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Purpose: Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability
and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and
alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate
how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds.
Patients and Methods: This comprehensive review is based on an analysis of recent literature retrieved from PubMed, Scopus, and
ScienceDirect databases. It focuses on findings from preclinical and in vitro studies that examine the pharmacokinetic enhancements
provided by phytosome technology when applied to secondary metabolites.

Results: Phytosome-encapsulated secondary metabolites exhibit significantly improved solubility, absorption, distribution, and
cellular uptake compared to non-encapsulated forms. This enhanced bioavailability facilitates more effective inhibition of cancer
pathways, including NF-kB and PI3K/AKT, leading to increased anticancer efficacy in preclinical models.

Conclusion: Phytosome technology has demonstrated its potential to overcome bioavailability challenges, resulting in safer and more
effective therapeutic options for cancer treatment. This review highlights the potential of phytosome-based formulations as a novel
approach to anticancer therapy, supporting further development in preclinical, in vitro, and potential clinical applications.
Keywords: phytosome, secondary metabolites, cancer, bioavailability

Introduction

Cancer remains a significant global health challenge, consistently ranking as a leading cause of death worldwide." It is
characterized by abnormal cell proliferation, with the ability to invade surrounding tissues and metastasize to other parts
of the body, as defined by the National Cancer Institute. The increasing prevalence of cancer significantly impacts both
the quality of life and average lifespan globally. By 2040, new cancer cases are projected to rise to 29.5 million annually,
leading to approximately 16.4 million deaths.?

Phytosome technology represents an innovative drug delivery system designed to encapsulate plant extracts or
phytochemicals within a phospholipid complex, thereby enhancing their absorption and effectiveness.” Unlike traditional
phytochemical formulations, which often face challenges related to poor lipid solubility and limited absorption, phyto-
somes significantly enhance the solubility and bioavailability of polar phytoconstituents.” By forming a lipid-compatible
complex, phytosomes improve drug absorption, distribution, and targeted delivery, maximizing therapeutic outcomes.®

While liposomes and phytosomes both utilize phospholipid-based encapsulation, their structures and applications
differ significantly.” Liposomes generally form bilayer vesicles that enclose a broad range of pharmaceutical com-

pounds, focusing on general drug delivery. In contrast, phytosomes form a molecular complex with plant-derived
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secondary metabolites, specifically enhancing their solubility, stability, and targeted bioavailability.* '' This distinction
allows phytosomes to deliver polar phytoconstituents more effectively, making them more suitable for natural
compound therapies.

Secondary metabolites, including flavonoids, terpenoids, alkaloids, and phenolic compounds, are recognized for their
potential anticancer properties but often have low water solubility, which restricts their absorption and therapeutic
efficacy.!’"® This limitation presents a challenge in drug development, as higher doses of these compounds are often
needed to achieve therapeutic effects, complicating formulation and delivery processes. To overcome these limitations,
the use of surfactants has been explored as a strategy to improve the solubility of certain extracts, such as rosemary.'*
Surfactants reduce the surface tension between water and the solute, facilitating the dispersion of poorly soluble
molecules, thereby increasing bioavailability.'>"' However, phytosome technology offers a more advanced solution by
not only enhancing solubility but also improving overall pharmacokinetics, including absorption, distribution, and
cellular uptake of secondary metabolites.'”"'® Recent studies have demonstrated that secondary metabolites encapsulated
in phytosomes, such as quercetin, curcumin, and berberine, exhibit improved solubility and enhanced anticancer efficacy
compared to their non-encapsulated forms.'*° Phytosome encapsulation enables more effective interactions with cancer
pathways, such as NF-«kB and PI3K/AKT,*'** improving therapeutic outcomes in preclinical cancer models.

This review aims to investigate the transformative potential of phytosome technology in cancer treatment, particularly
its ability to improve the absorption and efficacy of plant-derived secondary metabolites. The analysis will focus on key
secondary metabolites, including alkaloids, flavonoids, terpenoids, and phenolic compounds, which have demonstrated
anticancer properties. By examining advancements in phytosome formulations and their potential impact on cancer
treatment, this review seeks to offer insights into future strategies for developing more effective oncological therapies.

