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Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and 
spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis- 
related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.
Methods: By analyzing the peripheral blood gene expression datasets obtained from GSE73754, GSE25101, and GSE11886, we 
identified the expression patterns of cellular factors and immune infiltration cell related to cuproptosis. Subsequently, we employed 
weighted gene co-expression network analysis (WGCNA) to identify differentially expressed genes (DEGs) within each cluster and 
utilized the “GSVA” and “GSEABase” software packages to examine variations in gene sets enriched across various CRG clusters. 
Finally, we selected the best-performing machine learning model to predict genes associated with AS. Datasets (GSE25101 and 
GSE73754) and ELISA to assess the expression levels of the five genes and their corresponding proteins.
Results: Seven cuproptosis-related DEGs and four immune cell types were identified, revealing significant immune heterogeneity in 
the immune cell infiltration between the two cuproptosis-related molecular clusters in AS. The eXtreme Gradient Boosting (XGB) 
model showed the highest predictive accuracy, achieving an area under the receiver operating characteristic curve (AUC) of 0.725, and 
5-gene prediction models were established. It showed satisfactory performance in the GSE25101 dataset (AUC = 0.812). According to 
the blood serum samples of AS patients and controls, PELI1 had a higher expression level (AUC = 0.703, p = 0.07), while ICAM2 and 
RANGAP1 had lower expression levels (AUC = 0.724, 0.745, and p = 0.011, 0.000, respectively) in AS patients.
Conclusion: We explored the correlation of cuproptosis in AS, and developed the optimal machine learning model to identify high- 
risk genes associated with AS. We also explored the pathogenesis and treatment strategies of AS, targeting PELI1, ICAM2, and 
RANGAP1.
Keywords: ankylosing spondylitis, cuproptosis, immune cell infiltration, machine learning model

Introduction
Ankylosing spondylitis (AS) is a chronic autoimmune disease marked by persistent inflammation,1 with the latest 
statistics indicating a global prevalence rate of approximately 0.1–1.4%.2 It is mainly marked by inflammation in the 
sacroiliac joints or spine, resulting in structural damage, abnormal bone remodeling, and spinal rigidity. Clinically, its 
main manifestations include arthritis, enthesitis, and other peripheral symptoms, and is also linked to conditions such as 
uveitis, psoriasis, and inflammatory bowel disease.3 Long-term disease progression can result in characteristic postural 
changes, leading to a significant reduction in the patient’s quality of life and placing a considerable financial burden on 
them.4
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Currently, the exact pathogenesis of AS is not fully understood. It is generally believed to be influenced by genetics, 
infections, immune responses, and environmental factors.5 Genetic factors are crucial in determining susceptibility to AS, 
and about 90% of the susceptibility can be attributed to it.6 Since Brewerton and Schlosstein found that human leukocyte 
antigen B27 gene (HLA-B27) was highly correlated with AS, HLA-B27 was the most closely related known gene with 
AS.7,8 Although more and more AS susceptibility genes have been found, such as Endoplasmic reticulum aminopepti-
dase 1 (ERAP1), Interleukin-23 receptor (IL-23R), Anthrax toxin receptor 2 (ANTXR2), Interleukin-1 receptor type 2 (IL- 
1R2), etc,6 at present, the pathogenic gene loci have not been identified and there is a lack of specific biomarkers.

Studies have reported a link between the occurrence of AS and both apoptosis and necrosis.9,10 And cuproptosis is the 
copper (Cu) induced cell death mode discovered by Tsvetkov P et al in 2022 and named for the first time.11 Cu, a vital 
trace mineral for the human body, is a necessary co-factor for many enzymes related to basic cell functions.12 Cu is 
transported to specific subcellular compartments, including the mitochondria, trans-Golgi network, and nucleus, via 
various protein carriers, such as cytochrome c oxidase 17 (COX17), copper chaperone for superoxide dismutase (CCS) 
and antioxidant 1 (Atox1). And then participate in the synthesis of biological compounds such as mitochondrial energy 
metabolism, redox homeostasis, and neurotransmitter metabolism.13,14 At the same time, the dysregulation of storage and 
utilization of Cu can induce cytotoxicity and oxidative stress, leading to the occurrence of various diseases.12 Cuproptosis 
represents a unique form of cell death that relies on mitochondrial respiration. Tsvetkov P et al used Cu ionophores, such 
as elesclomol (ES), to explore the mechanism of Cu ion cytotoxicity. A study revealed that cells with a high dependence 
on mitochondrial respiration exhibit increased sensitivity to ES treatment, and cuproptosis serves a critical function in the 
tricarboxylic acid (TCA) cycle.11 Research has shown that serum Cu levels are significantly higher in patients with AS, 
and the extent of this increase is positively correlated with disease severity.15,16 Therefore, we hypothesized that 
excessive Cu accumulation may exert cytotoxic effects and regulate the expression of related genes, affecting the 
immune function of AS patients. However, the relevant mechanism of cuproptosis in AS is still unclear and needs 
further exploration.

