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Abstract: A bone-implanted porous scaffold of mesoporous bioglass/polyamide composite 

(m-BPC) was fabricated, and its biological properties were investigated. The results indicate 

that the m-BPC scaffold contained open and interconnected macropores ranging 400–500 µm, 

and exhibited a porosity of 76%. The attachment ratio of MG-63 cells on m-BPC was higher 

than polyamide scaffolds at 4 hours, and the cells with normal phenotype extended well when 

cultured with m-BPC and polyamide scaffolds. When the m-BPC scaffolds were implanted into 

bone defects of rabbit thighbone, histological evaluation confirmed that the m-BPC scaffolds 

exhibited excellent biocompatibility and osteoconductivity, and more effective osteogenesis 

than the polyamide scaffolds in vivo. The results indicate that the m-BPC scaffolds improved 

the efficiency of new bone regeneration and, thus, have clinical potential for bone repair.
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Introduction
Bioactive glasses (BGs) with excellent biocompatibility and bioactivity have been used 

for bone tissue repair since their discovery some decades ago.1,2 In 2004, a significant 

evolution in this field was developed by Yan et al who synthesized, for the first time, 

BG that showed an ordered mesoporous arrangement, and the inclusion of mesopores 

in silicon dioxide-calcium oxide-phosphorus pentoxide-based glasses opened a wide 

range of new potential applications for BG.3

Mesoporous BG (m-BG) shows the outstanding textural properties of  classical 

silica-based mesoporous materials such as MCM-41 and SBA-15, that is, high surface 

area and pore volume, and well-defined mesoporous diameter.4,5 The large surface area 

of m-BG results in higher chemical reactivity compared to that of BG. The existence 

of mesoporosities in the BG matrixes and their high surface area greatly accelerate 

the deposition process of hydroxycarbonate apatite as demonstrated by Zhao et al.6 

Thus, bioactive kinetics are enhanced, which improves the role of  silica-based BG 

as devices for bone tissue regeneration. In this sense, several groups have proposed 

m-BG as components of scaffolds for bone tissue engineering.7–9 Although the  existing 

bioactive inorganic materials (such as BG) possess excellent bioactivity, they are very 

brittle and have inherently poor tensile properties.10,11 Polymers such as poly(lactic 

acid),  polyglycolide, and poly(lactide-co-glycolide) have been widely used to  fabricate 

 different types of scaffolds for bone repair, owing to their biocompatibility and  malleable 

nature.12 Nevertheless, there are limits to the practical use of these  polymers for bone 

replacement. For example, none of the polymers mentioned above are bioactive, 
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which means that the newly formed bone  tissue cannot bond 

tightly to the polymer surface.13 Given the  limitations and 

advantages of bioactive inorganic  materials and polymers, 

the application of polymers and bioactive materials to cre-

ate a bioactive composite scaffold was  suggested, and many 

studies have demonstrated composite scaffolds with physical, 

biological, and mechanical properties suitable for bone tissue 

engineering application.14–16

Tissue engineering offers a promising new approach to 

bone repair. Successful bone tissue engineering requires the 

use of a porous scaffold with interconnected spaces in order 

to provide sufficient room for cell migration and adhesion, 

and the ingrowth of new bone tissue.17,18 Polyamide (PA), 

a polymer with excellent biocompatibility, has been used 

to fill bone defects and to create porous scaffolds for bone 

tissue engineering.19 Poly(lactic acid), or polyglycolide and 

poly(lactide-co-glycolide), show a collapse degradation man-

ner after implanted in vivo, and also give rise to acid degrada-

tion by-products, stimulation to tissue, and even inflammation, 

while PA does not have these disadvantages.12 In this study, a 

novel porous scaffold of m-BG and PA6 composite (m-BPC) 

was fabricated, and its properties were investigated.