Methodology
This review synthesizes studies focused on the use of phytosome for cancer treatment, emphasizing the enhancement of
secondary metabolites bioavailability. The literature search targeted publications over the past decade, using databases
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such as PubMed, Scopus, Google Scholar, and Web of Science. Keywords used included “phytosome technology”,
“cancer treatment”, “plant secondary metabolites”, and “phytochemical efficacy in cancer”. The initial search obtained
214 studies, where the inclusion and exclusion criteria were rigorously applied to the results. Inclusion criteria were
studies that directly addressed the application of phytosome in cancer treatment, showed the pharmacological benefits of
secondary metabolites encapsulated in phytosome, and focused on bioavailability enhancement of these compounds. The
exclusion criteria removed studies focusing on non-cancer related phytosome applications, those without clear metho-
dological details, and non-peer-reviewed literature. Additionally, studies that did not include actual biological assess-
ments such as purely computational models without experimental validation were excluded, along with duplicates,
resulting in 185 studies. A further review based on abstracts and titles led to the selection of 77 relevant studies, where
full-text review identified only 20 that met all the specified inclusion criteria, as shown in Figure 1. All figures in this
manuscript, including mechanisms and graphical illustrations, were created by the author using BioRender. The chemical
structures shown in the figures were re-drawn utilizing ChemDraw Professional (Version 16.0.1.4, licensed to Supriatno
Salam, UNPAD, License ID: 112-920,429-8380) to guarantee precision and clarity in the representation of the studied
compounds, with reference to data from the PubChem database, ensuring accurate representation of the compounds.

The inclusion criteria used were:

a. Literature discussing the application of phytosome in treatment of cancer.

b. Studies showing the enhanced bioavailability of secondary metabolites through phytosome.

c. Peer-reviewed studies with full experimental details.

The exclusion criteria were:

a. Literature not related to the application of phytosome in cancer treatment.

b. Non-peer-reviewed studies and those lacking empirical data.

c. Studies focusing on non-biological evaluations of phytosome.

Comprehension and Advancement of Phytosome

Phytosome was first developed in the early 1990s as an innovative advancement in the formulation and delivery of
herbal remedies. These intricate formulations primarily comprised the active constituents of herbal extracts that
were attached to phospholipids such as phosphatidylcholine, significantly enhancing bioavailability. Generally,
complexation improves the hydrophobic properties of the phytoconstituents, facilitating their passage through

lipid-rich cell membranes.**
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Figure | Flow diagram of the method used for screening information sources in the review.
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Figure 2 shows the process of enclosing phytoconstituents within phospholipid bilayers in a graphical manner. This
encapsulation modifies the hydrophobic characteristics of the phytoconstituents,’ facilitating their passage through lipid-
rich cellular membranes. Phytosome significantly enhances bioavailability of bioactive compounds, leading to improved
absorption by the body and increased effectiveness in treating medical conditions.

Phytosome technology has shown the potential to overcome the different limitations often associated with plant extracts,
including insufficient absorption, rapid metabolism, and significant systemic excretion.”® Figure 3 shows the mechanism by
which phytosome enhance the transportation of phytoconstituents across cellular barriers. Strategically encapsulating herbal
components boosts their bioavailability and allows for regulated release, maintaining sustained therapeutic levels in the blood-
stream. The use of controlled release of medication is particularly beneficial in the field of oncology, capable of reducing the need
for frequent dosing and minimizing the potential adverse effects associated with high drug concentrations in the body.?’
Furthermore, phytosome structure provides improved solubility and stability, enabling these compounds to effectively and

consistently increase anticancer properties.
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Figure 2 Structural illustration of the phytosome complex, showing phospholipid binding to plant phytoconstituents to enhance bioavailability.
Notes: Created in BioRender. Mardiana, L (2024) BioRender.com/W63W154.
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Figure 3 Mechanism of Phytosome-Encapsulated Secondary Metabolites Enhancing Cancer Treatment. The diagram illustrates improved solubility, enhanced absorption,
successful cellular uptake, and targeted inhibition of cancer pathways (eg, NF-kB, PI3K/AKT), leading to apoptosis and reduced cell proliferation.
Notes: Created in BioRender. Mardiana, L (2024) BioRender.com/W63W154.
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Recent Patents on Phytosomes

Recent patents on phytosomes highlight significant advancements in their development and application for improving the
bioavailability of secondary metabolites in cancer treatment. These patents primarily focus on novel formulations that
enhance the absorption, stability, and therapeutic efficacy of phytochemicals. For example, patents have been filed for
formulations that utilize modified phospholipid structures to increase the solubility and targeted delivery of active
compounds, particularly flavonoids, terpenoids, and phenolics.*®*’

