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Abstract: Selenium (Se), a critically essential trace element, plays a crucial role in diverse physiological processes within the human 
body, such as oxidative stress response, inflammation regulation, apoptosis, and lipid metabolism. Organ fibrosis, a pathological 
condition caused by various factors, has become a significant global health issue. Numerous studies have demonstrated the substantial 
impact of Se on fibrotic diseases. This review delves into the latest research advancements in Se and Se-related biological agents for 
alleviating fibrosis in the heart, liver, lungs, and kidneys, detailing their mechanisms of action within fibrotic pathways. Additionally, 
the article summa-rizes some of the anti-fibrotic drugs currently in clinical trials for the aforementioned organ fibroses. 
Keywords: selenium, fibrosis, organ, clinical

Introduction
Se, a vital trace element for mammals, has a recommended daily intake ranging from a minimum of 55 µg to a maximum 
of 400 µg to maintain normal metabolism.1 Se intake varies worldwide, with some regions in China experiencing both 
deficiencies and excesses.2–4 Both Se deficiency and excess can lead to various diseases. Insufficient Se levels can elevate 
the risk of infections, cancers, cardiovascular diseases, neurological conditions, and other illnesses.5 Notable diseases 
associated with Se deficiency Keshan disease6 and Kashin-Beck disease.7 Excessive Se consumption can result in Se 
poisoning, which has been documented in regions such as Enshi, China,4,8 California,9 Colorado10,11 among others in the 
United States.11 Symptoms of Se poisoning typically include vomiting, abdominal pain, and heart discomfort, with severe 
cases potentially leading to death.12 There is existing evidence associating Se with various disorders, and multiple Se 
formulations are currently being evaluated in clinical studies. A summary of the clinical findings can be found in Table 1. 

Table 1 Selenium and Disease Clinical Trials*

Conditions NCT 
Number

Study 
Status

Phases Date Interventions Sponsor

Liver cirrhosis NCT00212186 Completed NA 1998–2024 Se Vanderbilt University

NCT01650181 Completed 4 2024–2024 SeMet Instituto Nacional de Ciencias Medicas 
Nutricion Salvador Zubiran

NCT00271245 Terminated NA 2024–2024 Selenate Vanderbilt University

Graves’ 
hyperthyroidism

NCT01247077 Completed 2 2024–2024 Se Karolinska Institutet
NCT01611896 Unknown NA 2024–2024 Se Rigshospitalet, Denmark

Autoimmune 

thyroiditis

NCT02644707 Completed 4 2024–2024 SeMet Aristotle University Of Thessaloniki
NCT02013479 Completed NA 2023–2023 Selenate Steen Bonnema

(Continued)
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For more information on Se and disease-related clinical trials, please refer to the supplementary materials, specifically 
Table S1. Tissue fibrosis, a common complication in various diseases, is a leading cause of disability and mortality 
worldwide.13 In the United States, approximately 35% of all deaths are attributed to tissue fibrosis.14 It plays an 
important role in the occurrence and development of major organ diseases in the human body. Common organ 
fibroproliferative diseases include liver fibrosis,15,16 pulmonary fibrosis,17 myocardial fibrosis,18 kidney fibrosis,19 

pancreatic fibrosis,20 splenic fibroplasia,21 diabetic retinal fibroplasia,22 myelofibrosis,23 and nervous system fibrosis.24 

Notably, the heart, liver, lungs, and kidneys are crucial organs, and fibrosis in them directly affects patients' quality of life 
and lifespan. At present, Se and its related biological agents have been closely associated with fibrotic diseases. This 
review explores the complex relationship between Se and fibrosis in the liver, heart, lungs, and kidneys, outlining 
mechanisms in Figure 1 and recent developments in Se-based fibrosis treatments.

Table 1 (Continued). 

Conditions NCT 
Number

Study 
Status

Phases Date Interventions Sponsor

Thyroid 

ophthalmopathies

NCT03891043 Completed NA 2024–2024 Se Instituto de Oftalmologa Fundacin Conde de 

Valenciana

NCT02112643 Withdrawn 3 2024–2026 Selenate Columbia University
Oxidative stress NCT01150786 Completed 3 2024–2024 Se Maryam ekramzadeh

NCT01112449 Completed NA 2024–2024 Se yeast Milton S. Hershey Medical Center

COPD NCT00186706 Completed 4 2024–2024 Se St. Joseph’s Health Care London
NCT00063453 Completed 3 2024–2024 Se Cornell University

Prostate cancer NCT00006392 Completed 3 2024–2024 Se SWOG Cancer Research Network

NCT00736645 Completed 2 2024–2024 SeMet Roswell Park Cancer Institute
NCT01497431 Completed 1 2024–2024 SeCys National Cancer Institute

NCT00978718 Completed 3 2024–2024 Se yeast University of Arizona

Colorectal cancer NCT00706121 Completed 3 2024–2024 Se SWOG Cancer Research Network
NCT00625183 Terminated 2 2024–2024 SeMet Roswell Park Cancer Institute

Adult solid tumor NCT00547547 Completed 1 2024–2024 Se City of Hope Medical Center

NCT00112892 completed 1 2024–2024 Se Roswell Park Cancer Institute
Inflammation NCT01289925 Terminated NA 2024–2024 Se Johns Hopkins University

NCT01147354 Completed 3 2024–2024 Se yeast Zahra Sohrabi

Note: *For more information on selenium and disease clinical trials, please refer to the supplementary materials Table S1.

