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Background: Several predictive models for invasive pulmonary aspergillosis (IPA) based on clinical characteristics have been 
reported. Nevertheless, the significance of other concurrently detected microorganisms in IPA patients is equally noteworthy. This 
study aimed to develop a risk prediction model for IPA by integrating clinical and microbiological characteristics.
Methods: This retrospective study was conducted in adult intensive care units (ICUs) of 17 medical centers in China. Clinical data 
were collected from patients with severe pneumonia who underwent clinical metagenomics of bronchoalveolar lavage fluid between 
January 1, 2019, and June 30, 2023. Subsequently, patients were randomly assigned to training and validation cohorts in a 7:3 ratio. In 
the training cohort, potential influencing factors were identified through univariate analysis, clinical practice, and existing literature, 
and a risk prediction model was constructed using multivariate logistic regression analysis. The performance of this model was then 
assessed and validated in the validation cohort.
Results: Out of 1737 patients initially included in the study, 898 were ultimately analyzed, of which 100 (11%) were diagnosed with IPA. 
The risk prediction model for IPA, incorporating microbiological characteristics, identified six independent risk factors, namely age, 
immunosuppression, chronic kidney disease, connective tissue disease, liver failure, and cytomegalovirus positivity. The model 
demonstrated a superior discriminative ability, with area under the curve (AUC) values of 0.791 and 0.792 in the training and validation 
cohorts, respectively. Sensitivity and specificity reached 73.1% and 74.9%, respectively, and the model demonstrated good calibration.
Conclusion: This study developed a novel risk prediction model for IPA incorporating microbiological characteristics based on 
clinical metagenomics. The model exhibited good discriminative ability and calibration.
Keywords: CAP, community-acquired pneumonia, IPA, invasive pulmonary aspergillosis, prediction model, microbiological 
characteristics, clinical metagenomics

Infection and Drug Resistance 2025:18 441–454                                                              441
© 2025 Li et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Infection and Drug Resistance                                                          

Open Access Full Text Article

Received: 25 August 2024
Accepted: 12 January 2025
Published: 23 January 2025

In
fe

ct
io

n 
an

d 
D

ru
g 

R
es

is
ta

nc
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0002-2015-6729
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


Background
Aspergillus is one of the most common causes of fungal infections in humans.1 According to statistics, in 2017, there were over 
1.8 million cases of invasive fungal infections globally, with approximately 250,000 cases of invasive pulmonary aspergillosis 
(IPA).2 The mortality rate for invasive pulmonary aspergillosis (IPA) is extremely high, ranging from 45% to 90%.3,4 Lack of 
understanding of host factors in critically ill patients, non-specific pulmonary imaging, and the ambiguous clinical significance 
of positive Aspergillus cultures from airway secretions lead to delayed diagnosis and treatment of IPA in the intensive care unit 
(ICU), thereby contributing to elevated mortality rates.5–7 At present, clinical diagnostic algorithms and prediction models for 
IPA have been developed.8–11 However, these models have traditionally been based solely on clinical features. Meanwhile, for 
patients with IPA, the detection of other concurrently present microorganisms, such as Pseudomonas aeruginosa, Klebsiella 
pneumoniae, respiratory syncytial virus, Epstein-Barr virus (EBV), and cytomegalovirus, is as important.12 Nevertheless, 
there is currently a lack of IPA prediction models that also incorporate microbiological features.

Recently, clinical metagenomics has been widely used in diagnosing infectious diseases, particularly for the non- 
targeted diagnosis of specific, unknown, or mixed pathogens.13,14 Its distinct advantage lies in unbiased sampling, which 
enables the broad identification of known and unexpected pathogens and even the discovery of new organisms, thus 
providing a comprehensive overview of pathogens in a given sample.15,16 Therefore, this study aimed to use clinical 
metagenomics methods to identify microorganisms associated with IPA. Additionally, it sought to construct an IPA risk 
prediction model that combines clinical and microbiological characteristics and to evaluate its predictive performance.

Methods
Patient Enrollment
This retrospective cohort study was conducted in the adult ICUs of 17 medical centers in China. We collected clinical 
data of all patients admitted to the ICU between January 1, 2019, and June 30, 2023. Inclusion criteria were: 1. age ≥ 18 
years; 2. diagnosed with community-acquired pneumonia (CAP); 3. undergoing invasive mechanical ventilation; and 4. 
receiving commercial metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid. Exclusion 
criteria were: 1. loss to follow-up within 28 days of ICU admission; 2. diagnosis or clinical suspicion of IPA before ICU 
admission. This study received approval from the ethics committees of all participating hospitals. This study was 
conducted in accordance with the declaration of Helsinki. As a retrospective study, informed consent was waived.