Despite progress in identifying genetic predispositions (eg, HLA-B27), specific biomarkers for AS remain limited. 
This study aimed to bridge this gap by investigating cuproptosis-related genes (CRGs), which represent an underexplored 
pathway in AS. Identifying CRGs not only deepens understanding of AS pathogenesis but may also lead to more precise 
diagnostic tools or therapeutic strategies.

In this work, we used the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo) to conduct 
a comprehensive analysis of the differential expression and immune profiles of CRGs between AS patients and controls, 
with the goal of further investigating the potential pathogenic mechanisms underlying AS. This analysis focused on the 
main cuproptosis-related differentially expressed genes (CuDEGs). Then we divided 76 AS patients into two clusters 
according to the characteristics of cuproptosis and examined the variations in immune cells between the clusters to 
identify specific patterns or correlations. Next, weighted gene co-expression network analysis (WGCNA) was applied to 
identify DEGs of specific clusters. This process involves not only the analysis of gene expression but also the study of 
immune cell differences in different clusters to determine the association between AS and cuproptosis. In addition, 
a variety of machine learning algorithms were employed to construct predictive models, with the aim of identifying 
distinct molecular clusters. Meanwhile, to verify the connection between cuproptosis and AS, the relationship between 
the 5 hub genes and AS was further confirmed via the enzyme-linked immunosorbent assay (ELISA).

Materials and Methods
Data Acquisition and Preprocessing
Using “ankylosing spondylitis” as the keyword, gene expression data from the GEO database, encompassing both AS 
patients and healthy individuals, was retrieved for analysis. The selected datasets included GSE73754 (GPL10558 
platform, 52 AS patients and 20 controls), GSE25101 (GPL6947 platform, 16 AS patients and 16 controls), and 
GSE11886 (GPL570 platform, 8 AS patients and 9 controls). During the analysis, the three datasets were merged with 
the “sva” package for further analysis. Among them, GSE25101 and GSE73754 datasets were also independently used 
for validation. Prior to analysis, all data were transformed into log2 format. Based on the findings of Tsvetkov et al, 
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a total of 19 CRGs were identified, including NFE2L2, NLRP3, ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, LIPT2, 
DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH and DLST.11,17–20

Immune Cell Infiltration Assessment
In this study, the “e1071” and “preprocesscore” packages were used to create CIBERSORT files. The CIBERSORT 
algorithm (https://cibersortx.stanford.edu/) was applied via the LM22 signature matrix to estimate the relative abundance 
of 22 immune cell types within each sample. Monte Carlo sampling was employed within CIBERSORT to calculate the 
inverse multiple product p-value for each sample, with those showing p < 0.05 considered valid and reliable for immune 
cell composition analysis.21 Heatmaps were generated using the “pheatmap” package, and boxplots were created with the 
“reshape2” and “ggpubr” packages, to clearly show the data distribution and statistical characteristics.

Correlation Analysis Between CRGs and Infiltrating Immune Cells (IICs)
This study examined the correlation between CRG expression levels and the proportional distribution of IICs. When the 
correlation co-efficient was p < 0.05, it was considered that the correlation was significant. The findings were ultimately 
depicted using the “reshape2”, “tidyverse”, and “ggplot2” packages.

Unsupervised Clustering and Principal Component Analysis (PCA) of AS
Unsupervised clustering was conducted based on the expression profiles of 19 CRGs, using the ConsensusClusterPlus 
software (“ConsensusClusterPlus” package, version 2.60) with 1000 iterations.22 By applying the k-means algorithm, 76 
AS samples were classified into different clusters. The optimal number of clusters was determined by analyzing the 
cumulative distribution function (CDF) curve, consensus matrix, and achieving a cluster-consensus score above 0.9, 
setting the maximum number of subtypes between k = 2-9. PCA was then conducted to highlight the differences among 
the identified subtypes.