Patent No. W0O2022135652A1 (2021) describes genistein-loaded phytosomes aimed at liver cancer treatment through
oral administration, using various phospholipid types to improve solubility and bioavailability.*® Similarly, Patent No.
US11207388 (2023) details a phytosomal formulation using Allium sativum and Murraya koenigii for the treatment of
breast cancer, emphasizing sustained release and enhanced delivery.>' Another notable patent, Patent No.
IN201841001612 (2019), focuses on a phytosomal complex combining Allium sativum and Murraya koenigii for both
breast and prostate cancer treatment, aiming to prevent post-therapy recurrence.’® Additionally, Patent No.
IN202341042728 (2023) introduces a phytosome loaded with biosynthesized Ag nanoparticles, designed for bone cancer
treatment through second-order targeting, which improves cellular uptake and targeting efficiency.”> Some patents
emphasize the development of synergistic formulations, where phytosomes are combined with other drug delivery
systems to achieve enhanced anticancer activity and reduced toxicity. These innovations in phytosome technology
offer promising approaches to overcoming the challenges of conventional formulations, setting new benchmarks for
future cancer therapies.

Mechanism of Action: Enhancing Bioavailability Through Phytosome
Phytosome has made significant progress in the field of medication delivery by improving bioavailability of

phytochemical.**

This medication delivery method uses specific phospholipid complexes that closely resemble the
lipid bilayer of cell membranes. The amphiphilic properties of these complexes facilitate strong and efficient
contact with cell membranes,*> enabling enhanced absorption of phytochemical through the gastrointestinal tract.
Figure 3 shows the incorporation of phytosome into biological membranes. Generally, phytosome is designed to
imitate the structural properties of cell membranes, protecting phytochemical from the harsh enzymatic conditions
of the digestive system and improving precise transportation to specified tissues.*® It also maintains the quality and
effectiveness of the bioactive substances by duplicating cellular structures.®’ These structural alterations guarantee
a significantly greater dispersion of active components to targeted regions, thereby boosting therapeutic capacity.*®

Modified phytochemical within phytosome®®*° has shown enhanced resistance to digestive enzymes, which
increases systemic availability, extending stability and lifespan. This feature is essential to guarantee that therapeutic
drug retain efficacy while passing through the body and providing persistent therapeutic effects.*’ Phytosome
formulations are more successful than typical herbal extracts due to the ability to increase the amount of
phytochemical*? absorbed by the body and enhances the effectiveness of pharmacological treatment. As a novel
advancement in pharmaceutical science, phytosome improves delivery and efficacy of phytochemical treatment by
making structural changes, providing protective encapsulation, and increasing availability in the body.** This advanced
delivery system represents a significant improvement in the more efficient use of natural substances, enhancing
therapeutic effects in clinical trials. Phytosome technology enhances the anticancer potential of secondary metabolites
through multiple mechanisms. First, the encapsulation of bioactive compounds with phospholipids increases their
solubility and absorption across cell membranes, resulting in higher plasma concentrations and better therapeutic
outcomes.***® Second, the lipid-compatible nature of phytosomes allows for more efficient penetration of cancer cell
membranes,*’** leading to increased intracellular concentrations of the active compounds. This improved cellular
uptake ensures that secondary metabolites can more effectively interact with key cancer pathways, such as NF-xB and
PI3K/AKT, which are critical for cancer cell survival and proliferation.*”® By overcoming the bioavailability
challenges of these compounds, phytosomes provide targeted inhibition of cancer pathways, ultimately improving

their anticancer efficacy.
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Comparing Phytosome and Conventional Phytochemical Delivery Methods

Comparative analyses of phytosome and conventional herbal delivery vehicles, such as capsules and tinctures,
show a significant enhancement in both bioavailability and the biological efficacy of plant extracts.'” Phytosome
has been shown in clinical trials to increase the absorption rate of phytochemical by approximately two times
compared to non-complexed plant extracts. For example, silymarin is a well-known chemical protecting the liver
and is obtained from milk thistle, which can be absorbed and used by the body when administered as
phytosome,”! compared to regular milk thistle supplements. Additionally, phytosome has an extended duration
of presence in the bloodstream, enabling a sustained therapeutic effect and decreased frequency of dosage. These
qualities give phytosome an advantage over traditional methods, as preferred options for delivering phytochemical
in clinical trials.

Secondary Metabolites in Cancer Treatment

Secondary metabolites are a wide range of chemical compounds produced by plants through metabolic pathways that are
separate from their fundamental physiological functions. These chemicals, comprising more than 50,000 known varieties,
provide adaptive benefits, with a substantial impact on the pharmaceutical business.”> Compounds such as terpenoids,
flavonoids, alkaloids, and phenolics are well-known for their antioxidative, anti-inflammatory, antibacterial, and antic-
ancer properties.”®> The categorization and potential uses of secondary metabolites, including terpenoids, flavonoids,
alkaloids, and phenolics, are illustrated in Figure 4, available at the end of the manuscript. These metabolites play
a significant role in plant defense against diseases, resistance to pests, and attraction of pollinators.>* The investigation of
these metabolites has shown significant progress in plants metabolomics to uncover potential in pharmaceutical study,
agriculture, and diverse industrial uses.’>® A recent investigation on particular categories of chemicals found in
secondary metabolites has shown their considerable capacity as potent anti-cancer agents. Plant-derived chemicals
have also been used in many therapeutic and preventive methods to hinder the progression of cancer, showing significant
potential as efficacious remedies.>’

