to causing dysfunction, abnormal miRNA expression may lead to severe 
consequences of tumorigenesis. Amorphous SiNPs affect ATP5H/SOD1 and EIF4G2/PAPPC1 gene expression through 
the upregulation of miRNA-3648/572/661 and downregulation of miRNA-4521, thereby promoting the occurrence of 
cancer.25 These findings suggest that these four miRNAs may be potential biomarkers of cancer and can serve as 
potential therapeutic targets for preventing the toxicity of SiNPs. However, the above studies are based on microarray 
data predictions and require wet experiments to demonstrate the interaction between identified genes and miRNA 
expression, as well as their impact on cell proliferation and apoptosis.

Changes in Histone Modifications
Chromosomes are composed of DNA and histones, which bind together. Histones are classified into five types: H1, H2A, 
H2B, H3, and H4. The N-terminal and C-terminal tails of histones can undergo posttranslational modifications, including 
acetylation, ubiquitination, phosphorylation, and methylation. The different histone modification methods determine the 
structural state of chromatin condensation or loosening and play a role in transcriptional regulation, replication, repair, 
and recombination.56 The abnormal modification of histones can lead to abnormal gene expression, which is closely 
related to the pathogenesis of cancer, neurodevelopmental disorders, and autoimmune diseases.38

SiNPs can induce abnormal states of ubiquitination, phosphorylation and acetylation of histones. SiNPs inhibit the 
ubiquitination of H2A and H2B in the sperm nucleus, leading to sperm production disorders (Figure 5A and B).35,69 

Histone phosphorylation is a key phenomenon in DNA damage and response at different stages of the cell cycle. SiNPs 
increase the phosphorylation of H2AX, causing the apoptosis of spermatocytes.35 In addition, SiNPs increase the 
acetylation levels of histones H3K9 and H3K56, leading to human lung epithelial cell apoptosis.70 Histone methylation 
is the most stable form of modification. It is involved in the activation and inhibition of transcription as well as in the 
compaction of chromatin. Nanoparticles, such as selenium nanoparticles, can induce abnormal histone methylation, 
which increases the methylation of histones H3K9 and H3K27.71 However, the impact of SiNPs on histone methylation 
has not yet been reported. This requires further exploration.

Inhibiting Chromatin Remodeling
Chromatin remodeling refers to the dynamic process of changing chromatin between concentrated and relaxed states and 
plays an important role in optimizing cell adaptation and body development.72 Chromatin remodeling regulates the 
accessibility of chromatin to transcription factors.73 This process is achieved through changes in the position and 
structure of nucleosomes. When remodeling is inhibited, it leads to abnormal gene expression and causes genotoxicity.

Chromatin remodeling occurs during spermatogenesis, in which more than 90% of the core histones in the nucleo-
some are successively replaced by testicle-specific histone variants, transition proteins (TNPs), and protamine (PRM).74 

Studies have indicated that nanoparticles may inhibit chromatin remodeling. Titanium NPs inhibit chromatin remodeling 
by reducing the expression of PRM1 and TNP2 in male mice.75 Gold NPs inhibit chromatin remodeling, resulting in 
increased chromatin instability.76