WGCNA
The co-expression module was delineated using the “WGCNA” package (version 1.70.3).23 To enhance result accuracy, 
subsequent WGCNA concentrated on the top 25% of genes with the highest variability. An optimal soft threshold (soft 
power) was selected to construct a weighted adjacency matrix, which was then transformed into a topological overlap 
matrix (TOM). With a minimum module size of 100, modules were derived using the TOM dissimilarity measure 
(1-TOM) via hierarchical clustering. Each module was randomly assigned a unique color. The module eigengene 
represented the overall expression pattern within each module, illustrating the connection between module members 
(MM) and disease states. The term “gene significance” was used to describe the association between AS genes and 
clinical phenotypes.

Gene Set Variation Analysis (GSVA) Analysis
The “GSVA” and “GSEABase” packages were utilized for differential pathway analysis to reveal the differences in 
enriched gene sets across various clusters.

Constructing Predictive Models Using Various Machine Learning Techniques
To identify key genes closely related to disease and clustering, the “VennDiagram” program was used to determine the 
consensus genes in these gene sets. Next, data from the various CRG clusters were integrated, and predictive models 
were built using random forests (RF), support vector machines (SVM), generalized linear models (GLMs), and eXtreme 
Gradient Boosting (XGB) models. The machine learning model, developed using the “caret” package (version 6.0.91), 
aims to identify key predictors of clustering characteristics associated with AS. As a comprehensive machine learning 
method, RF performs classification or regression prediction using multiple independent decision trees.24 SVM create 
a hyperplane with the maximum margin in the feature space to effectively separate positive and negative examples.25 

GLM, an extension of multiple linear regression, are well-suited for assessing the relationship between normally 
distributed dependent variables and categorical or continuous independent variables, offering increased flexibility.26 
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XGB is an ensemble tree method built on gradient boosting, enabling precise comparison between classification errors 
and model complexity.27 The “DALEX” package (version 2.4.0) was utilized to compare the four machine learning 
models in terms of feature importance and residual distribution. In the “pROC” software (version 1.18.0), we visualized 
the area under the receiver operating characteristic (ROC) curve (AUC). Based on this, the optimal machine learning 
model was identified, and the top five most significant variables were selected as the predictive hub genes associated with 
AS. Lastly, ROC curve analysis was conducted on the GSE25101 dataset to evaluate the diagnostic accuracy of the 
model.

Construction and Validation of the Column Line Plot Model
To assess the risk of AS clustering, we constructed a column line plot model using the “rms” package (version 6.2.0). 
Each predictor was assigned a score, with the “total score” representing the cumulative value of these predictions. The 
model’s predictive accuracy was evaluated through calibration curves and decision curve analysis (DCA).

Independent Validation Analysis
To verify the prediction model, two datasets (GSE25101 and GSE73754) were used, and the ROC curve was generated 
using the “pROC” package to differentiate AS from non-AS, while the accuracy of five hub genes was confirmed. The 
visualization of ROC curve was visualized in the “pROC” package.

Clinical Specimens
From June 2023 to February 2024, a total of 31 AS patients and 30 healthy individuals were recruited from the First 
Teaching Hospital of Tianjin University of Traditional Chinese Medicine (Tianjin, China). The inclusion criteria for AS 
patients were based on the 2009 classification criteria for axial spondyloarthritis established by the International Society 
for Spondyloarthritis;28 Between the ages of 18 and 65, regardless of gender; medication use was restricted to DMARDs 
and NSAIDs. The clinical trial received approval from the Ethics Committee of the First Teaching Hospital of Tianjin 
University of Traditional Chinese Medicine (TYLL2023[Y]005). All participants gave formal, informed, and written 
consent for serum collection. After blood samples were centrifuged at 3000 rpm for 10 minutes at 4°C, serum was 
extracted and stored at – 80°C. The assay was completed within one week following the collection of all samples.

ELISA
ELISA kits were purchased from SHANGHAI TONGWEI BIOTECHNOLOGY CO., LTD (Shanghai, China). SRPK1 
(TW-7211), PELI1 (TW-7562), ICAM2 (TW-7062), RANGAP1 (TW-7235), and BAZ1A (TW-72150) were used in the 
experiment. All tests were performed following the manufacturer’s provided instructions.