Secondary metabolites derived from various plant sources have demonstrated significant promise in cancer therapy
due to their diverse pharmacological activities. These metabolites can be broadly categorized into flavonoids,
terpenoids, alkaloids, and phenolic compounds, each exhibiting unique anticancer properties. Flavonoids, such as
quercetin, kaempferol, and rutin, are known for their ability to induce apoptosis, inhibit cancer cell proliferation, and
suppress metastasis.’’ ® See Figure 5 at the end of the manuscript for a detailed visualization of the structures of
secondary metabolites identified, including Cynaroside, Astragalin, Isorhamnetin 3-O-glukosida, Quercetin, Rutin,
Flavonol, Phellopterin, Bergapten, and Isoquinoline. The encapsulation of flavonoids in phytosomes significantly
enhances their solubility and stability, resulting in increased absorption and bioavailability.'®®* Similarly, terpenoids,
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Figure 4 Overview of secondary metabolites and their classifications, including alkaloids, flavonoids, terpenoids, and phenolics, with a focus on anticancer properties.
Notes: Created in BioRender. Mardiana, L (2024) BioRender.com/W63W154.
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Figure 5 Chemical structures of phytoconstituents used in phytosome-based cancer treatment.

including curcumin,® betulinic acid,®® and ginsenoside Rg3,%> show broad-spectrum anticancer effects, such as
antiproliferative and antiangiogenic activities.®> Encapsulation in phytosomes further improves the solubility and
therapeutic outcomes of these terpenoids.®”-®

Alkaloids, including berberine, dauricine, and vinblastine, are known for their potent anticancer effects, primarily
through apoptosis induction, cell cycle arrest, and autophagy inhibition.®®’® Phytosome-based formulations of alkaloids
have demonstrated enhanced pharmacokinetic properties, leading to improved bioavailability.'”-”! Phenolic compounds,
such as resveratrol and pterostilbene, are also effective in preventing cancer cell proliferation and inducing apoptosis.’*"
Phytosome encapsulation increases the bioavailability of these phenolic compounds, facilitating more effective targeting
of cancer cells.”*7® Recent studies have supported the efficacy of phytosome-encapsulated secondary metabolites,
showcasing significant improvements in therapeutic outcomes across various cancer models.

The examination of secondary metabolites in several cancer cell lines shows the significance and potential of plant-
derived compounds in the field of oncology. This section provides a more detailed analysis of the consequences of the
results, specifically showing their substantial influence on advancement of new medication treatment and methods for
cancer treatment. The ICs, values in Table 1 show that secondary metabolites, such as flavonoids and alkaloids, have
strong effectiveness against a range of cancer types. For instance, efficacy of flavonoids in suppressing cell proliferation
in breast, lung, and liver cancer cell lines suggests the capacity to disrupt essential pathways essential for advancement of
cancer. Moreover, the impact of alkaloids on melanoma cell lines shows the ability to trigger apoptosis and interfere with
cellular proliferation mechanisms.®**

These results emphasize the adaptability of secondary metabolites as versatile agents in cancer treatment. The
phytoconstituents show promise for the development of comprehensive cancer therapeutics by targeting important

4.85 86.87 and metastasis inhibition.®® The variation in

processes such as cell cycle progression,® apoptosis induction,
ICs values among different cell lines also suggests that secondary metabolites can be customized to selectively target
specific forms of cancer, thereby improving the accuracy of oncology.

Flavonoids are secondary metabolites found in plants, with significant health advantages, including strong
antioxidant™ characteristics that protect cells from harm caused by free radicals. The anti-inflammatory characteristics
mitigate the possibility of vascular disorders, while anticancer attributes modulate the proliferation of cancer cells.
Extensive study also emphasizes the neuroprotective and cardioprotective benefits of flavonoid, which protects the heart
and nerves from harm. Moreover, flavonoids possess antibacterial characteristics, underscoring their significance in
medicinal contexts for combating microbial infections.'”*° The classification and specific compounds within each

category are essential to identify different roles and therapeutic potentials of secondary metabolites in cancer treatment.
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Table | ICs, Values of Various Phytoconstituents Against Different Cancer Cell Lines, Highlighting