Figure 1 Summary of the mechanism of Se and fibrosis in various organs.
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Selenium and Organ Fibrosis Diseases
As one of the trace elements, Se plays a variety of biological roles in the body. The primary biologically active form of 
Se is selenocysteine (Sec), while selenoproteins represent the main functional forms of Se within organisms.25 As one of 
the trace elements, Se plays a variety of biological roles in the body. The primary biologically active form of Se is Sec, 
while selenoproteins represent the main functional forms of Se within organisms. A total of 25 selenoproteins have been 
identified in the human body, which can be categorized into six primary groups: the glutathione peroxidase family 
(GPX), thioredoxin reductase (TrxR), selenoprotein P (SelP), selenoprotein N (SelN), iodothyronine deiodinases (DIO), 
and selenoprotein R (SelR). A summary of their antioxidant functions is presented in Table 2. The antioxidant effects of 
selenoproteins may be closely linked to multiple signaling pathways involved in the process of fibrosis. For instance, 
GPX1 overexpression lowers the levels of reactive oxygen species (ROS), inhibits the protein kinase B (AKT) pathway, 
promotes apoptosis, and reduces cisplatin resistance in non-small cell lung cancer.26 GPX2 is regulated by Wnt 
signaling,27,28 while the absence of GPX3 activates the NOX4 and protein kinase Cα (PKCα)/mitogen-activated protein 
kinases (MAPK)/signal transducer and activator of transcription 3 (STAT3) pathways, promoting renal fibrosis.29 GPx4 
knockdown boosts transforming growth factor-β (TGF-β)-induced Smad22/3 signaling, accelerating myofibroblast 
differentiation.30 Additionally, TrxR/Trx inhibitors have the potential to mitigate pulmonary fibrosis through the inhibi
tion of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/TGF-β1/Smads signaling pathway.31 

Fibrosis is a physiological response of the body aimed at counteracting external injury.13 Following minor damage, 
fibroblasts are activated and stimulated to proliferate. These cells migrate to the injured area and secrete extracellular 
matrix (ECM) components, including collagen and fibronectin (FN), which contribute to the formation of granulation 
tissue.32 This process establishes a temporary supportive structure for the wound, facilitating cell migration and repair. In 
the context of wound healing, various growth factors, such as fibroblast growth factor (FGF) and the platelet-derived 
growth factor (PDGF), activate fibroblasts and other mesenchymal cells, prompting their differentiation into myofibro
blasts. This differentiation subsequently remodels the ECM environment to facilitate wound repair. Typically, following 
wound healing, the ECM is efficiently degraded.33,34 However, in cases of severe or persistent injury, there can be an 
over-accumulation of ECM, which leads to necrosis of parenchymal cells, proliferation of connective tissue, and 
ultimately fibrosis.35 This complex pathological process involves not only the activation of fibroblasts but also the 
interplay of multiple signaling pathways. TGF-β is extensively acknowledged as the quintessential pro-fibrotic growth 
factor implicated in tissue fibrosis.36 In its latent form, TGF-β, once activated, engages with the heterodimeric TGF-β 
receptors I (TβR-I) and TβR-II present on the surface of target cells, thereby initiating a series of pro-fibrotic responses 
via both canonical and non-canonical signaling pathways. The canonical TGF-β signaling pathway entails the phosphor
ylation of Smad2 and Smad3, which subsequently associate with Smad4 and translocate to the nucleus, where they 

Table 2 Main Selenoproteins and Their Antioxidant Functions

Name Function

Glutathione Peroxidases  

(GPX1, GPX2, GPX3, GPX4)

The Sec residue is located in the N-terminal region, catalyze the reduction of hydrogen 

peroxide, lipid peroxides, and organic peroxides in the cytoplasm, cell membrane, and 

extracellular space by GSH
Thioredoxin Reductases  

(TrxR1, TrxR2, TrxR3)

The Sec residue is located in the C-terminal region, utilize NADPH as an electron donor 

to reduce oxidized thioredoxin back to its active form

Iodothyronine Deiodinases 
(DIO1, DIO2, DIO3)

The Sec residue is located in the C-terminal region, catalyze the conversion of thyroid 
hormones

