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Abstract: Non-NF2 schwannomatosis is a rare syndrome characterized by multiple benign schwannomas that primarily affect nerve 
sheaths, with chronic, treatment-resistant pain as the most common symptom. No protocol has been established for pain management, 
and pharmacotherapies, including molecular target therapies, are being evaluated. Neuromodulation therapies such as scrambler 
therapy and surgical options are also employed; however, surgery may lead to persistent or recurrent pain caused by nerve damage or 
tumor recurrence. The lack of accurate animal models hampers understanding of pain mechanisms and tumor development, 
necessitating further basic research and clinical trials to improve treatment strategies. 
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Introduction
Traditionally, schwannomatosis is a syndrome characterized by the development of multiple schwannomas, distinct from 
neurofibromatosis type 1 and 2 (NF2).1 In 2022, the nomenclature of NF2 and schwannomatosis was revised and defined 
by pathogenic mutations in multiple genes on chromosome 22.2,3 Previously known as schwannomatosis, this syndrome 
is now called non-NF2 schwannomatosis, which is characterized by mutations of the tumor-suppressor genes SMARCB1 
and LZTR1 and the loss of heterozygosity on chromosome 22q.3–7 Non-NF2 schwannomatosis is a syndrome character-
ized by the occurrence of multiple benign schwannomas that primarily affect the nerve sheaths, with a lower incidence of 
vestibular schwannomas than NF2-schwannomatosis. It is an exceedingly rare disorder, with an annual incidence of 
0.58 per million, approximately half that of NF2 schwannomatosis.8,9 Most cases of non-NF2 schwannomatosis occur 
sporadically, although familial cases account for 13%–25%.8,10,11

Patients with non-NF2 schwannomatosis most frequently and initially complain of pain.11–13 It is typically resistant to 
treatment, chronic, and often accompanied by anxiety and depression.14 Unlike NF2 schwannomatosis, patients’ average 
life expectancy is not typically reduced;9 however, malignant transformation and shortened survival are causes of 
concern in some cases.13,15 The management of patients with schwannomatosis is primarily symptomatic, with observa-
tion as the principal approach for asymptomatic schwannomas. In symptomatic cases, chronic, intractable pain sig-
nificantly affects the quality of life (QOL), making pain control the primary therapeutic goal.3,12,16 This review 
summarizes the latest information on pain management in non-NF2 schwannomatosis.

Tumor Distribution
In non-NF2 schwannomatosis, tumors typically arise in subcutaneous tissues and peripheral, spinal; cranial, and sciatic 
nerves, within the pelvic region.17,18 Given that tumors may be nonpalpable or asymptomatic, clinically assessing all 
tumors in patients with non-NF2 schwannomatosis is challenging. A study using whole-body magnetic resonance 
imaging (MRI) revealed that out of 51 patients with non-NF2 schwannomatosis, 36 had one or more internal 
tumors.18 The median number of tumors in affected patients was 4 (range, 1–27), and the median total tumor volume 
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was 39 mL (range, 7–1372 mL). Spinal schwannomas in patients with non-NF2 schwannomatosis tend to cluster in the 
lumbar region, which contrasts with sporadic schwannomas that are more commonly found in the cervical and 
thoracolumbar regions.12,19 LZTR1 mutations were reported to increase the incidence of spinal schwannomas.20

Mechanisms of Pain Development in Non-NF2 Schwannomatosis
Despite reports indicating a correlation between the total tumor volume and pain intensity,20 pain is not strictly associated 
with tumor growth or mechanical nerve compression.11 Pain may be localized to the tumor site or may spread beyond the 
tumor’s location,21 reflecting the presence of pain-inducing mechanisms beyond mechanical compression.

Studies have reported that Schwann cells contribute to pain by secreting cytokines such as tumor necrosis factor-α 
and prokineticin 2, which sensitize nociceptors.22,23 The nerve growth factor (NGF), initially identified as a neurotrophic 
factor, has increasingly been recognized as a key mediator, particularly in inflammatory and neuropathic pain.24,25 NGF 
is also expressed in Schwann cells and is involved in the sustained hyperalgesia observed in non-NF2 
schwannomatosis.26–28 NGF expression has been detected in schwannomas resected from patients with non-NF2 
schwannomatosis and in conditioned media from schwannoma cultures,29 indicating its involvement in schwannoma-
tosis-associated pain responses. Similarly, fibroblast growth factors are associated with neuropathic pain.30,31 

Schwannomas secrete high mobility group box 1, which stimulates surrounding dorsal root ganglion neurons, leading 
to CCL2 expression, macrophage recruitment, and interleukin (IL)-6 overproduction, a process implicated in pain 
generation.32