SiNPs inhibit chromatin remodeling in the haploid phase of sperm cells, hindering sperm cell differentiation and 
ultimately leading to a decrease in sperm quantity and quality (Figure 5C and D).69 Notably, after a 15-day withdrawal 
period, this damage disappeared, indicating that the sperm toxicity induced by SiNPs may be reversible. Whether this 
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Figure 5 SiNPs inhibit histone ubiquitination and chromatin remodeling. (A) SiNPs (20 mg/kg.bw) inhibited ubH2A/ubH2B protein expression in nuclear extracts of 
elongating spermatids from male ICR mice after intratracheal instillation for 35 days. After the 15-day withdrawal period, the ubH2A/ubH2B levels recovered. Source: 
Reprinted from Liu J, Li X, Zhou G, et al. Silica nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice. 
Environ Pollut. 2021;284:117446. Copyright 2021, with permission from Elsevier.69 (B) Western blot analyses of ubH2A/ubH2B in the nuclear extracts of germ cells from 
male ICR mice after exposure to SiNPs by intratracheal instillation every 3 days for 15 days. SiNPs inhibited the expression of ubH2A/ubH2B in a dose-dependent manner. 
The internal control protein was PCNA. Source: Reprinted from Liu J, Li X, Zhou G, et al. Silica nanoparticles induce spermatogenesis disorders via L3MBTL2-DNA damage- 
p53 apoptosis and RNF8-ubH2A/ubH2B pathway in mice. Environ Pollut. 2020;265(Pt A):114974. Copyright 2020, with permission from Elsevier.35 (C) TEM images showing 
a defect in DNA condensation in sperm heads after exposure to SiNPs (20 mg/kg.bw) for 35 days. After the 15-day withdrawal period, there was no significant difference in 
the amount of sperm nuclear chromatin. (a) Control group after 35 days. (b) SiNPs group after 35 days. (c) Control group after the 15-day withdrawal period. (d) SiNPs 
group after the 15-day withdrawal period. The black thick arrow indicates the less condensed chromatin in the sperm. Source: Reprinted from Liu J, Li X, Zhou G, et al. Silica 
nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice. Environ Pollut. 2021;284:117446. Copyright 
2021, with permission from Elsevier.69 (D) Effects of SiNPs on sperm quality. (a) Epididymal sperm morphology detected via sperm smears. The black arrows point to sperm 
folded at the neck, and the white arrow points to sperm with its head falling off. More sperm with abnormal morphology, including neck folding and head shedding, were 
observed in the 35 days SiNPs group than in the 35 days SiNPs +15 days recovery group. (b) Electron microscope image of the structure of each segment of the sperm 
flagella. The cross section of the middle piece includes the CP, OD, ODF and MS. The cross section of the principal piece contains the CP, OD, ODFs, and FS. The solid 
arrows represent abnormal structures. The sperm flagella were significantly damaged in the 35 days SiNPs group. Source: Reprinted with permission from Sang Y, Liu J, Dong 
X, et al. Silica nanoparticles induce male reproductive toxicity via Crem hypermethylation mediated spermatocyte apoptosis and sperm flagella damage. Environ Sci Pollut 
Res. 2024;31(9):13856–13866. Springer Nature.59 ubH2A, ubiquitinated H2A; ubH2B, ubiquitinated H2A; PCNA, proliferating cell nuclear antigen; bw, body weight; ICR 
mice, Institute of Cancer Research mice; CP, central pair; OD, outer doublet microtubules; ODF, outer dense fiber; MS, mitochondrial sheath; FS, fibrous sheath.
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reversible damage is cell-specific or environment-specific and when irreversible damage can be caused are unknown. 
SiNPs affect the maturation of oocytes and interfere with the meiotic division of ova.32 However, it is not yet clear 
whether the interference of SiNPs in ovum formation is caused by chromatin remodeling.

Genetic and Epigenetic Toxicity Mechanisms of SiNPs
As mentioned above, the genotoxicity of SiNPs mainly manifests as damage to genetic material and abnormal genetic 
information caused by abnormal epigenetic changes, affecting body development and causing related diseases. The 
possible molecular mechanisms are discussed below.

Genetic Material Damage
The oxidative stress damage caused by reactive oxygen species (ROS) in genetic materials is the main mechanism of SiNP 
genotoxicity.45,77 ROS may attack bases, deoxyribose or DNA main chains, resulting in nonbulky (nonhelix distortion) and 
bulky (helix distortion) damage.78,79 ROS may also attack chromosomes, causing chromosome breakage and fragmentation.

Mitochondrial dysfunction is one of the mechanisms of SiNP-induced oxidative stress damage in genetic material. On 
the one hand, owing to the silicon-bonded hydroxyl groups on the particle surface and the unsaturated bonds, SiNPs have 
a high oxidation capacity, which can induce the electron respiratory transmission chain on the inner membrane of 
mitochondria to produce ROS (Figure 6A).80,81 On the other hand, exposure to SiNPs may lead to the depletion of 
intracellular antioxidant defense systems, including antioxidant enzymes and reduced glutathione (GSH), resulting in the 
accumulation of ROS (Figure 6B).66,82 In vivo studies have shown that SiNPs reduce the activities of superoxide 
dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and induce excessive ROS production.83 The 
excessive production of ROS results in mitochondrial swelling and crista rupture (Figure 6C).84 Moreover, ROS also 
damage mitochondrial DNA, leading to a reduction in the mitochondrial membrane potential (MMP) and mitochondrial 
dysfunction.85 These changes cause defects in the transport of mitochondrial iron sulfur cluster proteins and the 
accumulation of Fe2+ in mitochondria, further aggravating oxidative stress damage.86 Therefore, a vicious cycle caused 
by SiNPs occurs between mitochondrial dysfunction and mitochondrial oxidative stress, further promoting the accumu-
lation of ROS in cells and damaging genetic material.