Selenoprotein R(SelR) Utilizes its Sec residue to reduce methionine sulfoxide (MetO) back to methionine, 

distributed in both the cytoplasm and the nucleus of the cell
Selenoprotein P(SelP) With an N-terminal redox Sec and multiple C-terminal Sec residues, plasma selenium 

transport protein

Selenoprotein N(SelN) Endoplasmic reticulum-resident protein, affect muscle formation and calcium homeostasis 
regulation
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regulate the transcription of genes associated with fibrosis.37 Non-canonical TGF-β signaling involves several distinct 
pathways, notably the MAPK, phosphatidylinositol 3-kinase (PI3K), and Rho Family of Small GTP-Binding Proteins 
(Rho GTPase) signaling pathways.38 Beyond TGF-β, various tissue factors, including the PDGF, the FGF, the connective 
tissue growth factor (CTGF), and the Wnt1, also mediate their effects through the activation of downstream signaling 
pathways. These pathways encompass RAS/MAPK, PI3K/AKT, JAK/STAT, PI3K/AKT/mammalian target of rapamycin 
(mTOR), and the Wnt/β-catenin pathway. Significantly, the Wnt signaling pathway, especially its canonical route 
involving β-catenin, is integral to the processes of wound healing and tissue fibrosis.39–41 Moreover, the Hippo signaling 
pathway is integral to the activation of fibroblasts and the synthesis of ECM. Cells detect ECM tension via integrin 
receptors, which subsequently activate the Hippo pathway. This activation leads to the initiation of downstream effectors 
Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), facilitating the cellular 
response to mechanical cues.42 Organ fibrosis shares common pathological mechanisms, such as the abnormal deposition 
of ECM, the activation and proliferation of fibroblasts, and the activation of signaling pathways including TGF-β, Wnt, 
and Hippo.

However, due to the differences in structure and microenvironment among various organs, there are also differences 
in the mechanisms.

Myocardial Fibrosis
In recent years, the morbidity and mortality of cardiovascular diseases remain high. One of the common cardiovascular 
diseases is myocardial fibrosis, which is caused by age, chronic heart disease, myocardial infarction, hypertension, 
arrhythmia and myocarditis.43 The principal pathogenesis of myocardial fibrosis is characterized by the proliferation and 
differentiation of cardiac fibroblasts (cFBs) into myofibroblasts in response to pathological stimuli. This process results 
in the excessive secretion of extracellular matrix (ECM) components and collagen deposition.18 Specifically, collagen 
types I and III are predominant, as they represent the major constituents of the myocardial interstitium. Myocardial 
fibrosis can be classified into two types: replacement and diffuse myocardial fibrosis. Both types are mediated by cFBs 
and MFCs. Replacement fibrosis or scar formation is a key process in preventing ventricular wall rupture after ischemic 
injury. It is induced by cardiomyocyte necrosis resulting from prolonged ischemia, thereby inducing myocardial 
replacement by fibrous tissue. In contrast, diffuse fibrosis refers to the expansion of interstitial and perivascular spaces 
without significant loss of cardiomyocytes. This usually occurs in pressure or volume overload, transient repetitive 
ischemia, aging and cardiomyopathy.18,44

During myocardial fibrosis, the activation of the renin-angiotensin-aldosterone system (RAAS) assumes a critical 
role, distinguishing it from fibrotic processes in other organs. Angiotensin II (Ang II) primarily activates the TGF-β1/ 
Smads signaling pathway through its Type 1 receptors (AT1 receptors), thereby promoting the differentiation of cFBs 
into myofibroblasts.45 In contrast, the interaction of Ang II with Type 2 receptors (AT2 receptors) typically exerts 
inhibitory effects on fibrosis, with AT2 receptors serving as a counter-regulatory mechanism.46 Furthermore, Angiotensin 
II (Ang II) has been shown to upregulate the expression of profibrotic mediators, including CTGF and matrix 
metalloproteinases (MMPs), thereby facilitating ECM deposition and tissue remodeling.47 Additionally, Ang II signifi
cantly influences the activation of cardiac fibroblasts and the recruitment of fibrocyte precursor cells by modulating the 
inflammatory microenvironment.48

It was demonstrated that Se and Se compounds play a pivotal role in the resistance to myocardial fibrosis.45,46 It has 
been demonstrated that Se supplementation can increase the activity of GPX and TrxR, thereby improving myocardial 
ischemia-reperfusion injury and myocardial fibrosis.49 Moreover, the combination of Se, N-acetyl cysteine, and ascorbic 
acid has the potential to modify mitochondrial gene expression, which may subsequently lead to an imbalance in the 
redox system, ultimately contributing to the alleviation of diabetic cardiomyopathy.50 Concurrently, the provision of Se 
as a cofactor also regulates the gene expression of related selenoproteins. For instance, as a highly conserved 43 kDa 
tRNA binding protein, the expression of transfer RNA Sec 1 associated protein 1 (Trnau1ap) was found to beupregulated, 
accompanied by an increase in the mRNA expression levels of Glutathione, TrxR, and selenoprotein K.51 Targeted 
deletion of the SeCys tRNA gene trsp in mice resulted in severe myocarditis and rapid death.52 It is well known that Se 
deficiency is associated with Keshan disease. A diet low in Se and vitamin E activates NFκB and increases TGFβ-1 and 
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CTGF levels, leading to oxidative stress and the induction of the disease.53,54 Supplementation of trace elements such as 
zinc, Se and chromium in the offspring of rats with gestational diabetes mellitus (GDM) showed that Se supplementation 
significantly reduced the activity of cardiac injury markers such as creatine kinase isoenzyme MB (CK-MB) and lactate 
dehydrogenase (LDH) in GDM offspring rats, and down-regulated maternal GDM-induced expression of fibrosis-related 
proteins and TGF-β1/Smad3 signaling pathway in the heart tissue of offspring (P < 0.05).55 At the same time, Se can also 
alleviate cardiac remodeling and delay the progression of myocardial fibrosis and heart failure by regulating the silent 
information regulator 1 (SIRT1) and AKT/glycogen synthase kinase 3 beta (GSK-3β) pathways.56 In addition, Se 
deficiency can also induce myocardial pathological damage and fibrosis abnormalities by activating caspase-9 and 
caspase-3 in Gpx-1P198L overexpressing transgenic mice.57