Statistical Analysis
All statistical analyses were performed using SPSS 20.0 software, with a significance threshold set at p < 0.05. 
Categorical variables were expressed as percentages, while quantitative data were presented as mean ± standard 
deviation. For comparisons between two groups, an independent sample t-test was used when the data met the 
assumptions of normality and homogeneity of variance. If these assumptions were violated, the nonparametric Mann– 
Whitney U-test was applied instead.

Results
Dysregulation of CRGs and Immune Cell Infiltration in AS
The detailed design flow of the study was depicted in Figure 1. The results of merging the dataset before and after 
interference removal and batch effect correction were shown in Figure 2A and B. In this dataset, we evaluated the 
expression levels of 19 CRGs in AS patients and controls, of which 7 CuDEGs showed differential expression. The 
levels of NFE2L2, SLC31A1, MTF1, and DBT were higher in AS patients, while LIPT1, PDHA1, and PDHB were 
elevated expressed in the controls (Figure 3A and B). Through the correlation analysis of these DEGs, we found the 
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synergy between PDHB, DBT, and PDHA1, while MTF1 showed significant antagonism with PDHA1 and PDHB 
(Figure 3C). The relationships among these DEGs were illustrated in the gene correlation map (Figure 3D).

Immune Cell Infiltration in AS
The CIBERSORT algorithm identified differences in the proportions of 22 immune cell types between AS patients and 
controls (Figure 4A). The analysis revealed significant variations in the proportions of CD8 T cells, γ/δ T cells, and other 
immune cells, and activated NK cells were reduced, whereas the proportion of neutrophils was elevated (p < 0.05) in AS 
patients compared to controls (Figure 4B). Additionally, correlation analysis demonstrated that the 7 CuDEGs were 
linked to IICs (Figure 4C). These findings suggested that the CuDEGs may play a pivotal role in regulating molecular 
processes and immune cell infiltration in AS.

Figure 1 Study flow chart.
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Identification of Cuproptosis-Related Molecular Clusters in AS
At k = 2, the clustering results were determined to be the most stable and reliable (Figure 5A), as indicated by the CDF 
curve, which exhibited minimal fluctuation (Figure 5B), and a consistency score greater than 0.9 (Figure 5C). PCA 
demonstrated clear distinctions between the two identified clusters (Figure 5D).

Immune Cell Infiltration Characteristics of the Cuproptosis-Related Molecular Cluster 
in AS
The differential expression analysis of CRGs between Cluster1 and Cluster2 showed that SLC31A1 and MTF1 were 
significantly upregulated in Cluster1, while LIPT1, PDHA1, PDHB, and DBT had higher expression levels in Cluster2 
(Figure 6A and B). Furthermore, immune cell infiltration analysis revealed that naive B cells, CD8 T cells, and activated 
CD4 memory T cells were more abundant in Cluster1, whereas monocytes and neutrophils were more prevalent in 
Cluster2 (Figure 6C and D).

Gene Module Screening and Co-Expression Network Construction
The WGCNA algorithm was employed to build gene modules and co-expression networks for AS and controls, with the 
objective of identifying key gene modules associated with AS. The results showed that using a soft threshold of 11 and 
achieving a scale-free R² of 0.9, co-expressed gene modules were identified (Figure 7A). The dynamic cutting algorithm 
generated three co-expression modules, each represented by distinct colors, and displayed the TOM heatmap (Figure 7B–D). 
The genes within these modules were then analyzed to assess the correlation between AS and the 264 genes in the gray 
module, which co-expressed with genes in the controls (Figure 7E). Additionally, the gray module showed a positive 
correlation with module-related genes (Figure 7F).

Figure 2 Batch correction results. (A) Expression levels before and after merging. (B) PCA results before and after merging.
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To further identify key gene modules linked to AS, we applied the WGCNA algorithm to construct gene modules and co- 
expression networks for the two molecular clusters related to cuproptosis. Using a soft threshold of 12 and achieving a scale- 
free R² of 0.9 (Figure 8A), we generated co-expression modules. The dynamic cutting algorithm identified four distinct co- 
expression modules, each represented by a unique color, with the TOM heatmap displayed (Figure 8B–D). By analyzing the 
gene co-expression patterns between the two clusters, we found that the turquoise module, comprising 1052 genes, had the 
strongest association with the cuproptosis-related molecular clusters (Figure 8E). Furthermore, a significant correlation was 
observed between the turquoise module and the module-related genes (Figure 8F).