In addition to directly affecting mitochondrial function, amorphous SiNPs promote macrophage or neutrophil 
aggregation through inflammation and produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) by 
upregulating NADPH oxidase and nitric oxide synthase (NOS), which cause genetic material damage to cells at the site 
of inflammation (Figure 7).5,87

Regulatory Mechanism of DNA Methylation
DNA methylation refers to the transfer of a methyl group from S-adenosylmethionine to the fifth carbon of a cytosine 
residue to form 5-methylcytosine (5-meC) under the catalysis of DNA methyltransferases (DNMTs).55 Multiple 
mechanisms are involved in DNA methylation induced by SiNPs, including the regulation of DNMTs, ten-eleven 
translocation (TET) and DNA methylation substrates (Figure 8).

In mammals, there are three types of DNMTs: DNMT1, DNMT3a, and DNMT3b. DNMT1 is a DNA methylation 
maintenance factor that maintains DNA methylation patterns during replication. DNMT3a and DNMT3b are de novo 
synthesized DNMTs that transfer methyl groups to DNA. Generally, hypermethylation is related to the overexpression of 
DNMTs, whereas hypomethylation is related to a lack of DNMTs.88 SiNPs induce whole-genome hypomethylation by 
decreasing the expression of DNMT1 and DNMT3a in HaCaT cells (Figure 9A).89 Further investigation revealed that 
knockdown of DNMT1 restored the normal expression and promoter methylation levels of PARP-1, indicating that 
hypermethylation of the PARP-1 promoter induced by SiNPs is mediated by DNMT1.90 The food-grade SiNPs E 551 
slightly increased DNMT3a expression, leading to hypermethylation, which was subsequently inherited by the 
offspring.60 SiNPs may promote the transcription of DNMT3a and DNMT3b by activating the JAK2/STAT3 or Akt/ 
Src/STAT3 pathway, which can induce hypermethylation.91–95 SiNPs decrease DNMT1 and DNMT3a expression by 
activating JNK or PKC-δ to phosphorylate p53 or cause the cytoplasmic localization of p53, leading to 
hypomethylation.43,96–98
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DNA demethylation is mediated by DNA demethylases, which are referred mainly to as the TET protein family.99 

The TET family includes TET1, TET2, and TET3. Among them, TET1 can promote the oxidation of 5mC to 
5-hydroxymethylcytosine (5-hmC). Prenatal high-dose exposure to food-grade SiNPs resulted in a 1.8-fold upregulation 

Figure 6 SiNPs induce ROS production and disrupt mitochondrial structure. (A) ROS assay of hCECs exposed to 100 μg/mL MSiNPs or MSiNP-Ag+ for 
24 h. Immunofluorescence images of specific markers in hCECs, including intracellular ROS (red), DAPI (blue) and FITC (green), are shown. The ROS levels of hCECs 
increased in the MSiNP and MSiNP-Ag+ groups. Source: Reprinted with permission from Royal Society of Chemistry, Chen X, Zhu S, Hu X, et al. Toxicity and mechanism of 
mesoporous silica nanoparticles in eyes. Nanoscale. 2020;12(25):13637–13653. permission conveyed through Copyright Clearance Center, Inc.80 (B) SiNPs decreased the 
activities of SOD and GSH-Px in a dose-dependent manner in the aortic arch of Sprague‒Dawley rats after 30 days of exposure via intratracheal instillation. **P < 0.01. Source: 
Reprinted with permission from Feng L, Yang X, Liang S, et al. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly 
regulating the IL6R signaling pathway. Part Fibre Toxicol. 2019;16(1):16. (http://creativecommons.org/licenses/by/4.0/).66 (C) TEM image of mitochondrial morphology after 
exposure to SiNPs (50 μg/mL, 24 h). More aberrantly shaped mitochondria were observed (red arrow) in SiNPs group. The mitochondria in the SiNPs group were mainly short 
rod-shaped. Scale bars: 2 μm or 500 nm. Source: Reprinted with permission from Royal Society of Chemistry, Qi Y, Ma R, Li X, et al. Disturbed mitochondrial quality control 
involved in hepatocytotoxicity induced by silica nanoparticles. Nanoscale. 2020;12(24):13034–13045. permission conveyed through Copyright Clearance Center, Inc.84 MSiNPs, 
mesoporous SiNPs; MSiNPs-Ag+, silver ion-adsorbed mesoporous SiNPs; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; hCECs, primary human corneal 
epithelial cells; Mt, mitochondrion; ER, endoplasmic reticulum; Av, autophagic vacuole.
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of TET1 expression in the maternal liver, whereas low-dose and high-dose exposure significantly downregulated TET1 
expression levels in fetal liver tissue.60 At present, the specific mechanism by which SiNPs regulate TET1 is still unclear. 
Furthermore, no studies have reported the effects of SiNPs on the expression of TET2 and TET3, and future research on 
the mechanism of SiNP-induced DNA methylation is needed.