Definitions and Data Collection
The diagnosis of CAP was based on the official clinical practice guidelines of the American Thoracic Society and the Infectious 
Diseases Society of America (IDSA).17 Specifically, it was defined as community onset with chest imaging showing new patchy 
infiltrates, lobar or segmental consolidation, ground-glass opacities or interstitial changes, with or without pleural effusion, and 
any pneumonia-related clinical manifestation. The diagnostic criteria for IPA, we use the 2021 EORTC/MSG criteria from IDSA, 
which are more suitable for ICU patients. This standard classifies IPA into proven and probable.18 Based on the IDAS criteria, our 
study considers clinical metagenomic testing showing positive for Aspergillus to be consistent with mycological evidence. Since 
biopsy was not feasible in the ICU, all patients were classified as probable cases. The 100 probable IPA cases in this study were 
diagnosed based on meeting at least one mycological evidence, one clinical feature, and one host factor. Immunosuppression was 
defined as (1) neutropenia (a neutrophil count < 0.5 × 10^9/L within 10 days of admission); (2) use of immunosuppressive drugs, 
including tacrolimus, cyclosporine, mycophenolate mofetil, or monoclonal antibodies (eg, rituximab) within 30 days before 
mNGS testing; and (3) history of acquired immunodeficiency syndrome, hematologic malignancies, or transplantation.19

Relevant data were independently collected from patients’ electronic medical records by an experienced team of 
clinicians. For the included patients, data obtained included gender, age, comorbidities, immunosuppressive status, 
laboratory test results, galactomannan test results, sputum fungal culture results, and clinical metagenomics results. 
Disease severity was assessed using the sequential organ failure assessment (SOFA) score at ICU admission, with organ 
dysfunction defined as a score of ≥ 2 points. All ICU centers collected cases according to unified standards. The clinical 
metagenomics laboratories were accredited by either the College of American Pathologists or the external quality 
assessment programs of the National Health Commission of China.20,21
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Model Construction
Factors believed to be associated with IPA were included in a multivariate logistic regression model based on previous 
literature and clinical expertise.11 These variables were then screened using the forward selection method, and those with 
a p-value < 0.05 were considered independent risk factors for IPA and included in the analysis. Two risk prediction 
models were constructed based on the results of univariate analysis and multivariate logistic regression: one without 
microbiological characteristics (Model 1) and one with microbiological characteristics (Model 2). The models con
structed by multivariate logistic regression were visualized using nomograms. Model performance was evaluated using 
data from the training cohort. Discriminatory ability of the models was assessed by calculating the area under the receiver 
operating characteristic curve (AUC). Model calibration was performed using the Hosmer–Lemeshow (HL) goodness-of- 
fit test, with a p-value > 0.05 indicating an acceptable fit. Calibration curves were plotted, and decision curves were used 
to evaluate the clinical benefit of the models. Predictive abilities of the two models were compared using net 
reclassification improvement (NRI). An NRI > 0 indicated improved predictive ability of the new model compared to 
the old model, NRI < 0 indicated a decline, and NRI = 0 indicated no significant difference. The models were internally 
validated using the validation cohort data through AUC, HL test, and decision curve analysis (DCA).

Statistical Analysis
Continuous data were first tested for normality. Normally distributed data were expressed as mean ± standard deviation 
(�x � s) and compared using independent sample t-tests. Non-normally distributed data were expressed as median 
(interquartile range) [M (QL, QU)] and compared using the Wilcoxon rank-sum test. Categorical data were expressed as 
frequencies (percentages) and compared using the χ²-test, with the continuity correction χ²-test employed when expected 
values were < 5. All tests were two-sided, and a p value less than 0.05 was considered statistically significant. There were 
no missing data in this dataset. During the construction of the IPA risk prediction models, the “pROC” and “ggplot2” 
packages in R were used to plot receiver operating characteristic (ROC) curves and evaluate model discrimination. The 
“rmst” package and Bootstrap method, with 1000 repeated samples, were employed to plot calibration curves and test 
model fit. Decision curves were plotted using the “dcurves” and “rmda” packages to evaluate the clinical benefit of the 
models. The “nricens” package was applied to calculate NRI to compare the predictive abilities of the two models. 
Statistical analysis was performed using SPSS 23.0 software (SPSS Inc.) and R Statistics software 4.4.0.