Cluster-Specific DEGs
By intersecting the cuproptosis-related molecular clusters with DEGs in AS, 190 genes were identified (Figure 9A) and 
further analyzed. Additionally, GSVA was carried out to examine the functional distinctions of specific DEGs across the 
two clusters. The functional enrichment analysis results revealed that Cluster1 was upregulated in the cytosolic DNA 
sensing pathway, the calcium ion signaling pathway and the T cell receptor signaling pathway (Figure 9B), and was 
upregulated in stem cell division, glucan biosynthesis, and negative feedback regulation of Th17 immune response 
(Figure 9C).

Figure 3 Identification of dysregulated CRGs in AS. (A) Heatmap showing the expression profiles of 7 CuDEGs. (B) Boxplots depicting the differential expression of CRGs 
between AS patients and controls. (C) Correlation analysis of the 7 CuDEGs, with red representing positive correlations, green representing negative correlations, and the 
correlation coefficient indicated by the size of the pie charts. (D) Gene interaction map of the 7 CuDEGs, where red denotes positive correlations, green denotes negative 
correlations, and the correlation coefficient was represented by the thickness of the connecting lines. 
Notes: *p < 0.05, **p < 0.01, ***p < 0.001.
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Construction of Machine Learning Models
We built four machine learning models—SVM, RF, XGB, and GLM—to identify genes specific to each cluster with 
diagnostic significance. Among these models, XGB, RF, and SVM exhibited the lowest residual values (Figure 10A and 
B). To evaluate the predictive accuracy of each model, five-fold cross-validation was performed to estimate the AUC. 
The XGB model achieved the highest AUC (0.752) (Figure 10C). Feature importance maps for each model were also 
generated (Figure 10D). Based on residual values and ROC analysis, the XGB model was chosen as the optimal model 
for distinguishing between clusters in AS. In conclusion, five hub genes—SRPK1, PELI1, ICAM2, RANGAP1, and 
BAZ1A—were identified from the XGB model for further analysis.

A nomogram was developed to evaluate the risk associated with cuproptosis-related factors in 76 AS patients, 
enabling the assessment of the predictive accuracy of the XGB machine learning model (Figure 11A). The accuracy of 
column line plot model prediction was verified by calibration curve and DCA. The calibration curve results revealed 
a moderate difference between the predicted risk and the actual cluster risk in AS (Figure 11B). DCA findings further 
supported the high accuracy of the nomogram (Figure 11C), indicating its potential as a useful tool for informing 
treatment decisions. Moreover, the 5-gene prediction model was validated using data from whole blood samples. 
According to the ROC results, the AUC of GSE25101 was 0.812 (Figure 11D and E), indicating that it is equally 
effective in distinguishing AS patients from non-AS patients with the five genes in GSE73754. The AUC values of 

Figure 4 Overview of IICs in AS. (A) Relative proportions of 22 IICs in AS patients compared to controls. (B) Boxplots illustrating differences in IICs between AS patients 
and controls. (C) Heatmap depicting the correlation between IICs and the 7 CuDEGs, with red representing positive correlations and blue representing negative 
correlations. 
Notes: *p < 0.05, **p < 0.01, ***p < 0.001.
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SRPK1, PELI1, ICAM2, RANGAP1, and BAZ1A were 0.793, 0.703, 0.724, 0.745, and 0.886, respectively. Subsequently, 
the levels of the five proteins in the serum of AS patients and controls were validated using an independent dataset and 
further confirmed via ELISA.

Validation of the Concentrations of the 5 Genes in the Serum of AS Patients
Table 1 provides a comparison of the clinical characteristics between AS patients and controls. AS patients exhibited 
elevated levels of CRP and ESR compared to controls. Additionally, the protein expression levels of the five hub genes 
were confirmed using serum samples. The findings indicated that compared with the controls, the levels of PELI1 in the 
serum of AS patients were significantly increased (552.19 ± 328.41 vs 412.79 ± 161.56, p = 0.007) (Figure 12B), while 
ICAM2 and RANGAP1 were significantly decreased (201.03 ± 43.25 vs 255.96 ± 99.24, p = 0.011; 204.31 ± 40.29 vs 
204.31 ± 40.29, p = 0.000) (Figure 12C and D). But SRPK1 and BAZ1A were not statistically significant (Figure 12A 
and E).