In addition to regulating related enzymes, SiNPs may block DNA as a substrate for DNMTs, resulting in abnormal 
DNA methylation. The ROS generated by SiNPs attack DNA to form 8-hydroxy-2ʹ-deoxyguanosine (8-OHdG), which 
inhibits DNA methylation of nearby cytosine bases to induce DNA hypomethylation. Another type of DNA oxidative 
damage product, 5hmC, can promote DNA demethylation, leading to DNA hypomethylation.100 Inflammation caused by 
SiNPs damages DNA,101–103 and damage products such as 5-chlorocytosine and 5-bromocytidine stimulate 5-meC to 
increase the binding of methyl-binding proteins, thus promoting abnormal hypermethylation.104

Regulatory Mechanism of microRNA Expression
miRNAs cause gene silencing by inhibiting mRNA translation or degrading mRNAs.105 Posttranscriptional regulation of 
gene expression by miRNAs is one of the key mechanisms of the epigenetic toxicity of SiNPs. In the nucleus, miRNA genes 
are transcribed into pri-miRNAs. Pri-miRNAs are processed in the nucleus and cytoplasm to ultimately produce mature 

Figure 7 Mechanisms of genetic material damage induced by SiNPs. SiNPs damage genetic material through oxidative stress. On the one hand, SiNPs enter the cell, cause 
the mitochondria to produce ROS, and lead to the depletion of the antioxidant defense system in the cell, causing damage to the genetic material. On the other hand, SiNPs 
recruit immune cells such as macrophages and neutrophils to produce ROS, and the release of large amounts of ROS causes damage to genetic material.
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miRNAs.106 SiNPs may affect the transcription of miRNA genes by regulating transcription factors and subsequently 
altering the expression of miRNAs (Figure 8). These transcription factors may include NF-κB, p53 and c-Myc.

NF-κB regulates the expression of various miRNAs, such as by promoting the transcription of miRNA-146 and 
miRNA-21 and inhibiting the transcription of miRNA-29 and miRNA let-7.107 SiNPs activate NF-κB through p62 or 
TLR4. In BEAS-2B cells, SiNPs not only damage lysosomes and block autophagic flux but also stimulate Nrf2 
translocation to the nucleus, where it binds to the p62 promoter and activates p62 transcription. These two mechanisms 
lead to the accumulation of p62, activating the p62/TRAF6/NF-κB pathway.108,109 Moreover, amorphous SiNPs promote 
the translocation and release of HMGB1 from the nucleus to the cytoplasm and the expression of TLR4 in HUVECs. 
Subsequently, TLR4 binds to HMGB1, increasing the expression of MyD88 and ultimately activating the NF-κB 
signaling pathway.102

Exposure to SiNPs can induce p53 activation.98 p53 regulates the transcription of miRNAs, such as those in the 
miRNA-34 family, and promotes Drosha-mediated editing of pri-miRNAs into precursor miRNAs.110 c-Myc regulates 
the transcription of miRNAs, including miRNA-17 and miRNA-34.111 Amorphous SiNP NM-203 has been shown to 