Results
Basic Characteristics of Enrolled Patients
Out of 1897 patients screened, 898 met the inclusion criteria and were included in this study (Figure 1). According to the 
revised IDSA diagnostic criteria, 100 patients were diagnosed with probable IPA (100/898, 11%), of which 70 cases (70/ 
100, 70%) exhibited Aspergillus positivity from clinical metagenomics, and 38 cases (38/100, 38%) showed Aspergillus 
positivity from sputum fungal culture. Among the 100 patients, 74 died within 28 days, resulting in a 28-day ICU 
mortality rate of 74% for the IPA group.

Compared to the non-IPA group, patients in the IPA group had higher incidences of concurrent myocardial infarction 
(12.0% vs 4.9%, p = 0.004), CKD (26.0% vs 12.4%, p < 0.001), hematologic malignancies (13.0% vs 3.0%, p < 0.001), 
CTD (15.0% vs 3.8%, p < 0.001), and history of transplantation (15.0% vs 4.6%, p < 0.001). Additionally, the IPA group 
exhibited lower lymphocyte counts [0.46 (0.21–0.77) vs 0.54 (0.31–0.90), p = 0.014] and CRP levels [69.82 (31.54–
152.21) vs 98.19 (43.02–171.35), p = 0.031]. Clinical metagenomics indicated that patients in the IPA group were more 
likely to develop co-infections with Pneumocystis spp. (23.0% vs 9.4%, p < 0.001), EBV (31.0% vs 15.7%, p < 0.001), 
and cytomegalovirus (33.0% vs 16.3%, p< 0.001), whereas patients in the control group were more likely to experience 
co-infections with Klebsiella spp. (16.0% vs 29.4%, p = 0.005). The IPA group also had significantly shorter hospital 
stays [15 (7–23) vs 18 (10–31), p < 0.001], shorter ICU stays [9 (6–15) vs 13 (8–22.25), p < 0.001], and a higher 28-day 
mortality rate (74.0% vs 47.0%, p < 0.001) compared to the non-IPA group (Table 1). In this study, the 898 included 
patients were randomly divided into a training cohort (n = 637) and a validation cohort (n = 261) in a 7:3 ratio. There 
were no notable differences between the two cohorts in terms of gender, age, comorbidities, immunosuppressive status, 
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laboratory test results, SOFA scores, degree of organ dysfunction, duration of hospital stay, clinical metagenomics 
results, duration of ICU stay, and 28-day mortality rate (p > 0.05) (Table S1).

Comparison Between IPA Group and Control Group Based on Univariate Analysis
In the training cohort, patients diagnosed with probable IPA were designated as the IPA group (n = 67), while the 
remaining patients were designated as the control group (n = 570). Compared to the control group, the IPA group had 
higher incidences of CKD (28.4% vs 12.5%, p < 0.001), hematologic malignancies (13.4% vs 3.7%, p = 0.001), CTD 
(16.4% vs 3.9%, p < 0.001), and a history of transplantation (16.4% vs 5.1%, p = 0.001). Additionally, a higher 
proportion of patients in the IPA group were in an immunosuppressive state (64.2% vs 21.8%, p < 0.001), with lower 
CRP levels [68.04 (27.05–130.00) vs 105.00 (42.94–180.83), p = 0.011] (Table 2).

Total patient (n=1897)

Included patients 
(n=898)

Excluded:
1. Age < 18 years old (n=21)
2. Prognostic data are missing (n=139) 
3. Without mechanical ventilation (n=227) 
4. HAP (n=345)
5. VAP (n=267)

Validation cohorts(n=261)Training cohorts (n=637)

Figure 1 Flow chart.

Table 1 Baseline Characteristics and Outcomes in Full Population

Variables IPA  
(n=100)

Non-IPA  
(n=798)

P value

Age, years, median (IQR) 68.00 (62.00–76.00) 68.00 (56.00–77.00) 0.373
Male gender, n (%) 71 (71.0) 549 (68.8) 0.653

Comorbidities n (%)

Diabetes mellitus 28 (28.0) 216 (27.1) 0.843
Myocardial infarction 12 (12.0) 39 (4.9) 0.004

Liver disease 10 (10.0) 51 (6.4) 0.176

Chronic kidney disease 26 (26.0) 99 (12.4) <0.001
Solid tumor 19 (19.0) 107 (13.4) 0.129

Hematologic malignancy 13 (13.0) 24 (3.0) <0.001
Connective tissue disease 15 (15.0) 30 (3.8) <0.001

Transplantation 15 (15.0) 37 (4.6) <0.001

Cerebrovascular disease 16 (16.0) 138 (17.3) 0.746
Immunosuppression, n (%) 63 (63.0) 171 (21.4) <0.001