Discussion
AS is a chronic inflammatory disorder with a subtle onset, primarily affecting the spine and sacroiliac joints. In its later 
stages, the disease can cause irreversible structural damage and significantly impair mobility. At present, there is still no 
clear etiology and pathogenesis, and no obvious breakthrough in treatment.2 Therefore, it is crucial to discover novel and 
effective biomarkers for both the diagnosis and treatment of AS, investigate characteristic genes associated with AS, and 
discover potential therapeutic targets. This will offer new insights for early diagnosis and intervention in AS. 
Cuproptosis, a newly identified cell death mechanism, has been associated with a range of diseases.14 Relevant literature 

Figure 5 Identification of cuproptosis-related molecular clusters in AS. (A) Consensus matrix at k = 2. (B) CDF curve. (C) Consensus clustering score. (D) PCA plot 
showing the distribution of the two identified clusters.

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S502520                                                                                                                                                                                                                                                                                                                                                                                                    871

Wei et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



shows that the level of Cu in the serum of AS patients increases, which is closely related to acute inflammation.15,16 This 
indicates that AS may have a certain correlation with cuproptosis. However, its underlying mechanism remains unclear 
and requires further investigation. In AS patients, CD8+ T lymphocytes are preferentially drawn to inflamed joints, 
leading to a reduced level of CD8+ T cells in the blood and an elevated level in the synovium.29 Another study showed 
that the disruption of the TNF signaling pathway in CD8+ T cells plays a key role in the development of AS.30 Gamma 
delta T (γ/δ T) cells, a specific subset of CD3+ T cells, were initially discovered and studied in the context of autoimmune 
rheumatism. Despite being a highly conserved group of T cells, they are critical in various aspects of immunobiology.31 

A study32 showed that in patients with AS, γ/δ T cells produce IL-17 at a rate five times higher than other cells, indicating 
that they may play an important role in the pathogenesis of AS. HLA-B27 positivity is the most prominent genetic risk 
factor for AS patients,33 and HLA-B27 combined with KIR3DL1 can initiate inhibitory signals in NK cells.34 Evidence on 
the changes in NK cell proportions in the peripheral blood of AS patients is conflicting. While two studies have reported 
an increase in NK cell numbers in the peripheral blood of AS patients,35,36 the opposite results were obtained in other 
studies.37,38

This study sought to investigate AS-related CuDEGs and their involvement in the physiological and pathological 
processes of the disease. To identify potential therapeutic targets for AS, we analyzed the CuDEGs between AS patients 
and controls. From the expression profiles of 19 CRGs, we found that the expressions of NFE2L2, SLC31A1, MTF1, 
LIPT1, PDHA1, PDHB, and DBT had statistical significance, as CuDEGs with diagnostic significance for AS. NFE2L2 is 
a transcriptional activator that acts by inhibiting NF-κB signaling pathway and inhibiting pro-inflammatory cytokines to 
suppress inflammation, induce the expression of related proteins to cope with oxidative stress and regulate antioxidant 
defense.39 SLC31A1, as a Cu transporter,21 is responsible for most of the Cu uptake in cells. MTF1 can promote the 
production of inflammatory factors while suppressing T cell activation and is a hub gene be of paramount importance in 
joint destruction and inflammation.40 LIPT1 supports mitochondrial respiration, TCA cycle and promotes fatty acid 
synthesis, a vital element in glucose and glutamine metabolism.41 PDHA1 regulates mitochondrial signaling, oxidative 
phosphorylation, cellular respiration and electron transport activities, pyruvate metabolism, carbohydrate metabolism, 

Figure 6 Characterization of molecular and immune signature infiltrates in the two clusters. (A) Heatmap displaying the expression levels of 7 CuDEGs. (B) Boxplots 
displaying the expression levels of the 7 CuDEGs. (C) Relative proportions of the 22 IICs. (D) Boxplots show the infiltration of 22 IICs. 
Notes: *p < 0.05, **p < 0.01, ***p < 0.001.

https://doi.org/10.2147/JIR.S502520                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 872