the Efficacy of Flavonoids and Alkaloids in Inhibiting Cancer Proliferation

Phytoconstituents (Compound) Cell Line ICso Range Ref
Flavonoids (Quercetin, Kaempferol) MCF-7 (Breast cancer) 22.74 pg/mL [77]
A549 (Lung cancer) 8.74 ng/mL
Flavonoids (Apigenin) HepG2 (Liver cancer) 7.6 UM [78]
SMMC-7721 (Liver cancer) 3.1 uM
Flavonoids (Cynaroside and Astragalin) Hela (Cervical cancer) 396.0 and 449.0 ug/mL | [79]
Flavonoids (Isorhamnetin 3-O-glukosida) Lung cancer lines
Hé69 1252 £ 4.5 pg/mL
COR-L47 119.8 £ 6.2 pug/mL
DMS53 1253 + 4.4 pg/mL
DMS79 89.8 + 3.2 pg/mL
Flavonoids (Quercetin 3-O-rutinoside rutin) Bone cancer lines
A-673 86.4 + 2.0 pg/mL
CADOESI 124.6 £ 1.9 pg/mL
HOS 106.0 + 4.3 pg/mL
SW-1353 129.7 + 2.8 pg/mL
Flavonol MCF7 (Breast cancer) 0.96 uM [80]
Hela (Cervical cancer) 051 uM
Coumarins (Phellopterin) Multiple myeloma lines [81]
SK-MM-I 69.1 + 1.2 pg/mL
RPMI8226 85.7 + 1.8 pg/mL
U-266 44.3 £ | .4 pg/mL
Psoralen (Bergapten) Breast cancer lines
600MPE 109.4 £ 3.9 pg/mL
AMJI13 91.8 + 4.0 pg/mL
AU565 93.5 + 5.7 pg/mL
Evsa-T 249.6 £ 5.3 pg/mL
Isoquinoline Alkaloids A375 (Melanoma) 12.65 pg/mL [82]
SK-MEL-3 (Melanoma) 1.93 pg/mL

Figure 6 presents a summary of the four primary categories of secondary metabolites, namely alkaloids, flavonoids,
terpenoids, and polyphenols. It also shows essential molecules, indicating the categorization of secondary metabolites
including significant anti-cancer compounds. Alkaloids, such as vinblastine,”’ vincristine,” and camptothecin,” possess
potent characteristics for inhibiting cell proliferation. These compounds interfere with cellular processes that are essential
for the growth and survival of cancer cells, increasing effectiveness in chemotherapy treatment. Flavonoids, such as
apigenin, genistein, and kaempferol, can serve as antioxidants, reduce inflammation, and inhibit the growth of cancer
cells.”*?3 The capacity to regulate signaling pathways in cell cycle and apoptosis also contributes to the high potential of
inhibiting advancement and dissemination of malignancies. Terpenoids, such as lycopene and gamma-tocopherol, have
important functions in preventing the growth of cancer.”® These compounds are recognized for their ability to inhibit cell
division and trigger programmed cell death (apoptosis) in cancer cells, specifically in models of prostate and breast
cancer. Polyphenols such as curcumin, resveratrol, and epigallocatechin gallate (EGCG) have shown significant potential
in the prevention and cancer treatment.”””® The mechanisms include the regulation of oxidative stress and inflammation,
along with direct impacts on tumor cell signaling and death.”>'® The classification facilitates the identification of
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Figure 6 Overview of Secondary Metabolites and Their Classifications, Including Key Compounds with Anticancer Properties. The figure was created by the author using
BioRender. Mardiana, L (2024) BioRender.com/W63W 54.

Notes: The diagram categorizes secondary metabolites into four groups: Alkaloid Group: Vinblastine, vincristine, and camptothecin. Terpenoid Group: Lycopene and
gamma-tocopherol. Polyphenol Group: Etoposide, resveratrol, curcumin, and epigallocatechin gallate (EGCG). Flavonoid Group: Apigenin, genistein, and kaempferol.

possible compounds that can attack cancer and emphasizes the need to improve the ability to be absorbed by the body for
effective performance. This can achieved through the use of improved delivery systems such as phytosome, which
enhances the solubility, absorption, and therapeutic effectiveness of powerful compounds in clinical applications by
enclosing in phospholipid complexes.'®!

The existence of secondary metabolites in medicinal plants, such as alkaloids, flavonoids, and phenols, shows their
significant potential in combating cancer due to strong anti-cancer characteristics. These metabolites show anti-
proliferative properties against cancer cells and have the ability to control tumor growth, thereby hindering advancement
of tumors. Moreover, the presence of bioactive compounds in marine algae improves the effectiveness of standard
pharmaceuticals, particularly in treatment of lung cancer. This suggests a possible collaboration between natural

compounds and conventional drug.'%*!'%?