Figure 8 Mechanisms of epigenetic changes induced by SiNPs. (A) SiNPs alter DNA methylation levels by regulating DNMT expression. (B) SiNPs affect the transcription of 
miRNA genes by regulating transcription factors and subsequently altering miRNA expression. (C) SiNPs promote histone acetylation by decreasing SIRT6 and inhibit 
histone ubiquitination by reducing RNF8. (D) SiNPs inhibit chromatin remodeling by inhibiting histone ubiquitination.
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Figure 9 SiNPs induce epigenetic changes by regulating enzymes. (A) 15-nm SiNPs (10μg/mL, 24 h) exposure decreased DNMT1 and DNMT3a protein levels in HaCaT 
cells. Source: Reprinted from Gong C, Tao G, Yang L, Liu J, Liu Q, Zhuang Z. SiO(2) nanoparticles induce global genomic hypomethylation in HaCaT cells. Biochem Biophys 
Res Commun. 2010;397(3):397–400. Copyright 2010, with permission from Elsevier.89 (B) SiNPs (20 mg/kg.bw) exposure for 35 days inhibited RNF8 expression in nuclear 
extracts of testes. After the 15-day withdrawal period, the RNF8 levels recovered. Source: Reprinted from Liu J, Li X, Zhou G, et al. Silica nanoparticles inhibiting the 
differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice. Environ Pollut. 2021;284:117446. Copyright 2021, with permission from 
Elsevier.69 (C) SiNPs (50 μg/mL) decreased SIRT6 protein expression in A549 cells. A549 cells were infected with a virus expressing shRNA targeting SIRT6 or control 
shRNA. ChIP analysis was performed with antibodies against Ac-H3K9, Ac-H3K56 or control IgG and analyzed by qPCR. SIRT6 reduced Ac-H3K9 and Ac-H3K56 levels at 
the FST promoter region. The ACTB gene was used as a control. *P < 0.05, **P < 0.01. Source: Reprinted from Zhang L, Han B, Xiang J, Liu K, Dong H, Gao X. Silica 
nanoparticle releases SIRT6-induced epigenetic silencing of follistatin. Int J Biochem Cell Biol. 2018;95:27–34. Copyright 2018, with permission from Elsevier.70 (D) SiNPs 
(20 mg/kg.bw) altered the levels of histones and protamine. On day 35 after the first dose, histones (H2A, H2B, H3, H4) were dramatically upregulated, and TNP1, PRM1 
and PRM2 were downregulated in the SiNP group. After the 15-day withdrawal period, the injury was reversed. n=5 for each group. *P< 0.05. Source: Reprinted from Liu J, Li 
X, Zhou G, et al. Silica nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice. Environ Pollut. 
2021;284:117446. Copyright 2021, with permission from Elsevier.69 Micro-SiO2, microsized SiNPs; DAC, 5-aza-deoxycytidine, a DNA methyltransferase inhibitor; DNMT, 
DNA methyltransferase; MBD2, methyl-CpG binding protein 2; RNF8, ring finger protein 8; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; SIRT6, sirtuin 6; ACTB, 
beta-actin; FST, follistatin; A549 cells, lung epithelial cells; ChIP, chromatin immunoprecipitation; Ac-H3K9, acetylated H3K9; Ac-H3K56, acetylated H3K56.
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increase the mRNA and protein levels of c-Myc, possibly by triggering the transcription of the P1 promoter of the c-Myc 
gene. However, low concentrations of NM-203 increased c-Myc protein levels but did not affect mRNA expression 
levels.112 This finding indicates that other mechanisms may be involved. SiNPs may also promote c-Myc expression by 
activating p38 MAPK or ERK1/2.36,113,114

Regulatory Mechanisms of Histone Modification and the Inhibition of Chromatin 
Remodeling
As mentioned earlier, the histone modifications caused by SiNPs include ubiquitination, phosphorylation, and acetyla-
tion. Ring finger protein 8 (RNF8) is a ubiquitin ligase, E3, that regulates the ubiquitination of H2A and H2B and 
promotes the exchange of histones with protamines.115 SiNPs led to a reduction in lethal (3) malignant brain tumor-like 2 
(L3MBTL2) levels, which inhibited RNF8-ubH2A/ubH2B and affected spermatogenesis.35 Moreover, SiNPs can reduce 
RNF8 in the sperm nucleus by increasing PIWI-like protein 1 (MIWI) expression or inhibiting the degradation of MIWI 
(Figure 9B).69 SiNPs may also activate S-phase kinase associated protein (Skp2). Skp2 is also an important E3 ubiquitin 
ligase. Akt and AMPK activated by SiNPs are upstream regulatory molecules of Skp2.116–119 These findings suggest that 
Skp2 may be one of the mechanisms by which SiNPs regulate histone ubiquitination.