Material and methods
Preparation of m-Bg
m-BG was synthesized by using nonionic block copolymer 

EO
20

PO
70

EO
20

 (Pluronic P123, Boston, USA) (Sigma-

aldrich, Shanghai Trading Co., Ltd, Shanghai, China) as 

the template agent,4 and tetraethyl orthosilicate (Sinopharm 

Chemical Reagent Co., Ltd, Shanghai, China) as the silica 

source. P123 (8 g) was dissolved in 120 mL ethanol under 

stirring for 2 hours, and 13.4 g of tetraethyl orthosilicate 

and 4 g of 1M hydrochloride (Sinopharm Chemical 

Reagent Co., Ltd, Shanghai, China) were added to the 

mixed solution of P123 and ethanol. Then, 2.8 g of calcium 

nitrate tetrahydrate (Sinopharm Chemical Reagent Co., 

Ltd, Shanghai, China) and 1.46 g of triethyl phosphate 

(Sinopharm Chemical Reagent Co., Ltd, Shanghai, China), 

with a molar ratio of 1:1.5 calcium:phosphorus, were added 

as calcium and phosphorus oxide precursors, respectively, 

and stirred magnetically at room  temperature for 24 hours. 

The precipitation was filtered, washed thoroughly with 

deionized water, and dried at 60°C under vacuum (DIF-

6020, Shanghai Jinghong laboratory equipment Co., Ltd, 

Shanghai, China) to get the powders. The samples were 

sintered at 600°C for 6 hours with a heating rate of 1°C/

min to remove the template (P123) and obtain m-BG. 

Scanning electron microscopy (SEM) (JSM-6360 LV; 

JEOL Ltd, Tokyo, Japan) and high resolution transmission 

electron microscopy (TEM) (JEM-2010; JEOL) was used to 

characterize the morphology and microstructure of m-BG. 

Brunauer–Emmett–Teller and Barrett–Joyner–Halenda 

analyses with a porosimeter (TriStar® 3000; Micromeritics 

Instrument Corporation, Norcross, GA) were used to deter-

mine the surface area and the pore size distribution.

Preparation of m-BPC scaffolds
The m-BPC scaffolds were prepared by solvent casting and 

particulate leaching. Briefly, 9 g of PA6 (Bayer Durethan® 

B30S, Leverkusen, Germany) was dissolved in 50 mL calcium 

chloride/ethanol solution at a  concentration of 20% (weight/

volume), and 3 g m-BG was added to produce an m-BG/PA 

composite with 25 weight percent m-BG  content. The mixture 

was stirred continuously for 2 hours, and sodium chloride 

was added as a porogen (size: 400–500 µm: PA/sodium 

chloride = 1/8, weight/weight), and the mixture was cast into 

Teflon molds containing 60 wells (Institute of biomaterials, 

Shanghai, China) (Φ 10 × 5 mm). The samples were air-dried 

in a fume hood (Institute of Biomaterials, Shanghai, China) 

for 24 hours to evaporate the ethanol and were subsequently 

vacuum-dried at 50°C for 48 hours to remove any remaining 

solvent. To leach out the salt, the dry samples were immersed 

in deionized water for 48 hours at room temperature, with 

water changes approximately every 12 hours three or four 

times. The scaffolds were obtained by removing from the 

water and air-drying for 24 hours. Using the same method, 

pure PA scaffolds were prepared as a control. The morphology 

of m-BPC scaffolds were observed by SEM (JSM-6360LV; 

JEOL). The porosity of the m-BPC scaffolds was measured 

in distilled water using Archimedes method.

Cell attachment
To investigate the attachment properties of MG-63 cells 

(Chinese Academy of Sciences Shanghai cell library, 

Shanghai, China) on the m-BPC scaffolds (PA as a control), 

the samples (Φ 10 × 5 mm) were sterilized using ultraviolet 

light. MG-63 cells were seeded on the samples at a density 

of 5 × 103 cells/per sample. Adhesion cells on substrates were 

assessed quantitatively using a 3-(4,5- dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) assay (MTT Kit; 

Roche Diagnostics, Indianapolis, IN). In brief, cells/scaffold 

construct was placed in a culture medium containing MTT and 

incubated in a humidified atmosphere at 37°C for 4 hours. The 

absorbance value was measured at 570 nm using a Multiskan 

MK3 microplate reader (Thermoelectric, Shanghai, China). 