Patients with non-NF2 schwannomatosis carrying LZTR1 mutations tend to experience more severe pain than those 
carrying SMARCB1 mutations, indicating the potential association of germline mutations with pain severity.20 The cause 
of the pain differences between these mutations is unclear but is hypothesized to be caused by the distinct functions of 
SMARCB1 and LZTR1. SMARCB1 is associated with the SWI/SNF human chromatin remodeling complex and is 
involved in the regulation of genome-wide gene expression,33 whereas LZTR1 functions as an adaptor protein for the 
Cullin-3 ubiquitin ligase complex, mediating the ubiquitin-dependent degradation of proteins such as epidermal growth 
factor receptor (EGFR) and anexelekto (AXL). LZTR1 mutations result in the abnormal accumulation of these proteins, 
leading to the aberrant activation of growth factor signaling. Schwannoma-like tumors have been shown to form in 
LZTR1-deficient mice.34–36

Pain Management
Medications
To date, no pharmacotherapy specifically for non-NF2-Schwannomatosis has been established, and medications com-
monly used for neuropathic pain, such as gabapentin, pregabalin, nonsteroidal anti-inflammatory drugs (NSAIDs), 
tricyclic antidepressants (such as amitriptyline), serotonin–norepinephrine reuptake inhibitors (such as duloxetine), 
anticonvulsants (such as topiramate and carbamazepine), and short-acting opioids, are also employed in managing 
pain in non-NF2 schwannomatosis.37–42 In addition, the following drugs have been suggested to be effective in pain 
management in patients with non-NF2 schwannomatosis.

Cannabinoids
A case report indicated that the administration of tetrahydrocannabinol/cannabidiol crystals led to improvements not only 
in pain but also in the mood and QOL of a patient whose previous pain management, including opioids and antineuro-
pathic drugs, had been completely ineffective.38 Cannabidiol is thought to exert analgesic effects by acting on the 
transient receptor potential vanilloid subtype 1 receptors, which are primarily expressed on nociceptive neurons.43,44 

These receptors are nonselective nociceptive cation channels that take on a crucial role in pain transmission by promoting 
Ca2+ influx into peripheral sensory neurons.45,46

Bevacizumab
Bevacizumab, a monoclonal antibody against vascular endothelial growth factor A, has shown early promising results in 
clinical trials that target vestibular schwannomas in patients with NF2 schwannomatosis.47 A study reported 
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bevacizumab may reduce the tumor size and alleviate pain in non-NF2 schwannomatosis.48 However, its use is 
associated with side effects, such as thrombosis, bleeding, visceral perforation, hypertension, and renal impairment.49–51

Brigatinib
Brigatinib, an inhibitor of anaplastic lymphoma kinase and several other tyrosine kinases, has demonstrated radiographic 
responses in multiple tumor types in NF2 schwannomatosis, with notable effects on meningiomas and nonvestibular 
schwannomas.52 It has also demonstrated clinical benefits, including pain reduction. Given that LZTR1 mutations are 
implicated in tumorigenesis through the dysregulation of tyrosine kinase pathways, including those involving EGFR and 
AXL,35 brigatinib may exert similar effects on non-NF2 schwannomatosis. Its use is associated with side effects such as 
gastrointestinal symptoms (diarrhea and nausea), respiratory symptoms, hypertension, and hepatic dysfunction.53–55

Siltuximab
Siltuximab is a chimeric monoclonal antibody against human interleukin-6 (IL-6) and is currently used as a therapeutic 
agent for Castleman disease.56,57 Given the influence of IL-6 in schwannoma-related pain, a Phase II trial 
(NCT05684692) has been initiated to evaluate siltuximab for pain relief in patients with non-NF2 schwannomatosis.32 

Side effects of siltuximab include lymphopenia, thrombocytopenia, neutropenia, anemia, upper respiratory infections, 
nausea, and headache.56,58

Tanezumab
Tanezumab is a humanized monoclonal antibody designed to inhibit NGF. It was developed primarily to treat chronic 
pain conditions such as osteoarthritis and chronic low back pain.59–61 NGF is involved in the sensitization of nociceptors, 
which are nerve cells responsible for transmitting pain signals to the brain. By inhibiting the interaction between NGF 
and tropomyosin receptor kinase A, tanezumab is believed to prevent nociceptor sensitization and suppress the 
transmission of pain signals.62 Its efficacy in alleviating pain associated with non-NF2 schwannomatosis is currently 
being investigated in a Phase 2, randomized, double-blind, placebo-controlled study (NCT04163419).63 The results of 
this trial could offer a new therapeutic option for pain management in patients with non-NF2 schwannomatosis.