Histone acetylation is mediated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). Sirtuin 6 
(SIRT6) is an H3K9 and H3K56 hDAC that can regulate the deacetylation of histones. Research has shown that the 
overexpression of SIRT6 leads to a decrease in H3K9 and H3K56 acetylation levels.120 Exposure to SiNPs has been 
shown to inhibit SIRT6 expression and increase the acetylation levels of H3K9 and H3K56 at the follistatin (FST) gene 
promoter region (Figure 9C). Further research revealed that SiNPs shorten the half-life of SIRT6 mRNA without altering 
the activity of the SIRT6 promoter.70 These findings suggest that SiNPs may reduce the expression of SIRT6 through 
a posttranscriptional regulatory mechanism. SiNPs may play a posttranscriptional regulatory role in SIRT6 by activating 
PI3K. A previous study reported that SiNPs activate the PI3K pathway.121 PI3K activation promotes miRNA-34a 
expression. miRNA-34a binds to the 3ʹ-UTR of SIRT6 mRNA, reducing its stability and leading to its degradation.122

SiNPs inhibit chromatin remodeling by inhibiting histone ubiquitination (Figure 8). The ubiquitination of H2A and 
H2B promotes the removal of histones, which is beneficial for replacing histones with histone–protamines. SiNPs 
inhibited histone‒protamine exchange by decreasing H2A and H2B ubiquitination (Figure 9B and D), resulting in the 
inhibition of chromatin remodeling.35,69 Histone acetylation also regulates chromatin remodeling. Histone variant 
hyperacetylation is beneficial for chromatin remodeling. During the process of histone‒protamine exchange, histones 
are first replaced by histone variants. Histone variant hyperacetylation leads to the unwinding of nucleosome DNA, 
resulting in a loose chromatin structure. Subsequently, topoisomerase II beta causes DNA breaks, promotes the removal 
of histone variants, and is replaced by transition proteins.74 NPs can reduce the acetylation level of histones. For 
example, zinc oxide nanoparticles reduce the acetylation level of histone H4K5.123 Nickel nanoparticles reduce acetyla-
tion levels of histone H3 in human bronchial epithelial cells.124 A previous study reported that SiNPs alter histone H3K9 
and H3K56 acetylation levels, but their effects on the acetylation levels of histone variants are still unclear.70 These 
findings indicate that SiNPs may inhibit chromatin remodeling by inhibiting histone variant acetylation, but further 
research is needed for verification.

Factors Influencing the Genetic and Epigenetic Toxicity of SiNPs
Particle Size
Particle size is one of the key factors affecting the genetic and epigenetic toxicity of SiNPs. Microsized SiNPs (1–5 μm) do 
not induce changes in DNA methylation levels in HaCaT cells, whereas 15-nm SiNPs reduce global DNA methylation 
levels.89 The genotoxicity of SiNPs increases with decreasing particle size. Amorphous SiNPs of four sizes (10, 25, 50, and 
100 nm) were used to study the genotoxicity of SiNPs in human umbilical vein endothelial cells. The results indicated that 
the smaller the particle size was, the greater the induced genotoxicity.45 This may be because smaller particles have a larger 
surface area per unit mass, and their reactivity increases accordingly, which can produce more ROS at a given mass.125 The 
cellular uptake efficiency of SiNPs of different sizes is different. Smaller NPs are more likely to penetrate the cell 
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membrane and cause cell damage.126,127 Larger than 100 nm SiNP have been proven to have good biocompatibility and not 
induce genotoxicity.128 In addition, small SiNPs may aggregate into larger agglomerated particles and cause severe 
genotoxicity.129 Therefore, SiNPs induce genetic and epigenetic toxicity in a size-dependent manner.

Dose
The genetic and epigenetic toxicity induced by SiNPs is dose dependent.130 With increasing doses of SiNPs, the genetic 
and epigenetic toxicity effects increase. SiNPs inhibited the ubiquitination of histones H2A and H2B in a dose-dependent 
manner in the sperm of mice.35 SiNPs induce DNA breakage in rat lymphocytes in a linear dose-dependent manner.131 

Similarly, the highest concentration of SiNPs (100 μg/mL) induced the most significant DNA damage in onion tissue 
cells.42 This occurs because the higher the concentration of NPs is, the greater the degree of cellular uptake. After passing 
through the cell membrane, NPs are localized mainly in lysosomes. When excessive NPs accumulate, cells eliminate 
excess NPs through extracellular secretion and lysosomal escape mechanisms.132,133 However, when the amount of NPs 
exceeds a certain threshold, the NPs accumulate in the extracellular matrix and damage the cell membrane, leading to 
lysosomal rupture due to lysosomal overload. This damage ultimately leads to cytotoxicity and cell death.132