Six specimens were tested at each incubation period, and 
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each test was performed in triplicate. Results are reported 

as optical density units. The morphologies of cells cultured 

with both m-BPC and PA scaffold samples were observed 

and photographed under an inverted light microscope 

(IMT-2, A10PL; Olympus Corporation, Tokyo, Japan).

Surgical procedures
The study was approved by the Laboratory Animal Center 

of Shanghai University of Traditional Chinese Medi-

cine (Shanghai, China). A study in a rabbit femur cavity 

defect model was carried out to investigate the efficacy 

of composite scaffolds in promoting bone repair. Twenty-

four skeletal mature New Zealand white rabbits (Silaike 

Inc. Shanghai, China) were used in this study, and surgi-

cal intervention was performed under general anesthesia. 

Lateral and medial approaches were performed in left 

shaved knees to expose the distal femoral epiphysis, and 

the cavitary defects were created with a medium speed 

burr (Φ 5 × 5 mm). After the defects were washed with 

physiological saline, the m-BPC and PA scaffolds were 

implanted; the empty bony defects served as the control. 

At 4 weeks and 12 weeks after implantation, the rabbits 

were sacrificed with an overdose of pentobarbital and the 

bone formation was evaluated with synchrotron radiation-

based microcomputed tomography (SR m-CT) BL13W1, 

Shanghai Synchrotron Radiation Facility. Shanghai, China 

scan images. The implants were then retrieved with the 

surrounding tissues and prepared for histological analysis.

SR m-CT imaging and histological analysis
SR m-CT was used to evaluate repair of the bone defect by 

composite scaffolds, which were performed at beamline 

BL13W (Shanghai Synchrotron Radiation Facility, Shanghai, 

China) using a monochromatic beam with an energy of 30 keV 

and a sample-to-detector distance of 1.5 m. A 4000 × 2500 

charge-coupled device detector, (CCD, Double Asahi 

Electronics Co., Ltd, Shanghai, China), with the pixel size set 

to 6 mm, was used to record images. A total of 1200 projec-

tions within an angular range of 180°C were taken, and the 

exposure time amounted to 8 seconds per projection. The 

three-dimensional structure was reconstructed using a filtered 

back-projection algorithm. The images were finally redigitized 

with an 8-bit data format, proportional to the measured attenu-

ation coefficients of the voxels. Bone radiomorphometric anal-

ysis was performed by using MicroView 2.2 Advanced Bone 

Analysis Application software (GE Healthcare, Waukesha, 

WI). The amount of bone ingrowth into the scaffolds was 

quantified as the bone volume within the defined volume of 

interest in each bone defect site.

At the end of each implantation period, femora were 

removed and assigned to histological analysis. After fixa-

tion with 4% neutral buffered formalin for 48 hours, the 

extracted femora were decalcified in 12.5% ethylenedi-

aminetetraacetic acid (Sinopharm Chemical Reagent Co., 

Ltd, Shanghai, China), dehydrated in a graded series of 

alcohol, and embedded in paraffin. Serial 4-mm thick sec-

tions were then stained with hematoxylin and eosin (The 

Tianjin Bankee Biotechnology Co., Ltd,Tianjin,China) and 

observed microscopically.

Statistical analysis
All quantitative data were analyzed with Origin® 8.0 

(OriginLab Corporation, Northampton, MA) and expressed as 

mean and standard deviation. Statistical analysis was carried 

out using analysis of variance. Statistical significance was 

attained with greater than 95% confidence level (P , 0.05).

15 kV ×20,000 1 µm 0000 16 27 SEI 50 nm

A B

Figure 1 (A) Scanning electron microscopic and (B) transmission electron microscopic images of the morphology of mesoporous bioactive glass. 
Note: Arrow represents mesoporous channels.
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Morphology and microstructure  
of m-BPC scaffolds
Figure 3 shows a photo of m-BPC scaffolds. Figure 4 shows 

the SEM images of the surface morphology and microstructure 

of the m-BPC porous scaffolds under various  magnifications. 