Laboratory indicators, median (IQR)

White blood cell (109/L) 12.25 (6.19–15.60) 11.23 (6.99–16.34) 0.755
Lymphocyte (109/L) 0.46 (0.21–0.77) 0.54 (0.31–0.90) 0.014

Neutrophil (109/L) 11.16 (5.40–14.65) 9.86 (5.77–14.53) 0.695

C reactive protein (mg/L) 69.82 (31.54–152.21) 98.19 (43.02–171.35) 0.031
Procalcitonin (ng/mL) 0.78 (0.24–3.52) 1.14 (0.27–8.18) 0.143

(Continued)
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Model Construction
In this study, variables considered significant in previous literature were included in the multivariate logistic regression model 
for analysis. Five variables were found to be independent risk factors for IPA: age, immunosuppression, CKD, CTD, and liver 
failure (Table 3). Subsequently, based on the multivariate logistic regression analysis, an IPA risk prediction model was 
constructed based on clinical characteristics (Model 1). The regression system of each self-variable was used as the weight 
system, the logistic regression equation was established, and the final fitting risk prediction model was:

Table 1 (Continued). 

Variables IPA  
(n=100)

Non-IPA  
(n=798)

P value

SOFA score at transfer to ICU, median (IQR) 8.00 (5.00–10.00) 7.00 (5.00–10.00) 0.229
Organ dysfunction, n (%)

Respiratory 88 (88.0) 715 (89.6) 0.624

Coagulation 39 (39.0) 210 (26.3) 0.008
Liver 22 (22.0) 102 (12.8) 0.012

Cardiovascular 52 (52.0) 394 (49.4) 0.620

Neurological 23 (23.0) 251 (31.5) 0.084
Kidney 29 (29.0) 178 (22.3) 0.134

Time from ICU admission to mNGS testing, days, median (IQR) 3.00 (2.00–4.00) 3.00 (2.00–4.00) 0.501

Clinical metagenomics results, n (%)
Acinetobacter spp. 20 (20.0) 222 (27.8) 0.097

Klebsiella spp. 16 (16.0) 235 (29.4) 0.005

Pseudomonas spp. 12 (12.0) 111 (13.9) 0.601
Stenotrophomonas spp. 12 (12.0) 110 (13.8) 0.623

Enterococcus spp. 18 (18.0) 117 (14.7) 0.379

Burkholderia spp. 8 (8.0) 54 (6.8) 0.647
Staphylococcus spp. 5 (5.0) 79 (9.9) 0.113

Corynebacterium spp. 4 (4.0) 43 (5.4) 0.557

Escherichia spp. 2 (2.0) 34 (4.3) 0.415
Streptococcus spp. 5 (5.0) 79 (9.9) 0.113

Haemophilus spp. 3 (3.0) 34 (4.3) 0.741
Elizabethkingia spp. 1 (1.0) 26 (3.3) 0.349

Achromobacter spp. 2 (2.0) 22 (2.8) 0.910

Enterobacter spp. 1 (1.0) 16 (2.0) 0.760
Candida spp. 30 (30.0) 238 (29.8) 0.971

Pneumocystis spp. 23 (23.0) 75 (9.4) <0.001

Aspergillus spp. 70 (70.0) 77 (9.6) <0.001
Torque teno virus 9 (9.0) 74 (9.3) 0.929

Nakaseomyces spp. 4 (4.0) 50 (6.3) 0.369

Serratia spp. 2 (2.0) 17 (2.1) 1.000
HSV-1 30 (30.0) 186 (23.3) 0.140

EBV 31 (31.0) 125 (15.7) <0.001

CMV 33 (33.0) 130 (16.3) <0.001
HHV-7 1 (1.0) 32 (4.0) 0.220

HHV-6b 1 (1.0) 13 (1.6) 0.960

Duration of mechanical ventilation within 28 days, days, median (IQR) 8.00 (4.00–14.00) 9.00 (5.00–16.00) 0.068
Hospital stays, day, median (IQR) 15.00 (7.00–23.00) 18.00 (10.00–31.00) 0.001