More and more scholars have developed new anti-fibrosis materials using Se. For example, Sun et al50 developed 
a novel self-sustaining Se-embedded nanoparticles (SSSe NPs) that can eliminate multiple reactive ROS to maintain 
mitochondrial function in the myocardium, thereby effectively reducing cardiomyocyte apoptosis and ferroptosis. More 
importantly, SSSe NPs have a unique self-sustaining antioxidant effect, which can release Se for GPX4 biosynthesis to 
promote the repair of endogenous antioxidant system, play a continuous role in clearing ROS, and effectively eliminate 
inflammation and fibrosis at the site of myocardial infarction. At the same time, SSSe NPs can also effectively induce the 
production of vascular endothelial growth factor (VEGF) in myocardial infarction tissues, promote vascular repair, and 
restore myocardial infarction blood flow. Targeted Au-Se core-shell nanostructures (AS-I/S NCs) were found to 
ameliorate myocardial infarction/reperfusion (MI/RI) injury in rats. This effect is attributed to the inhibition of ROS 
mediated oxidative damage and the modulation of MAPK and PI3K/AKT signaling pathways.59 A novel thermosensitive 
Se-containing polymer hydrogel, namely poly DH-Ss/PEG/PPG urethane (Se-PEG-PPG), can reduce the expression of 
IL-6 to inhibit inflammation, downregulate the expression of fibrosis-related proteins in vivo to inhibit fibrosis, and 
improve left ventricular remodeling.60

Liver Fibrosis
Liver fibrosis is a pathological process of chronic hepatic parenchymal injury, inflammation, and oxidative stress caused 
by hepatitis virus infection, alcohol abuse, immune response, drugs, and chemical toxicants, which ultimately leads to 
abnormal hyperplasia of hepatic fibrous connective tissue.16,61,62 A 2024 review and meta-analysis found global 
prevalence rates of advanced liver fibrosis and cirrhosis at 3.3% and 1.3%, respectively, with an increasing trend since 
2016.63 The fundamental process underlying liver fibrosis is characterized by the activation of hepatic stellate cells 
(HSCs), which secrete ECM components, thereby contributing to both the development of liver fibrosis and the 
remodeling of liver architecture.15 There are specific mechanisms and signaling pathways involved in this process. 
Hepatic macrophages, encompassing Kupffer cells and monocyte-derived macrophages, exhibit a dual function in both 
the progression and resolution of liver fibrosis. Kupffer cells can polarize into M1 or M2 phenotypes, with the former 
promoting hepatic inflammatory responses64 and the latter inhibiting inflammatory reactions and accelerating tissue 
repair.65 Macrophage M1 and M2 phenotypes exhibit dynamic plasticity in response to various microenvironmental 
signals. Histidine-rich glycoprotein (HRG), an endogenous molecular factor, facilitates the polarization of hepatic 
macrophages towards the M1 phenotype.66 Similarly, the AC73 and siUSP1 dual drug-loaded lipid nanoparticle, 
designed to carry milk fat globule epidermal growth factor 8 (MFG-E8) and named MUA/Y, has been shown to promote 
the transition of macrophages from the M1 phenotype to the M2 phenotype.67 Sinusoidal capillarization has been 
implicated in the progression of liver fibrosis. This phenomenon, first introduced by Schaffner,68 describes the gradual 
reduction or complete loss of fenestrations in hepatic sinusoidal endothelial cells, accompanied by the formation of a 
basement membrane beneath the endothelium, leading to a structure that resembles continuous capillaries. Subsequent 
investigations have demonstrated that hepatic sinusoidal capillarization modifies the liver’s microenvironment, influen
cing both liver hemodynamics and metabolism, which in turn contributes to the development of liver fibrosis.69 Further 
analysis has revealed that these changes may be mediated by the leukocyte cell-derived chemotaxin 2 (LECT2)/Tie1 
signaling pathway.70

Studies have found that Se is associated with a variety of liver diseases such as non-alcoholic fatty liver disease 
(NAFLD),70,71 chronic active hepatitis,72 cirrhosis,73 liver cancer,74 prognosis of liver transplantation,75 and liver 
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fibrosis.64 Epidemiological studies have demonstrated that low serum Se is closely related to liver fibrosis.76–79 