The m-BPC scaffolds exhibited a macroporous structure with 

completely open interconnected pores. The pores appeared 

almost spherical in shape, with diameters of 400–500 µm 

(Figure 4A). High-magnification SEM images further 

revealed that a number of small pores (around 2 µm) were 

distributed across the macropore walls. The  porosity of the 

m-BPC scaffolds prepared by this method was around 76%.

Cell attachment and morphology
Cell attachment was investigated using the MTT assay 

of MG-63 cells cultured on m-BPC scaffold samples; PA 

scaffolds and tissue culture plate were used as controls. 

Figure 5 shows the results of the optical density values 

(represents cell attachment ratio) for these scaffold samples. 

At 4 hours, the optical density values for m-BPC were 

 significantly higher than PA and the control (P , 0.05). 

These results indicate that cell attachment for m-BPC was 

superior to PA samples, suggesting that m-BPC facilitated 

cell adhesion on its surfaces.

Morphologies of MG-63 cells cultured with m-BPC and 

PA scaffold samples were observed using phase contrast 

microscopy, as shown in Figure 6. The micrographs reveal 

that after being cultured for 4 hours, MG-63 cells cultured 

with both m-BPC and PA specimens grew well and stretched 

sufficiently, had full configurations, and showed no abnormal 

morphologies. These results indicate that both m-BPC and PA 

scaffolds had no negative effect on MG-63 cell morphology 

and viability, and both provide good cytocompatibility.
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Figure 2 (A) Nitrogen gas sorption isotherms and (B) pore size distribution of mesoporous bioactive glass.

Figure 3 Photo of mesoporous bioactive glass and polyamide composite scaffolds.

Results
SEM and TEM analysis
SEM and TEM images of the m-BG are shown in Figure 1. 

Approximate sphere-like m-BG particles with a size of 

0.1–1 µm are shown as an SEM image in Figure 1A. In the 

TEM image, it was found that homogeneously distributed 

mesopore channels appeared in the BG particle (shown as 

white line; Figure 1B).

Brunauer–Emmett–Teller analysis
The sorption isotherms and pore size distribution of m-BG 

are shown in Figure 2. The results show that the specific 

surface area and average pore size of m-BG were 439 m2 g−1 

and 7 nm, respectively. The nitrogen adsorption-desorption 

isotherm of the m-BG exhibited type IV adsorption behavior, 

which indicates capillary condensation in mesopores. The 

results indicate that the prepared m-BG had a mesoporous 

structure.
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Implantation of m-BPC scaffolds in vivo
Macroscopic and SR m-CT evaluation
Figure 7 shows the macroscopic evaluation of the m-BPC 

scaffolds implanted in the bone cavities of rabbit femora 

for 4 weeks and 12 weeks. At 4 weeks, abscission of the 

suture occurred and the surface of the bone defects was 

 partially filled with callus bone. At 12 weeks, the bone 

defects were repaired by implanted scaffolds; the wounds 

healed well without dehiscence and did not elicit any obvious 

inflammatory response in the adjacent soft tissue. No signs 

of implant rejection, necrosis, or infection were found at the 

experimental time.

The m-BPC scaffolds implanted into bone defects of 

rabbit femora were scanned by SR m-CT at 4 weeks and 

12 weeks to evaluate the in vivo bone ingrowth of m-BPC 

scaffolds (Figure 8). At 4 weeks, the three-dimensional SR 

m-CT images revealed that only a small amount of newly 

formed bone appeared in the m-BPC scaffolds at the native 

bone margins and the defect periphery throughout the cross-

section of the bone defect. At 12 weeks, the most extensive 

bone ingrowth was observed throughout the entire volume of 

the m-BPC scaffolds, and the formation of new bone tissue 

was observed as well.

Histological analysis
Histological analysis of the m-BPC scaffolds implanted 

into bone defects of rabbit femora, as shown in Figure 9, 

enabled a more detailed analysis on the new bone tissue 

formation inside the m-BPC scaffolds. At 4 weeks, new 

bone formation was found around the scaffold materials in 

the vicinity of bone marrow. This newly formed bone had a 

more trabecular appearance with osteoid depositions at the 

surface of the scaffold materials (Figure 9A). After 12 weeks, 

newly formed bone was predominant in the healing area and 

woven bone was replaced by mature trabecular bone. New 

bone formation (bone ingrowth) in the m-BPC scaffolds was 

more extensive (Figure 9B), which was consistent with SR 

m-CT analysis.