ICU stay, day, median (IQR) 9.00 (6.00–15.00) 13.00 (8.00–22.25) <0.001

28-day mortality in ICU, n (%) 74 (74.0) 375 (47.0) <0.001

Note: Data are presented as median (interquartile range), n (%). 
Abbreviations: CMV, Cytomegalovirus; EBV, Epstein-Barr virus; HSV, Herpes simplex virus; HHV, Human herpes virus; IQR, interquartile range; ICU, 
Intensive Care Unit; mNGS, Metagenomic next-generation sequencing; SOFA, Sequential Organ Failure Assessment;
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The nomogram based on this model is shown in Figure 2A.
Clinical metagenomics analysis indicated that, compared to the control group, the IPA group was more likely 

to develop co-infections with Klebsiella spp., Pneumocystis spp., EBV, and cytomegalovirus (Table 4). A second 
risk prediction model incorporating microbial characteristics (Model 2) was then established. In Model 2, 

Table 2 Comparisons Between the IPA and Control Groups for Univariate Analysis

Variables IPA  
(n=67)

Non-IPA  
(n=570)

P value

Age, years, median (IQR) 66.00 (62.00–74.00) 56.00 (68.00–77.00) 0.680

Male gender, n (%) 51 (76.1) 392 (68.8) 0.216

Comorbidities, n (%)
Diabetes mellitus 21 (31.3) 163 (28.6) 0.639

Myocardial infarction 8 (11.9) 30 (5.3) 0.056

Liver disease 5 (7.5) 39 (6.8) 1.000
Chronic kidney disease 19 (28.4) 71 (12.5) <0.001

Solid tumor 10 (14.9) 74 (13.0) 0.657
Hematologic malignancy 9 (13.4) 21 (3.7) 0.001

Connective tissue disease 11 (16.4) 22 (3.9) <0.001

Transplantation 11 (16.4) 29 (5.1) 0.001
Cerebrovascular disease 10 (14.9) 107 (18.8) 0.442

Immunosuppression, n (%) 43 (64.2) 124 (21.8) <0.001

Laboratory indicators, median (IQR)
White blood cell (109/L) 11.67 (6.60–14.57) 11.31 (6.96–16.92) 0.883

Lymphocyte (109/L) 0.52 (0.25–0.88) 0.56 (0.30–0.95) 0.244

Neutrophil (109/L) 10.67 (5.90–13.27) 9.90 (5.73–14.79) 0.856
C reactive protein (mg/L) 68.04 (27.05–130.00) 105.00 (42.94–180.83) 0.011

Procalcitonin (ng/mL) 0.56 (0.22–2.98) 1.16 (0.27–9.94) 0.053

SOFA score at transfer to ICU, median (IQR) 7.00 (5.00–10.00) 7.00 (5.00–10.00) 0.788
Organ dysfunction, n (%)

Respiratory 56 (83.6) 503 (88.2) 0.271

Coagulation 24 (35.8) 156 (27.4) 0.146
Liver 15 (22.4) 71 (12.5) 0.024

Cardiovascular 31 (46.3) 228 (50.5) 0.510

Neurological 13 (19.4) 162 (28.4) 0.118
Kidney 22 (32.8) 129 (22.6) 0.063

Note: Data are presented as median (interquartile range), n (%). 
Abbreviations: IQR, interquartile range; ICU, Intensive Care Unit.

Table 3 Multivariate Logistic Regression Model-1

Variables β P value OR 95% CI

Age 0.024 0.018 1.024 1.004–1.044

Immunosuppression 1.709 <0.001 5.521 3.107–9.811
CKD 0.813 0.012 2.255 1.193–4.263

CTD 0.979 0.025 2.661 1.131–6.260
Liver 0.861 0.015 2.366 1.181–4.741

Constant −4.828 <0.001 0.008

Abbreviations: CKD, Chronic kidney disease; CTD, Connective tissue dis
ease; Liver, Liver dysfunction.
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six factors were identified as independent risk factors for IPA, namely age, immunosuppression, CKD, CTD, 
liver failure, and cytomegalovirus positivity (Table 5). The regression system of each self-variable was used as 
the weight system, the logistic regression equation was established, and the final fitting risk prediction 
model was:

Figure 2 (A). Nomogram prediction model-1; (B). Nomogram prediction model-2.
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The nomogram based on this model is shown in Figure 2B.