Geometric Shape
SiNPs are spherical, rod shaped, plate shaped, etc. The geometric shape of SiNPs affects cell internalization. Compared with 
spherical mesoporous SiNPs, rod-shaped mesoporous SiNPs induce more severe genotoxicity;52 this may be due to the high 
aspect ratio of rod NPs, which are taken up by cells faster and in greater quantities.134 The use of mesoporous SiNPs with 
different aspect ratios also revealed that particle shape affected the development of actin tissue and filopodia in HeLa cells.135 

In addition, at the same volume, rod-shaped NPs have a larger surface area than spherical NPs do, and the surface area 
available for interaction and contact with the cell membrane is larger, making them easier to absorb by cells and causing more 
severe genotoxicity.136 The shape of SiNPs also affects their biological distribution and clearance rate. Spherical mesoporous 
SiNPs are easily retained in the liver, whereas long rod-shaped mesoporous SiNPs are easily distributed in the spleen.137 The 
clearance rate of short rod-shaped mesoporous SiNPs is faster than that of long rod-shaped mesoporous SiNPs.138 This finding 
indicates that SiNPs with a longer aspect ratio have a longer residence time in the body and greater genotoxic effects. At 
present, it is not clear whether the shape of SiNPs affects the magnitude of epigenetic toxicity.

Structure Type
Crystalline SiNPs are arranged in a regular manner, whereas amorphous SiNPs are arranged irregularly. Different types 
of SiNPs have different parameters, such as morphology, porosity and crystallinity, which affect the biological distribu-
tion and genetic and epigenetic toxicity of SiNPs.139 Generally, the genetic and epigenetic toxicity effects of crystalline 
SiNPs are greater than those of amorphous SiNPs, possibly because the physical and chemical properties are affected by 
the crystal structure.112,140 In addition, the toxicity of mesoporous SiNPs has been shown to be significantly greater than 
that of nonporous SiNPs. This occurs because the density of mesoporous SiNPs is lower, and therefore, the weight of 
each particle is lower, resulting in a greater number of particles per unit mass.141

Administration Route
SiNPs can enter the human body through intravenous injection, airway inhalation, skin contact, etc. Different adminis-
tration routes affect the biological distribution and local tissue concentration of SiNPs, leading to different genetic and 
epigenetic toxicity effects. After oral or intravenous injection, SiNPs are distributed mainly in the liver or spleen. 
Through tracheal instillation, they are distributed mainly in lung tissue.139 Different biological distributions result in 
different types of cells being exposed to SiNPs, thus affecting genotoxicity. Cabellos et al studied the genotoxicity of the 
oral administration of nonporous and mesoporous SiNPs and reported that DNA in several organs and tissues of rats was 
not damaged.142 Similarly, studies on intratracheal instillation have not shown genotoxic effects of amorphous SiNPs (15 
nm and 55 nm in size).143 However, in a study by Downs et al, SiNPs (15 nm and 55 nm in size) caused DNA damage in 
the liver and micronucleus when injected intravenously.144 This may be because the concentration of SiNPs that reach 
local tissues via the intravenous route is greater than that via tracheal drip or the oral route.
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Surface Charge
Compared with negatively charged SiNPs, SiNPs with a positive surface charge cause greater genotoxicity.145 On the one 
hand, positively charged NPs are more easily internalized by cells. The cell membrane is negatively charged because of 
the phospholipid layer on the outer surface. NPs with positive charges are more likely to enter cells through the cell 
membrane due to electrostatic interactions.146 On the other hand, positively charged SiNPs are more likely to interact 
with negatively charged DNA, causing damage to genetic material.138 Therefore, SiNPs with positive charges are more 
likely to penetrate the cell membrane, bind to negatively charged DNA, and damage DNA. However, whether surface 
charge of SiNPs cause epigenetic toxicity is unclear.

Other Factors
The genetic and epigenetic toxicity effects induced by SiNPs may also be related to the exposure time of the particles and 
the type of toxicity tested. The longer the exposure time is, the greater the dose of NPs reaching the local tissues of the 
organism, and the corresponding prolongation of contact time with cells results in greater genetic and epigenetic toxicity. 
In addition, the type of experiment can affect the experimental results. In the Ames test, spherical amorphous SiNPs were 
shown not to induce gene mutations.147 This is because not all particles can pass through bacterial membranes; thus, the 
Ames test may not be suitable for evaluating the genotoxicity of NPs. Therefore, evaluating the genotoxicity of SiNPs 
also requires consideration of the type of experiment.