Figure 10 shows the regenerated bone volume within the 

bone defect, which was used to evaluate the repair effects of 

bone defects after m-BPC and PA scaffolds implanted for 

4 weeks and 12 weeks. The results indicate that a significant 

increase in bone volume was observed for both m-BPC 

and PA scaffolds from 4 weeks to 12 weeks. In addition, 

the m-BPC scaffolds contained higher bone volume than 

the PA scaffolds (control) at both 4 weeks and 12 weeks 

(P , 0.05).

Discussion
Recently, supramolecular chemistry has allowed the emergence 

of a new generation of advanced mesoporous biomaterials with 

high surface area, high porosity, and uniform pore channels, 

which show enhanced bioactivity and have potential for use in 

the fabrication of porous scaffolds for bone regeneration.20,21 In 
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Figure 5 Attachment of Mg-63 cells on mesoporous bioactive glass and polyamide 
composite scaffolds. Polyamide scaffolds and tissue culture plate were used as 
controls. Cell attachment is compared to the tissue culture plate control (100%). 
Notes: *Statistical analysis: cell attachment ratio for m-BPC were significantly higher 
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Figure 4 Scanning electron microscopic photographs of mesoporous bioactive glass and polyamide composite scaffolds at (A) ×50 and (B) ×5000 magnification.
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A B

 

Figure 7 Macroscopic evaluation of mesoporous bioactive glass and polyamide composite scaffolds implanted into bone defects of rabbit femora for (A) 4 weeks and 
(B) 12 weeks. 
Note: Circle and arrow show the bone defect area site.

A B

Figure 6 Phase contrast microscopic photographs of Mg-63 cells cultured with (A) mesoporous bioactive glass and polyamide composite scaffolds and (B) and polyamide 
scaffolds for 4 hours.

this study, m-BG were fabricated by using the sol-gel method 

and P123 as a template agent. The surface area and average 

pore size of the m-BG were 439 m2 g-1 and 7 nm, respectively. 

Previous studies have shown that increasing the surface area 

of the biomaterials might greatly accelerate the kinetic process 

of apatite deposition and, therefore, enhance bone-forming 

bioactivity.22

There have been a number of studies in the literature 

focusing on the composites created by combining polymers 

and bioactive inorganic biomaterials.23–25 To the best of the 

authors’ knowledge, there was no previous report about 

the preparation of m-BPC scaffolds used for bone repair 

 material. It is expected that if the synthesis of m-BG has a 

high surface area, the bioactivity of the composite scaffolds 

should be improved. Therefore, the m-BPC scaffolds were 

prepared, and its biological properties were investigated in the 

 current study. An ideal scaffold for bone repair should possess 

appropriate architecture and properties to provide a biological 

environment for cell attachment and cell/tissue ingrowth.26,27 

The m-BPC scaffolds, containing 25 weight percent m-BG 

content with 76% porosity, exhibited interconnected porous 

network and large pore sizes (400–500 µm), which might 

meet the demand of the porous structure. The mesoporous 

material of m-BG in the composite might greatly increase 

the surface area of scaffold materials, which is favorable for 

cell extension and, thus, facilitates repopulating the entire 

bone defect with cells.

Cell attachment belongs to the first phase of cell/material 

interactions, which influences cell growth and morphology 

and proliferates upon contact with the biomaterials.28 In 

the current study, an MTT assay was used to assess the 

relative number of cells that adhered to the m-BPC scaffold 

materials because optical density absorbance values can be 

used as indicators of the relative number of cells attached on 

substrate materials. The results show that the MG-63 cells 

adhered better to the m-BPC scaffolds than the PA scaffolds 
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Figure 8 Synchrotron radiation-based microcomputed tomography of a three-dimensional reconstruction of cross-section images of mesoporous bioactive glass and 
polyamide composite scaffolds implanted into bone defects of rabbit femora for (A) 4 weeks and (B) 12 weeks.
Note: Circle and arrow show the bone defect area site.