Regression analysis further showed that serum in serum (S-Se) was positively correlated with serum albumin and plasma 
FN, while S-Se was negatively correlated with the amino terminal peptide of type III procollagen (NPIIIP).80 Low Se 
levels drive higher expressions of metalloproteinases (MMP1/3) and their tissue inhibitors of metalloproteinases (TIMP1/ 
3).81 On the contrary, the expression and activity of GPX and superoxide dismutase(SOD) increased, while the levels of 
malondialdehyde (MDA), tumour necrosis factor-α (TNF-α), IL-6 and monocyte chemotactic protein-1 (MCP-1) 
decreased under high Se levels.82 In CCl4-induced liver fibrosis, high Se level increase the apoptosis level of HSCs, 
upregulate the expression of TIMP-1 and inhibit the activity of HSCs. Additionally, they downregulate the signal 
transduction of silent information regulator 1 (SIRT1) and MAPK, subsequently decreasing the expression of collagen, 
TGF-β and hydroxyproline.82–84

Other forms of Se are also closely related to liver fibrosis. H2Se leads to the degradation of collagen IV by decoupling 
the thiamine bond and reduces the remodeling of ECM.85 Selenite reduces the number of activated HSCs, attenuates the 
stimulating effect of TGFβ1, reduces the production of collagen 1 and IL-8, and increases the expression of matrix 
metalloproteinase-9 (MMP-9).86,87 Short-term Se deficiency dietary intervention could lead to liver fibrosis by AKT 
mTOR signaling pathway.88 Dietary Se, zinc and allopurinol supplements can stabilize the liver ultrastructure through 
antioxidant reduction, thereby improving the disturbance of blood and liver manganese levels in rats.89 In addition, 
supplementing with adequate amounts of vitamin E and Se can reduce the accumulation of type I collagen mediated by 
TGFβ1 and inhibit the activation and proliferation of HSCs induced by CCl4, as well as promote apoptosis of activated 
HSCs during the acute injury phase.83,90,91 The combination of anti-fibrotic herbs and Se can prevent fibrosis by boosting 
immunity and inhibiting the expression (NF-κB) and TGF-β1.92 Butaselen (BS), a new inhibitor of Se-containing TrxR, 
inhibits the activation of HSCs by blocking the TGF-β1/Smads pathway, thereby preventing the production of α-smooth 
muscle actin (α-SMA) and collagen.93 Selenium nanoparticles (SeNPs) downregulate pro-fibrosis and pro-inflammation 
genes, downregulate the expression of unc-51 like autophagy activating kinase 1 (ULK1) and phosphorylated ULK1 
protein as well as mitochondrial autophagy levels, and up-regulate the expression of mTOR and phosphorylation- 
modified mTOR proteins, thus reducing the severity of liver pathological injury and fibrosis.94 SeNPs also have been 
shown to alleviate liver fibrosis induced by thioacetamide (TAA) through the induction of endoplasmic reticulum (ER) 
stress, activation of the protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway, and initiation of 
an adaptive unfolded protein response (UPR).95 Accordingly, the elimination of inflammation and resistance to oxidative 
stress may be potential mechanisms by which high Se levels reduce liver fibrosis.

It has been found that organic Se-rich products play an important role in anti-fibrosis. The novel Se-enriched 
probiotics (SP) significantly decreased the expression of α-SMA, collagen, TGF-β1, TIMP-1 and inflammation-related 
genes in CCl4-treated rats, and induced apoptosis of activated HSCs.82 The mechanism may be to activate SIRT1 signal 
and weaken liver oxidative stress, ER stress, inflammation and MAPK signal transduction.84 In vivo hepatotoxicity 
models have demonstrated that nano-Se can exert an antagonistic effect on cadmium-induced hepatocyte pyroptosis by 
targeting the APJ-AMPK-PGC1α pathway.96 Further studies have found that SP can also reduce liver oxidative damage 
after high ambient temperature treatment in rats.97 Compared with supplementing Se-enriched yeast (SY) alone, the 
combination of SY and gum arabic (GA) can significantly improve the expression of collagen 1, α-SMA and TGFβ1, 
significantly inhibit inflammation, and play an anti-fibrotic role.98 Compared with ordinary green tea, Se-rich green tea 
plays an important role in improving liver ECM deposition and scarring, as well as 5-hydroxytryptamine (5-HT) and 
5-HT receptor (5-HTR) 2A/2B signal transduction.99

Pulmonary Fibrosis
Pulmonary fibrosis is a chronic and fatal lung disease, primarily induced by viral infections, drugs, autoimmune diseases, 
connective tissue disorders, antigenic hypersensitivity or pulmonary sarcoidosis.100 The main pathological features 
include heterogeneous fibrosis, fibroblast foci, disordered collagen and excessive deposition of ECM, resulting in the 
loss of normal lung structure, with or without honeycomb cyst formation, which has a significant impact on the global 
population aging.17,100 Coronavirus disease (COVID-19) was first reported in Wuhan, China at the end of 2019.91 So far, 
the infection has spread to almost all countries around the world. The pathogenesis of COVID-19 includes inhibition of 
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host antiviral and innate immune responses, induction of oxidative stress, followed by severe inflammation known as 
“cytokine storms”, leading to acute lung injury, pulmonary fibrosis, and pneumonia.101–104 Studies have shown that 
a large number of patients with COVID-19 have Se deficiency and high mortality.105 Moghaddam et al105 found that 
appropriate doses of Se can be used as a supportive treatment for COVID-19. Compared with the placebo group, β- 
glucan rich in Se and zinc and the nutritional supplement of probiotic Saccharomyces cerevisiae (ABBC1) can make the 
humoral and cellular immune response intensity of COVID-19 higher and enhance immunity.106 The mechanism may be 
that selenoprotein can enhance T cell proliferation and NK cell activity, and can also enhance the body’s response to 
vaccines and immunity to pathogens, thereby inhibiting severe inflammation in tissues such as lung and intestine.107 