Challenges in Using Phytochemical for Cancer Treatment

Although plant-derived secondary metabolites have the potential to be used in cancer treatment, there are various
problems that need to be addressed. The intricate nature of their chemical structures frequently impedes the process of
synthesizing and achieving large-scale manufacture. The fluctuation in the content and activity of these compounds in
natural sources can impact the uniformity and treatment effectiveness. These compounds have the potential to negatively

interact with standard cancer treatment, requiring serious supervision strategies.''"'**

Investigation and Advancement of Anti-Cancer Compounds Derived from Secondary
Metabolites

A comprehensive investigation into chemicals with anti-cancer properties has shown their function through several
mechanisms. These include the inhibition of cell proliferation, induction of cancer cell apoptosis, and prevention of
angiogenesis, which is essential for tumor metastasis.'® The compounds often obstruct the function of crucial enzymes
that are essential for the survival and growth of cancer cells, thereby inhibiting the proliferation of cancer. This activity
emphasizes the potential of plant-derived chemicals to attack cancer by selectively targeting multiple crucial pathways.
The continuous advancement of novel compounds is focused on optimizing absorption, distribution, metabolism, and
minimizing side effects, improving the effectiveness and safety profiles for application in cancer treatment.*’
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Phytosome with Secondary Metabolites in Cancer Treatment
The use of phytosome technology has significantly revolutionized the administration and efficacy of secondary metabo-

1067108 Jeading to

lites in cancer treatment. This novel method includes enclosing herbal constituents in lipid molecules,
a significant enhancement in absorption and therapeutic efficacy. Furthermore, phytosome technology improves the
capacity of hydrophobic compounds to dissolve and remain stable This technology offers innovative opportunities for
advancement of therapeutic options that are more efficient and less harmful.

Phytosome technology uses lipid carriers to create compounds with active substances, facilitating precise targeting of
cancer cells. The implementation of this technology focuses on enhancing treatment outcomes by enabling the use of
lower drug doses and decreasing the probability of experiencing undesirable side effects often associated with greater
doses of medicine. Table 2 presents a concise overview of efficacy of several phytosome formulations in treating
different cancer cell types, showing their potential therapeutic outcomes.'?%-''°

Efficacy of phytosome formulations, such as Sinigrin and Boswellia phytosome, includes offering strong anti-cancer
properties and anti-inflammatory benefits, respectively. The synergistic application of Luteolin and Mitomycin, in
combination with Luteolin phytosome, shows targeted and potent effects against certain cancer cells. Table 2 also
shows the capability of phytosome technology to significantly enhance efficacy of bioactive compounds in cancer
treatment. Refer to Figure 7 at the end of the manuscript for the structural visualization of Sinigrin, Luteolin, and
Mitomycin, which are among the secondary metabolites discussed for their potential therapeutic effects. Furthermore,
phytosome are effective in addressing deficiencies of secondary metabolites, such as flavonoids, which commonly
encounter restricted bioavailability and limited interactions with target organs.®*''”

Phytochemical, such as alkaloids, phenolics, flavonoids, steroids, glycosides, and terpenoids, have shown significant
anticancer effects. As shown in Figure 8 at the end of the manuscript, the structures of phytochemicals such as Fisetin,
Chrysin, Curcumin, Apigenin, Withaferin, and Glycyrrhizic acid are illustrated. These compounds are utilized in both
phytosome and non-phytosome formulations for cancer treatment. However, the implementation of these methods
encounters obstacles such as restricted engagement with specific organs and insufficient bioavailability. As shown in
Table 3, phytosome technology overcome the problems by improving the absorption into the body and the effectiveness
of secondary metabolites. A comparative investigation conducted on a mouse model showed that flavonoids phytosome
had enhanced bioavailability and health outcomes compared to ordinary quercetin.''®

The incorporation of cisplatin and glycyrrhizic acid, a phenolic molecule, into nano-phytosome formulations also
showed significant improvement in the effectiveness of the anticancer treatment.''” Specifically, treatment caused
a decrease in the growth of DLD-1 cell line by approximately 44.3% and 95.6% in LIM-2405 cell growth when
evaluated in laboratory settings at a dose of 150 pM. The significant enhancement in efficacy was measured as a 124%
increase in inhibition from the lowest to highest level in DLD-1 cells. This shows the potential of PEGylated nano-
phytosome created using the thin film hydration method.''” Moreover, the use of PEGylated nano-phytosome led to
a substantial increase in DNA damage in DLD-1 cells compared to treatment with cisplatin alone. This emphasizes the
system’s ability to improve the effectiveness and underlying mechanisms of anticancer activity by delivering phenolic

compounds more efficiently. When evaluating the effects of phytosome technology on phytochemical treatment, there is