Wei et al                                                                                                                                                                             

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Figure 7 Co-expression network of AS-related DEGs. (A) Determination of soft threshold. (B) Gene dendrogram within the co-expression module, with each module 
represented by a distinct color. (C) Cluster diagram of characteristic genes in the module. (D) Heatmap showing correlations between modules. (E) Correlation analysis 
between module-related genes and clinical characteristics. (F) Scatter plot illustrating the correlation between gene significance for AS and genes in the gray module.
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Figure 8 Co-expression network of DEGs in the clusters. (A) Selection of soft threshold. (B) The gene dendrogram of the co-expression module, with each module 
represented by a different color. (C) Cluster diagram of characteristic genes in the module. (D) Heatmap of correlations between modules. (E) Correlation analysis between 
module-related genes and clinical characteristics. (F) Scatter plot showing the correlation between turquoise module genes and the significance of Cluster2 genes.
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and citric acid cycle.42 PDHB is a nuclear-encoded pyruvate dehydrogenase that facilitates the conversion of pyruvate to 
acetyl-CoA and aids in protecting skeletal muscle by inhibiting the FoxP1-Arih2 axis.43,44 DBT can promote oxidative 
stress and it boosts NF-κB activity and stimulates the production of inflammatory cytokines such as TNF-α and IL-6.45

Through unsupervised clustering analysis and PCA, we identified two molecular clusters associated with cuproptosis 
to classify AS. Utilizing the specific DEGs to each cluster, we developed four machine learning models (RF, SVM, XGB, 
and GLM) to assess their predictive performance. XGB model has the highest prediction performance and constructed 5- 
gene prediction models of SRPK1, PELI1, ICAM2, RANGAP1, and BAZ1A. The GSE73754 dataset and ELISA were 
utilized to verify the protein expression levels of PELI1, ICAM2, and RANGAP1, and a possible mechanism diagram of 
its action was drawn (Figure 13), this further demonstrated that the prediction model possesses high accuracy and 
significant clinical applicability.

SRSF protein kinase 1 (SRPK1) is an enzyme that phosphorylates serine/arginine domain rich splicing factors. It is 
involved in numerous cellular processes, such as cell cycle regulation, innate immune responses, chromatin remodeling, 
and the regulation of several mRNA processing pathways, in addition to modulating inflammation through interactions 
with various transcription factors and signaling pathways.46,47 In addition, studies have found that SRPK1 can regulate 
the expression of AKT3 at the transcriptional or translational level to mediate the inflammatory response.48 E3 ubiquitin 
PELI1 is an E3 ubiquitin ligase that is highly expressed in T lymphocytes. It functions as a key negative regulator, 
suppressing T cell activation and autoimmunity in vivo by facilitating K48-linked ubiquitination and degradation of 

Figure 9 The cluster-specific DEGs and enrichment analysis. (A) The intersection of cuproptosis-related molecular clusters and DEGs in AS patients versus controls. (B and 
C) KEGG and GO enrichment of DEGs between the two clusters.
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c-Rel., and regulates various inflammatory diseases.34 Research has found that miR-155 is differentially expressed in 
spinal joint diseases such as Graves’ disease, RA, and AS, demonstrating strong diagnostic performance. Serum miR-155 
may affect the occurrence and development of ankylosing spondylitis by regulating SRPK1.49,50 In addition, studies have 
shown that miR-155 may also regulate the potential role of PELI1 in Tfh cells, influencing the onset and progression of 
AS.51 Intercellular adhesion molecule proteins act as ligands for the leukocyte adhesion protein LFA-1 (integrin α-L/β-2). 
ICAM2 may participate in lymphocyte recirculation by inhibiting LFA-1-dependent cell adhesion, contributing to 
antigen-specific immune responses, NK cell-mediated clearance, lymphocyte recirculation, and other essential adhesion 

Figure 10 Construction of four machine learning models. (A) Boxplots showing the residuals of the four models, with red dots indicating the root mean square of the 
residuals. (B) Cumulative distribution curve of the residuals. (C) ROC analysis of the machine learning model performed with five-fold cross-validation. (D) Histogram 
displaying the key features of the four machine learning models.
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interactions required for immune surveillance and response. ICAM2 is overexpressed in platelets of AS patients, which 
may trigger the inflammatory cascade and promote the development of AS.35 RanGTPase activating protein 1 
(RANGAP1) is a critical component of the nuclear pore complex, responsible for regulating the nuclear transport of 

Figure 11 Validation of the XGB model based on 5 genes. (A) Nomogram predicting the likelihood of AS cluster involvement. (B) Calibration curve. (C) DCA results. (D) 
ROC plot for validation using the GSE25101 dataset. (E) ROC analysis of the 5 genes (SRPK1, PELI1, ICAM2, RANGAP1, and BAZ1A) in the GSE73754 dataset.