Model Evaluation and Validation
ROC curves were plotted using training cohort data. Model 1 was observed to have an AUC of 0.782 (0.725–0.840), and 
Model 2 had an AUC of 0.791 (0.735–0.847). Both models demonstrated good discriminative ability, with overall AUC 

Table 4 Microbial Analysis of IPA and Control Groups in 
the Training Cohort

Variables IPA 
(n=67)

Non-IPA 
(n=570)

P value

Acinetobacter spp. 15 (12.4) 163 (28.6) 0.284

Klebsiella spp. 9 (13.4) 173 (30.4) 0.004
Pseudomonas spp. 11 (16.4) 81 (14.2) 0.627

Stenotrophomonas spp. 6 (9.0) 81 (14.2) 0.236

Enterococcus spp. 15 (22.4) 86 (15.1) 0.122
Burkholderia spp. 7 (10.4) 36 (6.3) 0.309

Staphylococcus spp. 3 (4.5) 59 (10.4) 0.125
Corynebacterium spp. 3 (4.5) 30 (5.3) 1.000

Escherichia spp. 2 (3.0) 24 (4.2) 0.878

Streptococcus spp. 5 (7.5) 62 (10.9) 0.389
Haemophilus spp. 3 (4.5) 24 (4.2) 1.000

Elizabethkingia spp. 1 (1.5) 18 (3.2) 0.705

Achromobacter spp. 2 (3.0) 18 (3.2) 1.000
Enterobacter spp. 1 (1.5) 14 (2.5) 0.947

Candida spp. 20 (29.9) 164 (28.8) 0.854

Pneumocystis spp. 15 (22.4) 59 (10.4) 0.004
Aspergillus spp. 47 (70.1) 55 (9.6) <0.001

Torque teno virus 4 (6.0) 57 (10.0) 0.289

Nakaseomyces spp. 2 (3.0) 33 (5.8) 0.503
Serratia spp. 2 (3.0) 15 (2.6) 1.000

HSV 1 20 (29.9) 122 (21.4) 0.116

EBV 21 (31.3) 90 (15.8) 0.001
CMV 23 (34.3) 88 (15.4) <0.001

HHV 7 1 (1.5) 21 (3.7) 0.565

HHV 6b – 10 (1.8) 0.566

Note: Data are presented as n (%). 
Abbreviations: CMV, Cytomegalovirus; EBV, Epstein-Barr virus; HSV, 
Herpes simplex virus; HHV, Human herpes virus.

Table 5 Multivariate Logistic Regression Model-2

Variables β P value OR 95% CI

Age 0.024 0.019 1.024 1.004–1.044
Immunosuppression 1.620 <0.001 5.055 2.822–9.058

CKD 0.749 0.023 2.116 1.107–4.045

CTD 0.928 0.036 2.530 1.061–6.030
Liver 0.851 0.018 2.341 1.158–4.733

CMV 0.641 0.041 1.899 1.027–3.512

Constant −4.920 <0.001 0.007

Abbreviations: CKD, Chronic kidney disease; CTD, Connective tissue dis
ease; Liver, Liver dysfunction; CMV, Cytomegalovirus.
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values higher than those of any individual parameter within the models (Figure 3A). In the validation cohort, the AUCs 
of Model 1 and Model 2 were 0.787 (0.703–0.871) and 0.792 (0.710–0.874), respectively, again exceeding the AUC 
values of any individual parameter (Figure 3B). Calibration curves based on the training cohort revealed that the mean 
absolute error (MAE) for Models 1 and 2 were 0.012 and 0.011, respectively, and closely matched the ideal curve. The 
HL test indicated p-values of 0.263 for Model 1 and 0.323 for Model 2, suggesting good model fit (Figure 4A and B). In 
the validation cohort, the MAEs for Models 1 and 2 were 0.017 and 0.02, respectively, with HL test p-values of 0.252 
and 0.083 (Figure 4C and D).

Sensitivity analysis of the models was conducted based on the Youden index. In the training cohort, Model 1 
exhibited a sensitivity of 0.806 and a specificity of 0.698 at an optimal cut-off value of 0.083. In contrast, Model 2 had 
a sensitivity of 0.731 and a specificity of 0.749 at an optimal cut-off value of 0.103 (Table 6). The positive predictive 
values for Models 1 and 2 were 0.239 (0.183–0.295) and 0.255 (0.194–0.317), respectively, while their negative 
predictive values were 0.968 (0.951–0.985) and 0.960 (0.941–0.978), respectively. Comparison of the two models 
yielded an NRI = 0.035 > 0 (Table 6), indicating improved predictive capability of Model 2 over Model 1.

DCA suggested that in the validation cohort, Model 1 had a higher net benefit than the “All” and “None” lines 
between thresholds of 8% and 38%, whereas Model 2 showed a higher net benefit between thresholds of 8% and 50%. 
The net benefit area for Model 2 was larger than that for Model 1, indicating the superiority of the former. In the training 
cohort, Model 1 exhibited a higher net benefit than the “All” and “None” lines between thresholds of 5% and 37%, while 
Model 2 showed a higher net benefit than the “All” and “None” lines between thresholds of 8% and 35% (Figure 5).