Table 2 Efficacy of Phytosome-Encapsulated Secondary Metabolites Against Various Cancer Cell Types, Showing Enhanced
Therapeutic Outcomes

Metabolite/Compound Cancer Cell Type / Disease Effectiveness/Efficacy Ref

Sinigrin Phytosome Melanoma Complete wound healing, potent anticancer activity [

Boswellia Phytosome General inflammation associated with tumors Robust anti-inflammatory effects [12]

Luteolin Phytosome General Enhanced drug sensitivity in cancer cells [74]

Mitomycin and Luteolin Phytosome Specific cancer cells Superior targeting and effectiveness [113]

General Phytosome Technology Various Increased bioavailability and pharmacokinetics, [87,107,114-116]
reduced dosage requirements
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Figure 7 Chemical Structures of Secondary Metabolites Used in Cancer Treatment.
Notes: The figure shows the chemical structures of: Sinigrin: A glucosinolate e known for its anticancer activity. Luteolin: A flavonoid with potential anticancer effects.
Mitomycin: An alkaloid commonly used in cancer chemotherapy.
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Figure 8 Structures of Phytochemical used in Phytosome and Non-Phytosome Cancer Treatment.

an improvement in effectiveness during formulations comparison between phytosome and non-phytosome. Specifically,
polyphenols targeting 4 T1 cancer cells showed the most remarkable enhancement, with a decrease in ICsq values from
39.94 ug/mL to 7.73 pg/mL, leading to an 80.67% reduction and a fivefold increase in activity. Chrysin showed
a significant decrease in ICso in HT29 cells, resulting in a nearly threefold increase in efficacy. Similarly, Terpenoids
and Flavonoids showed major reductions in ICsq in Vero cell lines, leading to a threefold increase in efficacy. The
Polyherbal mix showed a 35.9% reduction in ICsy and a 1.56-fold increase in activity on MCF-7 and MDA MB 231
cells. Polyphenols showed the most significant increase after being encapsulated in phytosome. This suggested the
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Table 3 Comparison of ICsy Values Between Phytosome and Non-Phytosome Formulations of Secondary Metabolites in Cancer

Treatment
Phytochemical Category Cancer In Vivo / Method Non- Phytosome Mechanism Ref
Cell In Vitro Phytosome (ICs0)
Test (ICs0)
Polyphenols Phenolic 4TI In-Vitro Thin-Layer 39.94 £ 0.10 7.73 +287 1 Apoptosis [74]
Hydration solvent pg/ mL ug/ mL
injection
Fisetin Phenolic MDA-MB In-Vitro Thin Film 189.10 £ 3.07 7581 +2.99 |Antiproliferative, TApoptosis and necroptosis, | [119]
-231 Hydration and pg/ mL ug/ mL |TGF-BI/ MMP-9 molecular pathways of
Solvent Injection tumorigenesis
Chrysin Flavonoids HT29 In-Vitro Antisolvent 53.21 pg/ mL 17.9 pg/ mL | Cell Viability [120]
Precipitation
Curcumin, Phenolic, MCF-7, In-Vitro Thin Film 75 pg/ mL, 80 | 40 pg/ mL, 44 1Cytotoxic effects, TApoptosis [121]
Apigenin, Flavonoids, MDA-MB Hydration ug/ mL, 74 ug/ mL, 42
Withaferin Steroids -231 pg/ mL ug/ mL
Terpenoids Vero In-Vitro Solvent 220.2656 pg/ 77.67509 pg/ Inhibitory effect [42]
Flavonoids (Normal) Evaporation & mL mL 1 Cell Viability
Cell Lines Thin Film
Hydration
Polyherbal Mixed MCEF-7, In-Vitro Thin Film 35-82 pg/mL 20-55 pg/mL Synergistic effects, 1 ROS production [121]
MDA MB Hydration
231

Notes: Phytosome: refer to secondary metabolites encapsulated in a phospholipid complex, which enhances their bioavailability and efficacy. Non-phytosome: include
standardized extracts or solutions that are not encapsulated by a phospholipid complex. 1 (up arrow): indicates an enhancement in the effect. | (down arrow: indicates
a reduction in the effect.

substantial influence of phytosome technology on improving the administration and efficacy of phytochemical in cancer
treatment. The results also showed the role of phytosome in converting natural chemicals into powerful anticancer drug,
representing an essential breakthrough in the field of oncology. Moreover, this technology improves therapeutic
effectiveness of phenolics, which possess anticancer effects. Table 3 shows the ability of phytosome formulations to
overcome the harmful effects on cells and restrictions in bioactive compounds processed by the body, resulting in
improved effectiveness in causing programmed cell death and reducing resistance to drugs.**'*?