Table 1 Comparison of the Clinical Characteristics Between AS 
Patients and Controls

Characteristics Control (n = 30) AS (n = 31) p-value

Age, years 36.90 ± 6.21 34.74 ± 9.90 0.311
Male, n (%) 21 (70.00%) 24 (77.42%) 0.510

RBC (×1012/L) 4.71 ± 0.45 4.80 ± 0.49 0.461

WBC (×109/L) 6.96 ± 1.15 6.53 ± 1.28 0.116
PLT (×109/L) 234.30 ± 47.68 263.42 ± 70.24 0.251

HGB (g/L) 133.83 ± 10.12 138.29 ± 20.08 0.141

ALT (U/L) 20.00 ± 4.57 27.57 ± 28.35 0.444
AST (U/L) 19.64 ± 5.24 19.98 ± 10.10 0.530

Urea (mmol/L) 4.53 ± 1.58 4.99 ± 1.29 0.214

CR (μmol/L) 66.33 ± 12.22 68.73 ± 13.64 0.363
CRP (mg/L) 2.36 ± 2.14 5.41 ± 5.32 0.011*

ESR (mm/h) 3.95 ± 1.15 15.32 ± 10.25 0.000***

RF (IU/mL) 9.94 ± 1.16 10.61 ± 2.17 0.151
HLA-B27, n (%) NA 19 (61.29%) NA

Notes: *p < 0.05; ***p < 0.001. 
Abbreviations: RBC, red blood cell; WBC, white blood cell; PLT, platelet; HGB, 
hemoglobin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CR, 
creatinine; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; RF, rheu-
matoid factor; HLA-B27, human leukocyte antigen-B27; NA, not applicable.
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intracellular proteins,36 and is divided into non-sumoylated RANGAP1, which is mainly localized in the cytoplasm, and 
SUMO1 bound RANGAP1, which resides in NPC.37 Studies have demonstrated that tumor necrosis factor receptor- 
associated factor 6 (TRAF6), which mediates several essential signaling pathways and is involved in immune surveil-
lance and inflammation, can enter the nucleus via the nuclear pore complex with the involvement of RANGAP1. This 
implies that RANGAP1 may indirectly contribute to immune-related inflammation.52 The Bromodomain adjacent to zinc 
finger domain protein 1A (BAZ1A) encodes a subunit of the adenosine triphosphate (ATP)-dependent chromatin assembly 
factor (ACF), which is a component of a chromatin remodeling complex involved in DNA damage response and repair.38

The AUC of the dataset validated by the XGB model based on the prediction model of five genes is 0.812, which also 
provides a new idea for the diagnosis of AS. The nomogram model subtypes of SRPK1 (AUC = 0.793), PELI1 (AUC = 
0.703), ICAM2 (AUC = 0.724), RANGAP1 (AUC = 0.745), and BAZ1A (AUC = 0.886) were used to diagnose AS. 
Validation of the concentrations of ICAM2 and RANGAP1 in AS patients showed that their serum levels were 
significantly lower, whereas PELI1 levels were significantly higher. SRPK1 and BAZ1A did not show significant 
differences in the ELISA results. The research may still need more samples for validation mining. Based on the 
above, the results of XGB model using five genes were of great significance to evaluating AS clusters and exploring 
new ideas for diagnosis and treatment of AS.

Certainly, at present, the pathogenesis of AS is not completely clear. After preliminary data mining, the clinical 
sample size of our study may not be enough, resulting in certain limitations of the study. Despite the in-depth 
bioinformatics analysis, further experiments are required to investigate the regulatory mechanisms of AS pathogenesis 
and the expression of CRGs. Furthermore, additional AS samples are required to enhance the accuracy of cuproptosis- 
related molecular clustering. Lastly, clinical samples must be evaluated to validate the accuracy of the predictive models.

Figure 12 Protein expression levels of the five genes in serum samples. (A and E) Serum levels of SRPK1 and BAZ1A did not show significant differences between AS 
patients and controls. (B) PELI1 levels were notably higher in the serum of AS patients compared to controls. (C and D) ICAM2 and RANGAP1 levels were significantly 
lower in AS patients compared to controls. 
Notes: *p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant.
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Conclusion
In summary, this study investigated the significance of cuproptosis in AS through comprehensive bioinformatics analysis, 
revealing a connection between AS, CRGs, and immune cell infiltration. The best model for predicting AS was 
constructed based on five genes using the XGB model, and high-risk related genes were screened. Our current study 
laid the foundation for further exploring the pathogenesis of AS and determined the prognostic biological indicators of 
cuproptosis associated with AS.
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Figure 13 The propose mechanisms of the 5 genes in AS.
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