Therefore, we suspect that one of the possible reasons for the extremely high mortality in COVID-19 patients is that Se 
deficiency leads to down-regulation of selenoprotein expression, resulting in the inability of selenoproteins to counteract 
oxidative stress caused by viral infection. At present, several nutritional health products, including Se, have been proved 
to have the ability to enhance immunity, antiviral, antioxidant and anti-inflammatory effects. Food supplements may help 
strengthen the immune system, prevent transmission of COVID-19 virus, suppress lung inflammation, and prevent it 
from progressing to the stage of lung fibrosis.104

Studies have shown that Se-Met can provide cellular protection through different mechanisms. On one hand, it 
regulates the cGAS/STING/NF-κB pathway to inhibit pulmonary inflammatory responses and prevent cellular 
senescence.108 On the other hand, it enhances the expression of GPx4 to protect cells from ferroptosis and alleviate 
ER stress, thereby reducing cellular oxidative stress and ferroptosis. SeNPs not only have the advantages of reducing 
toxicity, increasing biological activity, promoting cell targeting and improving bioavailability, but also have potential 
anti-inflammatory and anti-fibrosis effects, regulating the expression of NF-κB, nuclear factor erythroid 2-related factor 2 
(Nrf2), redox imbalance and MAPK.109,110 Furthermore, SeNPs have also been shown to inhibit the activity of TGF-β, 
which is an ideal feature to prevent the progression of organ fibrosis.111,112 Yinghua et al113 constructed a Se-containing 
metal complex drug delivery system (RuSe), which can reduce inflammation in lung tissue of mice by activating GPX1/ 
TrxR, inhibit apoptosis in lung tissue, and effectively alleviate pulmonary fibrosis.

Renal Fibrosis
In 2017, the worldwide prevalence of chronic kidney disease (CKD) was estimated to be 9.1%.114 CKD is characterized 
by persistent abnormalities in kidney structure or function lasting longer than three months, with renal fibrosis serving as 
a prevalent clinical pathological feature, and ultimate manifestation of the disease.115 In renal fibrosis, myofibroblasts 
primarily come from resident interstitial fibroblasts, and most of the ECM is generated by interstitial cells, while only a 
minor part is derived from dedifferentiated proximal renal tubule cells.116 In the study of kidney fibrosis, scholars have 
introduced the novel concept of the fibrogenic niche, which refers to the observation that fibrosis is not uniformly 
distributed in the renal parenchyma but begins to form in certain local areas, thereby creating a unique tissue 
microenvironment.117 The latest research has, for the first time, confirmed that the depletion of GPX3 activates the 
NOX4/ROS/PKCα/MAPK/STAT3 signaling pathway, leading to oxidative stress in the extracellular microenvironment.29 

This oxidative stress, in turn, drives the activation of fibroblasts and the development of kidney fibrosis. Therefore, 
strategies targeting this oxidative stress microenvironment may be a new approach for the prevention and treatment of 
kidney fibrosis in the future. Se prevents renal fibrosis by regulating MMPs and TIMPs in streptozotocin-induced diabetic 
rats.29 However, whether Se is directly involved in these regulatory processes associated with renal fibrosis remains 
unknown. In the study, rats exposed to both T-2 toxin and Se edeficiency experienced a synergistic effect that potentially 
suppressed the activation of the PI3K/AKT and NF-κB signaling pathways, leading to exacerbated inflammatory 
responses, promoted EMT, and increased deposition of ECM.118 As a novel intervention, SeNPs have been found to 
alleviate fibrosis induced after acute kidney injury (AKI) by modulating the GPx-1/NLRP3/Caspase-1 signaling 
pathway.119 We believe that Se deficiency may lead to excessive accumulation of ECM, irregular secretion of MMPs, 
activation of the Wnt/β-catenin pathway, and alterations in EMT, thereby causing renal fibrosis.
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Discussion
As our understanding of abnormal signaling pathways in organ fibrosis improves, the development of anti-fibrotic drugs 
is advancing steadily. We have summarized some of the drugs that are currently in clinical trials, mainly involving 
myocardial fibrosis, liver fibrosis, pulmonary fibrosis, and kidney fibrosis, as shown in Tables 3–6. For more clinical 
randomized controlled trials on myocardial fibrosis, liver fibrosis, pulmonary fibrosis, and renal fibrosis, please refer to 
the supplementary materials, specifically Tables S2–S4. Because of no obvious clinical manifestations and invasive 
diagnosis in the early stage of organ fibrosis, the diagnosis is difficult. Clinical imaging techniques, such as computed 
tomography (CT), ultrasound, and magnetic resonance imaging (MRI), can detect formed fibrosis in the lung, liver, and 
heart, but are less sensitive in detecting early diseases. In terms of treatment, a few anti-fibrosis treatments alleviate 