Discussion
There is an increasing incidence of IPA, especially among critically ill hospitalized patients.22 Early identification and 
treatment of IPA are closely linked to reduced mortality rates. Although traditional culture methods are considered the 
gold standard for diagnosing IPA due to their accuracy in identifying strains, they are time-consuming and yield low 
positive rates, making them unsuitable for early clinical diagnosis.23 Non-culture methods such as histopathological 
examination, while significant, cannot distinguish species and involve invasive sampling processes often limited by the 
patient’s condition, thus restricting their clinical application.24 Therefore, it is necessary to develop clinical prediction 
models that can help predict the likelihood of IPA at an earlier stage. In 2020, Huang developed a predictive scoring 
system for influenza-associated aspergillosis (IAA) called Asper-PreSS.11 In 2023, Massart developed a prediction model 

Figure 3 (A). The ROC curves of Model 1 and Model 2 in the training cohort; (B). The ROC curves of Model 1 and Model 2 in the validation cohort.
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for IPA in patients with ventilator-associated pneumonia.8 However, to our knowledge, previous predictive models for 
IPA have only focused on the clinical characteristics of IPA. This study is the first to combine clinical characteristics and 
microbiota to construct a predictive model for IPA.

While numerous IPA prediction models based on clinical characteristics have been proposed, this study is the first to 
incorporate microbial characteristics alongside clinical features.

This study evaluated the incidence of IPA among 898 patients with CAP who underwent invasive mechanical 
ventilation. Using readily available variables from early ICU admission or pre-admission stages, 12 influencing factors 
were identified through univariate analysis of clinical characteristics, clinical practice, and previous literature. 
Subsequently, a risk prediction model based on clinical characteristics (Model 1) was constructed and validated using 
logistic regression analysis. The model comprised five predictive factors, namely age, immunosuppression, CKD, CTD, 

Figure 4 (A). Calibration curve of model 1 in the training cohort; (B). Calibration curve of model 2 in the training cohort; (C). Calibration curve of model 1 in the validation 
cohort; (D). Calibration curve of model 2 in the validation cohort.
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and liver failure, aligning with previous research findings.8,11,25–27 An observational study revealed that patients with 
invasive Aspergillus infections typically presented with more underlying diseases and were often immunosuppressed.7

After establishing Model 1, it was evaluated and validated. The AUCs of the model in the training and validation 
cohorts were 0.782 (0.725–0.840) and 0.787 (0.703–0.871), respectively, indicating a high discriminative ability. 
Additionally, the p-values of the HL test for both cohorts were > 0.05, suggesting a good model fit. Sensitivity analysis 
of the model revealed a sensitivity of 80.6% and specificity of 69.8% at an optimal cut-off value of 0.083. Furthermore, 
DCA for the training and validation cohorts demonstrated that the model exhibited significant clinical benefits within 
a certain range.

Based on clinical characteristics, microbial features were further analyzed and compared between the IPA and non- 
IPA groups. It was observed that the IPA group was more likely to develop co-infections with Pneumocystis spp., EBV, 
and cytomegalovirus, while the control group was more likely to experience co-infection with Klebsiella spp. 
Subsequently, the microbial characteristics were combined with clinical features to construct a risk prediction model 
(Model 2). This model consisted of six predictive factors: age, immunosuppression, CKD, CTD, liver failure, and 
cytomegalovirus positivity, consistent with the findings of previous research.8,11,25–28 IPA has been reported to be closely 

Table 6 Sensitivity Analysis of the Two Models

Training cohort Validation Cohort

Model 1 Model 2 Model 1 Model 2

Cutoff 0.083 0.103 0.106 0.088

Sensitivity 0.806 (0.711–0.901) 0.731 (0.625–0.837) 0.788 (0.648–0.927) 0.879 (0.767–0.990)
Specificity 0.698 (0.661–0.736) 0.749 (0.714–0.785) 0.728 (0.670–0.786) 0.640 (0.578–0.703)

PPV 0.239 (0.183–0.295) 0.255 (0.194–0.317) 0.295 (0.200–0.391) 0.261 (0.180–0.343)

NPV 0.968 (0.951–0.985) 0.960 (0.941–0.978) 0.960 (0.930–0.989) 0.973 (0.948–0.999)
PLR 2.671 (2.250–3.171) 2.915 (2.380–3.571) 2.897 (2.197–3.820) 2.443 (1.972–3.028)

NLR 0.278 (0.170–0.454) 0.359 (0.241–0.534) 0.291 (0.150–0.565) 0.189 (0.075–0.447)

AUC 0.782 (0.725–0.840) 0.791 (0.735–0.847) 0.787 (0.702–0.872) 0.792 (0.709–0.875)
NRI – 0.035 – 0.009

Note: Sensitivity, Specificity, PPV, NPV, PLR, NLR, and AUC are presented as point estimates (95% Confidence Interval). 
Abbreviations: PPV, positive predictive value; NPV, Negative predictive value; PLR, positive likelihood ratio; NLR, 
negative likelihood ratio; AUC, area under the curve; NRI, Net reclassification index.