Paresthesia, arthralgia, hypoesthesia, and peripheral edema are common adverse events of tanezumab.61,64,65 The 
primary safety issues with tanezumab are rapidly progressive osteoarthritis and the increased likelihood of joint 
replacement surgery, particularly when used in combination with NSAIDs.59

Nerve and Ganglionic Block
Common non-pharmacological treatments for neuropathic pain include nerve and ganglion blocks.66,67 Corticosteroids, 
neurolytic agents such as alcohol, and local anesthetics including lidocaine, bupivacaine, and clonidine are the agents of 
choice for nerve blocks.68,69 Local anesthetics provide temporary analgesia by blocking sodium channels and may also 
exert long-term effects on chronic pain through modulation of NGF-mediated pathways, influencing neuronal growth and 
sensitization.70,71 Reports indicate that nerve blocks can offer significant symptomatic relief for drug-resistant neuro-
pathic pain, particularly following Schwannoma removal.72,73

Nerve blocks are associated with complications, including infection, hemorrhage due to vascular injury, and 
neurological impairments such as unintended sensory disturbances and motor dysfunction.69,74 To minimize these 
risks, procedures are performed under ultrasound or fluoroscopic guidance.68,75

Neuromodulation
Scrambler therapy, a relatively new neuromodulation treatment, noninvasively alleviates neuropathic pain through 
transcutaneous electrical stimulation.76,77 Its mechanism is attributed to the replacement of endogenous “pain” 
signals with artificial “non-pain” signals transmitted along the same neural pathways. These artificial signals are 
conveyed through local electrical stimulation channels that interact with surface receptors on C-fibers.76,78,79 Typical 
treatment involves daily sessions of 30–45 min for 10 consecutive days76,80 to induce neuroplastic changes in the 
spinal and cerebral pain pathways, resulting in prolonged analgesic effects even after the treatment sessions.76,77 

A study using MRI suggested that scrambler therapy induced changes in cerebral blood volume in specific brain 

Therapeutics and Clinical Risk Management 2025:21                                                                          https://doi.org/10.2147/TCRM.S362794                                                                                                                                                                                                                                                                                                                                                                                                      63

Hino et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



regions associated with pain processing, such as the frontal lobe, precentral gyrus, and postcentral gyrus, indicating 
its central effects.81 Furthermore, studies have reported that scrambler therapy led to significant reductions in the 
levels of inflammatory neuropeptides, such as NGF, in the blood.82 This therapy alleviates neuropathic and cancer- 
related pain resistant to other treatments, and studies have reported its efficacy in alleviating pain in non-NF2 
schwannomatosis.83

Surgery
Surgery is indicated for symptomatic schwannomas, such as those causing refractory pain, localized neurological deficits, 
or spinal cord compression, and tumor resection is often associated with significant pain relief.84,85 The complete 
excision of schwannomas outside the tumor capsule is associated with a higher risk of postoperative complications 
related to nerve function. Therefore, intracapsular resection, which relieves tumor-induced compression and preserves the 
nerve, is generally preferred for better preservation of neurological function.86,87 However, some patients experience 
persistent or recurrent pain postoperatively, which may be caused by preoperative nerve damage from tumor compres-
sion, iatrogenic nerve injury during surgery, postoperative soft tissue scarring, or tumor recurrence.85,88 In non-NF2 
schwannomatosis, given the multifocal nature of schwannomas, patients may require an average of 3.4 surgical 
procedures in 10 years.11

Ongoing Clinical Trials
Table 1 presents the ongoing trials that focused on molecular target therapies. These include the humanized monoclonal 
antibody tanezumab, which inhibits NGF, and siltuximab, a human-mouse chimeric monoclonal antibody that binds to 
human IL-6. These studies aim to provide valuable insights into the pain mechanisms in non-NF2 schwannomatosis and 
explore potential therapeutic options.

Future Direction
Although pain does not affect survival, it is associated with non-NF2 schwannomatosis is chronic and refractory, 
significantly impairing the QOL of patients. No treatment protocol has been established for pain management in non- 
NF2 schwannomatosis, and therapy is typically tailored to the clinical situation using a combination of the aforemen-
tioned methods (Figure 1) based on the discretion of individual institutions. Despite reports of LZTR1-deficient, 
SMARCB1-deficient, and patient-derived xenograft model mice that develop schwannoma-like tumors, currently, no 
animal model faithfully replicates the tumor formation and pain mechanisms of non-NF2 schwannomatosis.32,35,89 Thus, 
new animal models are anticipated. Further elucidation of the detailed molecular mechanisms and large-scale clinical 
trials for various treatment options are needed.

Putting in Perspective
Non-NF2-Schwannomatosis is a rare disorder causing chronic, treatment-resistant pain that significantly impacts 
patients’ quality of life. This review highlights the roles of NGF and IL-6 in pain mechanisms, with emerging therapies 
like Tanezumab and Siltuximab offering promise. Non-invasive approaches, such as Scrambler Therapy, also show 
potential.

Table 1 Ongoing Clinical Trials for Pain Related to Non-NF2 Schwannomatosis

ClinicalTrials.Gov  
Identifier

Initiation date Responsible Party Estimated 
Enrollment

Age Treatment Strategy

NCT04163419 April 2020 Massachusetts  
General Hospital

46 ≧18 Tanezumab

NCT05684692 August 2023 Massachusetts  
General Hospital

40 ≧18 SiltuximabErenumab-Aooe
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However, the lack of accurate models and limited treatment options remain challenges. Future research should focus 
on uncovering pain mechanisms and developing effective therapies. This review provides a foundation for advancing 
treatment strategies and improving patient outcomes.
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