Limitations and Future Outlook
The genetic and epigenetic toxicity of SiNPs has received increasing attention, especially their adverse effects on the 
reproductive system. The experimental data on the genetic and epigenetic toxicity of SiNPs to the reproductive system 
have been mostly derived from animal models, with a lack of actual human exposure and epidemiological data. 
Currently, deriving impacts on human health from animal data is not possible. In the future, emphasis should be placed 
on transforming basic toxicology research results into medical indicators for measuring human risk. In addition, most 
studies are based on the results of short-term exposure (less than 3 months) to SiNPs. Long-term in vivo exposure 
experiments are needed to accurately predict harm to the human body and adverse consequences for offspring.

There are inconsistent or even contradictory results regarding the genetic and epigenetic toxicity of SiNPs, which 
may depend on differences in particle properties (such as size, structure, and shape), exposure status (such as 
exposure pathway, dose, and time), and cell type. Therefore, when evaluating genetic and epigenetic toxicity, 
a thorough physical and chemical characterization of SiNPs, including size, surface area, shape, crystallinity, 
porosity, surface charge, agglomeration, etc., is needed. Second, differences in evaluation methods should be 
considered to avoid false-negative results. It is necessary to establish a standard guideline for evaluation. In addition, 
a comprehensive and complete evaluation of the epigenetic changes induced by SiNPs is needed. Owing to the 
ability of SiNPs to induce multiple abnormal epigenetic changes, an aim of future research should be to simulta-
neously detect multiple types of epigenetic changes, including at least DNA methylation, miRNA expression 
changes, and histone modifications.

Exploring the potential mechanisms of SiNPs-induced genetic and epigenetic toxicity will be beneficial for developing new 
treatment strategies and reducing the adverse effects of SiNPs genetic and epigenetic toxicity on human health. However, there 
are still many gaps in our understanding of how SiNPs induce epigenetic toxicity. In the future, it will be necessary to further 
explore the potential molecular mechanisms by which SiNPs induce changes in miRNA expression, such as how SiNPs affect the 
maturation and processing of miRNAs. The effects of SiNPs on enzymes related to histone modification, such as E1, E2 and 
HAT, as well as how to regulate chromatin remodeling processes through histone modification, are all worthy of attention.

Avoiding and reducing toxicity risk are urgent tasks. First, an assessment standard for SiNPs should be 
established. The best testing and testing conditions should be selected to increase the likelihood of extrapolating 
genetic and epigenetic toxicity results to human risk. Second, safe and nontoxic SiNPs should be designed and 
developed to reduce genetic and epigenetic toxicity: (1) the size, shape, and structure of SiNPs should be optimized; 
(2) by doping, metal loading should be used to reduce the oxidative stress damage caused by SiNPs; and (3) the 
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surface chemical properties and in vivo clearance rate of SiNPs should be modified through functional group surface 
modification. Third, researchers should focus on the key targets of genetic and epigenetic toxicity mechanisms. For 
example, key mechanistic targets for regulating the expression of miRNAs, such as NF-κB and p53, have been 
identified. The development of drugs that inhibit these pathways in clinical practice and block key components of 
these pathways, such as upstream stimuli or downstream targets, could be used to treat SiNP genetic and epigenetic 
toxicity. These methods provide broader application prospects for SiNPs and can improve their application in the 
biomedical field.

Conclusion
The genetic and epigenetic toxicity induced by SiNPs, especially damage to germ cells, cause a risk of infertility 
and teratogenesis. SiNPs induce genetic material damage, which manifests as gene mutations, DNA strand breaks, 
and chromosomal aberrations. The main mechanism is oxidative stress damage mediated by mitochondrial dysfunc-
tion and inflammation. Furthermore, the molecular mechanisms of epigenetic toxicity are discussed in detail for the 
first time, SiNPs alter DNA methylation, miRNA expression, histone modification and inhibit chromatin remodeling 
by regulating epigenetic-related enzymes and transcription factors. The potential solutions to avoid toxicity were 
prospected and provide a guidance for better application of SiNPs in the biomedical field. In the future, it will be 
necessary to focus on the key targets of genetic and epigenetic toxicity mechanisms. How to reduce the genetic and 
epigenetic risk or toxicity of SiNPs is still challenging, and material modification or the synthesis of safe SiNPs is 
urgently needed.
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