Figure 5 (A). Decision curves for model 1 and model 2 in the training cohort; (B). Decision curves for model 1 and model 2 in the validation cohort.
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associated with cytomegalovirus, as a retrospective study has demonstrated that cytomegalovirus is an independent risk 
factor for IPA.28 Following its establishment, the model was evaluated, validated, and compared against Model 1 to 
explore its clinical utility. The AUCs of Model 2 in the training and validation cohorts were 0.791 (0.735–0.847) and 
0.792 (0.710–0.874), respectively, indicating a high discriminative ability in both cohorts. Although Model 2 had a higher 
AUC compared to Model 1, the p-value for the AUCs between the two models was 0.35, indicating no statistically 
significant difference. This suggests that the clinical benefit of Model 2 may be limited, possibly due to the insufficient 
sample size. Additionally, the p-values of the HL test for both the training and validation cohorts were > 0.05, indicating 
superior model fit and robustness. Compared to Model 1, Model 2 produced a better HL test result in the training cohort 
but performed worse in the validation cohort, likely due to the smaller sample size. Sensitivity analysis suggested that at 
an optimal cut-off value of 0.083, the sensitivity was 73.1% and the specificity was 74.9%. Compared to Model 1, the 
sensitivity of Model 2 decreased while the specificity increased. Furthermore, the DCA results in the training cohort 
showed that Model 2 exhibited better clinical utility than Model 1. The NRI was calculated to compare the predictive 
capabilities of the two models. In both the training and validation cohorts, the NRI was > 0, indicating that Model 2 had 
better predictive ability for events than Model 1.

This study has some distinct advantages. Firstly, to the authors’ knowledge, this is the first study to propose an IPA 
risk prediction model in the ICU that integrates microbial characteristics with clinical features, and the proposed model 
demonstrated high discriminative ability and appropriate calibration. Secondly, through clinical metagenomics, we have 
identified the specific microorganisms involved in the occurrence of IPA. In subsequent clinical practice, we can replace 
clinical metagenomics with PCR detection of these microorganisms. Thirdly, our statistical methods are quite compre
hensive. Using univariate analysis and logistic multivariable regression methods to construct predictive models in the 
training cohort. This method is suitable for binary outcome variables. Subsequently, use a nomogram to visually present 
the constructed model. Using ROC, calibration curves, and decision curves to evaluate the model. In addition, we also 
validated the constructed model in the validation cohort using internal validation methods. Finally, a quantitative 
comparison of Model 1 and Model 2 was conducted. Making our research more reliable.

However, the study also has some limitations. First, this study is a retrospective study with some missing data. 
Second, clinical metagenomics only reported coexisting species, without providing absolute quantification. Third, this 
study did not undergo external validation, which may result in overfitting of the model. A well-designed prospective 
cohort can serve as prospective validation of this model29

Conclusion
This was the first study that combined microbiological features with clinical characteristics to construct a clinically 
applicable IPA risk prediction model. The model exhibited superior discriminative ability and calibration, as well as high 
sensitivity and specificity. These findings suggest that incorporating microbial characteristics can significantly improve 
the early identification and management of IPA in critically ill patients, potentially leading to timely and targeted 
therapeutic interventions and ultimately reducing mortality rates. Future studies should focus on external validation of 
this model and explore its applicability in different clinical settings to enhance its generalizability and reliability.

Abbreviations
AUC, Area under the curve; CAP, Community-acquired pneumonia; CKD, Chronic kidney disease; CRP, C-reactive 
protein; CTD, Connective tissue disease; DCA, Decision curve analysis; EBV, Epstein-Barr virus; HL – Hosmer, 
Lemeshow; ICU, Intensive care unit; IDSA, Infectious Diseases Society of America; IPA, Invasive pulmonary aspergil
losis; MAE, Mean absolute error; mNGS, Metagenomic next-generation sequencing; NRI, Net reclassification improve
ment; ROC, Receiver operating characteristic; SOFA, Sequential organ failure assessment.
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