Table 4 Clinical Trials on Liver Fibrosis*

NCT 
Number

Study 
Status

Phases Date Interventions Sponsor

NCT02227459 Completed 1 2024–2024 ND-L02-s0201 Bristol-Myers Squibb

NCT00180674 Completed 2 2024–2024 Warfarin Imperial College London
NCT01935817 Completed 3 2024–2024 Silybin University of Catania

NCT00043303 Completed 2 2024–2024 IFN γ-1b InterMune

NCT01938781 Completed 4 2024–2024 Entecavir Beijing Friendship Hospital
NCT00956098 Completed 2 2024–2024 Oltipraz HK inno.N Corporation

NCT00347009 Completed 4 2024–2024 Adefovir dipivoxil GlaxoSmithKline

NCT00049842 Completed 3 2024–2024 peg-IFN α-2b Merck Sharp & Dohme LLC
NCT00298714 Completed 4 2024–2024 Losartan Hospital Clinic of Barcelona

NCT02161952 Completed 2 2024–2024 Pirfenidone University of Guadalajara
NCT01231685 Completed 2 2024–2024 Raltegravir McGill University Health Centre

NCT03420768 Completed 2 2018–2019 BMS-986263 Bristol-Myers Squibb

NCT03659058 Completed NA 2016–2018 Silymarin Zagazig University
NCT02400216 Completed 2 2015–2017 Dual cholate National Institute of Diabetes and Digestive and Kidney Diseases

NCT01707472 Completed 2 2012–2014 Simtuzumab Gilead Sciences

NCT00244751 Completed 2 2005–2018 GI262570 GlaxoSmithKline

Note: *For more information on liver fibrosis clinical trials, please refer to the supplementary materials Table S3.

Table 3 Clinical Trials on Myocardial Fibrosis*

Interventions NCT Number Study Status Phases Date Sponsor

Spironolactone NCT00879060 Completed 4 2007–2011 Tufts Medical Center
NCT02285920 2 2014–2017 University of Pennsylvania

NCT00663195 4 2004–2005 Tottori University Hospital

NCT01069510 4 2010–2016 Oregon Health and Science University
Pirfenidone NCT02932566 Completed 2 2017–2019 Manchester University NHS Foundation Trust

NCT00011076 Completed 2 2001–2003 National Heart, Lung, and Blood Institute

NCT05531955 Not recruiting 2 2022–2024 Shanghai Zhongshan Hospital
Dapagliflozin NCT03782259 Completed 4 2019–2022 University of Washington

NCT05848102 Recruiting 4 2022–2024 Sun Yat-sen University

NCT05420285 Recruiting 2 2022–2023 Assistance Publique - Hpitaux de Paris
NCT06201000 Recruiting NA 2023–2024 October 6 University

Enalapril NCT02432885 Completed 3 2009–2012 InCor Heart Institute

Pycnogenol NCT00952627 Terminated 2 2009–2010 University of Arizona

Note: *For more information on myocardial fibrosis clinical trials, please refer to the supplementary materials Table S2.
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fibrosis by delaying the rate of fibrosis progression.120,121 However, due to the slow progression of organ fibrosis disease, 
which makes clinical trials long and costly, there are great challenges in the diagnosis and treatment of fibrosis.122

In recent years, the interplay between Se and human health has garnered significant attention, particularly regarding 
its integral role in thyroid function. During the synthesis of thyroid hormones, thyroid follicles continuously generate 
hydrogen peroxide (H2O2), necessitating a robust antioxidant system to safeguard cells from damage induced by H2O2 

and ROS.123 Se serves as a vital component of various antioxidant enzymes that neutralize free radicals within the body, 
thereby mitigating oxidative stress and cellular damage. Additionally, deiodinases (DIO) play a crucial role in the 
synthesis, activation, and metabolism of thyroid hormones, primarily responsible for converting T4 into the more potent 
T3.124 Se is an essential component of the deiodinases, thus, a deficiency in Se may impair the activity of these enzymes, 
subsequently influencing the metabolism of thyroid hormones. Dysregulation of thyroid hormone metabolism, whether 
resulting in hyperthyroidism or hypothyroidism, can contribute to cardiovascular complications.125 For instance, an 
excess of thyroid hormones can elevate heart rate, increase cardiac stress, and induce atrial fibrillation, thereby posing 
life-threatening risks.126 Elevated concentrations of FT3 are significantly correlated with an increased risk of coronary 
artery events,127 indicating that thyrotoxicosis may contribute to myocardial ischemia and infarction, even without pre- 
existing coronary artery disease.128 In a hypothyroidism animal experiment, just 6 weeks of propylthiouracil (PTU) 