This review uniquely contributes to the field by exploring the innovative application of phytosome technology for
enhancing the anticancer efficacy of secondary metabolites. Unlike previous studies that focus primarily on general
pharmacological properties, this review delves into specific mechanisms by which phytosome encapsulation optimizes
solubility, absorption, and targeted delivery of natural compounds. The findings presented here provide novel insights
into how such advanced delivery systems can overcome longstanding challenges in the clinical application of secondary

metabolites for cancer therapy, setting a foundation for more effective, natural-based cancer treatments.

Synthesis of Phytosome Containing Secondary Metabolites

Phytosome production entails enclosing bioactive plant components in lipid matrix, mainly phospholipids, to improve
bioavailability and stability. This process commonly uses various methods such as solvent evaporation, thin-layer
hydration, and anti-solvent precipitation.'>* The methods promote the development of a connection between the water-
loving portion of phytochemical and the water-repelling section of the phospholipid, leading to a well-organized, stable
compound that efficiently crosses cell membranes.'** The selection of the method depends on the physicochemical
characteristics of metabolites to be enclosed, suggesting effective incorporation into the lipid framework. To optimize
phytosome formulations, there is a need to alter the ratios of phospholipids to secondary metabolites, modify the
synthesis parameters to improve encapsulation efficiency, and assess the bioactivity of the resulting phytosome.'*’
During this stage of development, it is essential to customize the properties of phytosome, such as particle size, zeta
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potential, and encapsulation efficiency, = to meet therapeutic requirements of certain metabolites. Methods such as
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dynamic light scattering (DLS) and scanning electron microscopy (SEM) are commonly used to analyze and improve the
properties of these nanoparticles, showing their effectiveness and stability in physiological environments.'?’
Phytosome has essential benefits in terms of enhanced bioavailability and effectiveness, although there are difficulties
in stability, scalability, and manufacture. Therefore, appropriate storage conditions and suitable stabilizers are required
for long-term stability.'*® Scalability refers to the process of moving from small-scale production in a laboratory to large-
scale manufacture in industrial settings. This process requires the development of efficient and affordable methods that
can handle a high volume of output, without causing any damage to the structure of phytosome. Moreover, there is a need

to overcome regulatory obstacles and ensure adherence to pharmaceutical standards on quality and safety.

Future Perspectives and Directions

Phytosome technology has made progress in developing delivery systems that can specifically transport phytochemical to
cancer cells. Currently, various investigations are being carried out to investigate innovations, such as modifying the
surface of phytosome with antibodies or ligands that can identify specific markers on cancer cells. These modifications
are performed to enhance the selectivity of phytosome, thereby minimizing the effects on healthy cells and improving
therapeutic outcomes in the field of oncology. The modular structure of phytosome technology renders it highly versatile
for specific treatment to optimize effectiveness and reduce adverse effects by modifying the composition and dosage
according to unique patient profiles. Phytosome being included in individualized treatment plans is a potential advance-
ment in precision medicine, particularly in the field of cancer care, where the variability in individual response to
treatment is a major obstacle.

Understanding and complying with regulations is crucial for the successful implementation of phytosome technology in
clinical trials. Furthermore, there is a need to meet the rigorous demands of the regulatory body, which require thorough
documentation of the synthesis process, and verification of safety, and efficacy through clinical trials. To obtain the product
into clinical use, it is essential to increase manufacturing on a larger scale, while adhering to Good Manufacturing Practices
(GMP). Stability tests must be conducted, along with regulatory permissions before the product can enter the market.

Conclusion

Phytosome technology demonstrates significant potential in augmenting natural chemicals for cancer treatment.
Phytosomes enhance the delivery of bioactive compounds, including flavonoids, alkaloids, and terpenoids, efficiently
targeting essential cancer pathways including NF-kB and PI3K/AKT, thereby establishing them as a promising asset in
oncology. In addition to their anticancer properties, phytosomes mitigate the shortcomings of traditional formulations by
creating molecular complexes with secondary metabolites, thereby improving their solubility and bioavailability.
Comparative studies demonstrate that phytosome-based formulations attain enhanced absorption and prolonged circula-
tion durations, resulting in increased therapeutic efficacy. This review emphasises phytosome technology as a novel
delivery mechanism, facilitating future research and clinical applications in cancer therapy.
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