A B
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Figure 9 Hematoxylin and eosin stained section of mesoporous bioactive glass and polyamide composite scaffolds implanted into bone defects of rabbit femora for (A and B) 
4 weeks (×5 and ×20, respectively) and (C and D) 12 weeks (×5 and ×20, respectively).
Notes: B represents the new bone tissue, M represents the biomaterials.
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and tissue culture plate within the first 4 hours of culture. 

The enhancement of MG-63 attachment on m-BPC is likely 

associated with its material surface features, such as pore 

size, surface adsorption ability, and protein adsorption of 

the scaffolds in cell culture medium. The m-BPC may have 

special surface properties, due to the addition of m-BG into 

PA, that promote cell attachment.

The in vivo biocompatibility of the m-BPC scaffolds was 

determined by implantation of the scaffold materials into 

bone defects of rabbit femora. SR m-CT imaging results 

show the interactions between the m-BPC scaffolds and 

the surrounding tissues at 4 weeks and 12 weeks; the bone 

regeneration process began soon after implantation, indicating 

that the scaffolds created an environment more conducive for 

bone regeneration.

Another structural property favorable to the osteogenic 

capacity of m-BPC scaffolds may be related to their 

 mesoporous texture. The mesoporous structure provides a 

larger specific area and faster dissolution rate compared to 

traditional melt-derived BGs.29 As most of the mammalian 

cells are anchorage dependent, the mesoporous matrix also 

facilitates peptide adsorption onto the external surface 

of m-BPC scaffolds after implantation, making it more 

accessible to the osteoblastic cell microenvironment 

that provides a protein-rich surface for cell attachment, 

differentiation, and migration to form new tissues.30 The 

morphology of the interface between the m-BPC scaffolds 

and host bone tissue after implantation for 4 weeks and 

12 weeks was observed by histological evaluation. The 

results show that new bone tissue was found to extend along 

the m-BPC scaffolds’ surface and grow into the pores of the 

scaffolds. The results demonstrate that the m-BPC scaffolds 

had excellent biocompatibility and osteoconductivity, and 

could repair the bone defects.

As the implantation time prolonged, new bone  tissue 

regenerated and gradually penetrated into the m-BPC  scaffolds. 

The area of newly formed bone gradually increased with 

time: 31% and 79% of the bone defect area were separately 

filled with newly formed bone tissue after m-BPC scaf-

fold implantation at 4 weeks and 12 weeks, respectively, 

indicating that the hierarchically mesoporous-macroporous 

structure with large surface area could promote m-BPC 

 osteogenesis. However, the area of newly formed bone was 

18% and 47% after PA scaffold implantation at 4 weeks and 

12 weeks, respectively. The results demonstrate that the m-BPC 

scaffolds exhibited high efficiency of bone  regeneration. 

Clearly, the m-BPC had good bioactivity by incorporation 

of m-BG into PA compared to PA scaffolds. In short, the 

 characteristics of m-BPC scaffolds enhanced their bioperfor-

mance, and they showed good biocompatibility as well as faster 

and more effective osteogenesis than PA scaffolds.

Conclusion
The m-BPC scaffolds, shown to have 76% porosity and 

macroporous structure with large (400–500 µm) open 

interconnecting pores, were fabricated for the current study. 

The results show that the incorporation of m-BG into PA to 

form m-BPC scaffolds improved the cell attachment ratio 

compared to PA scaffolds. By using SR m-CT imaging 

and histological analysis, it was found that new bone tissue 

regenerated and gradually penetrated into the m-BPC  scaffolds, 

and 79% of the bone defect area was filled with newly formed 

bone tissue 12 weeks after m-BPC implantation. The results 

indicate that the m-BPC scaffolds significantly promoted repair 

of the bone defect in the rabbit femur model and exhibited high 

efficiency of bone regeneration. In short, the m-BPC scaffolds 

present not only good biocompatibility, but also faster and 

more effective osteogenesis than PA scaffolds.
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