Table 5 Clinical Trials on Pulmonary Fibrosis*

Conditions NCT Number Study Status Phases Date Interventions Sponsor

IPF NCT03567785 Completed 4 2018–2021 Pirfenidone KU Leuven
NCT03710824 Completed NA 2019–2023 Nintedanib Boehringer Ingelheim

NCT01136174 Completed 2 2024- now BIBF 1120 Boehringer Ingelheim

NCT04552899 Completed 3 2021–2023 PRM-151 Hoffmann-La Roche
NCT03981094 Completed 1 2019–2019 BMS-986278 Bristol-Myers Squibb

CF NCT05274269 Completed 3 2022–2023 Ivacaftor Vertex Pharmaceuticals Incorporated

NCT03256968 Completed 4 2017–2018 Ataluren University of Alabama at Birmingham
NCT01132482 Completed 2 2015–2017 Sildenafil National Jewish Health

NCT00625612 Completed 3 2008–2010 Denufosol tetrasodium Merck Sharp & Dohme LLC
NCT02134353 Completed 3 2014–2017 Mannitol Syntara

PF NCT04461587 Completed 2 2020–2022 Pirfenidone Pulmonary Research of Abingdon, LLC

NCT04308681 Completed 2 2020–2022 BMS-986278 Bristol-Myers Squibb
NCT04279197 Completed 2 2020–2021 Fuzheng huayu tablet ShuGuang Hospital

NCT03559166 Completed 1 2018–2019 bld-2660 Blade Therapeutics

NCT00000596 Completed 2 1978–1983 Prednisone National Heart, Lung, and Blood Institute
ILD NCT03313180 Completed 3 2017–2023 Nintedanib Boehringer Ingelheim

NCT02630316 Completed 2/3 2017–2019 Inhaled treprostinil United Therapeutics

NCT02370693 Completed 2 2016–2020 Bortezomib Northwestern University
COVID-19 NCT05648734 Completed NA 2022–2022 Corticosteroids Mansoura University

NCT04551781 Completed NA 2020–2020 Prednisone South Valley University

Note: *For more information on pulmonary fibrosis clinical trials, please refer to the supplementary materials Table S4.

Table 6 Clinical Trials on Renal Fibrosis

NCT Number Study Status Phases Date Interventions Sponsor

NCT00677092 Completed 2 2024–2024 Imatinib mesylate Massachusetts General Hospital

NCT01860183 Completed 4 2024–2026 Mycophenolate mofetil Clinical Hospital Merkur

NCT00865449 Completed 3 2024–2024 Spironolactone Instituto Nacional de Cardiologia Ignacio Chavez
NCT01359345 Unknown 2,3 2024–2024 Gadolinium Imam Khomeini Hospital

NCT00493194 Unknown 4 2024–2024 Sirolimu University Hospital, Antwerp
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supplementation was enough to cause a decrease in heart weight, chamber dilation, reduced coronary function, and 
impaired blood flow.129

Furthermore, Se has become a focal point in cancer research.130 A particularly remarkable study was conducted by 
the Arizona Cancer Center, which stands out for its significant findings. In this 13-year-long double-blind clinical trial, 
1321 cancer patients received a daily supplement of 200 micrograms of selenium. The results demonstrated a 37% 
reduction in cancer incidence and an impressive 50% decrease in mortality rates.131 Se’s principal anti-neoplastic 
mechanism involves triggering apoptosis in cancer cells. Se and its compounds have been demonstrated to initiate the 
apoptotic cascade, with the engagement of caspases being an essential component of this cell death sequence.132,133 

Additionally, selenium nanoparticles can induce autophagy in colorectal cancer cells, indicating that Se influences other 
forms of cell death beyond apoptosis.134 The ability of Se to modulate oxidative stress is another critical aspect of its 
anti-cancer properties. Se compounds can enhance the production of ROS within cancer cells, leading to oxidative 
damage and subsequent cell death. This may be related to the increased susceptibility of cancer cells to the effects of 
oxidative stress.132,135 This may be related to the increased susceptibility of cancer cells to the effects of oxidative stress. 
Se possesses a variety of complex anticancer mechanisms, which collectively highlight its potential as a cancer 
therapeutic agent.

In summary, Se and selenium compounds have a significant impact on the pathogenesis and treatment of organ 
fibrosis diseases, and we should explore how selenium can better treat fibrosis diseases and bring the gospel to patients 
with fibrosis.

Conclusion
Se and Se-relatedits compounds can interfere with particularly in the occurrenceform of SeC, play a vital role in exerting 
their antioxidant and development of fibrotic diseases by affecting the redox process and affecting fibrosis-relatedfunc
tions. By reduc-ing oxidative stress, Se helps to inhibit signaling pathways. A variety of Se compounds can be used 
associated with fibrosis, such as ideal potential drugs TGF-β, Wnt, and Hippo, thereby reducing the activation and 
proliferation of myofibroblasts. Consequently, Se may emerge as a significant intervention for the prevention and 
treatment of fibrosis, which can bring gospel to patients withorgan fibrosis.
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