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Abstract: Osteoarthritis (OA) affects several joints but tends to be more prevalent in those that are weight-bearing, such as the knees, 
which are the most heavily loaded joints in the body. The incidence and disability rates of OA have continued to increase and seriously 
jeopardise the quality of life of middle-aged and older adults. However, OA is more than just a wear and tear disease; its aetiology is 
complex, and its pathogenesis is poorly understood. Metabolic syndrome (MetS) has emerged as a critical driver of OA development. 
This condition contributes to the formation of a distinct phenotype, termed metabolic syndrome-associated osteoarthritis (MetS-OA), 
which differs from other metabolically related diseases by its unique pathophysiological mechanisms and clinical presentation. As key 
mediators of MetS, metabolic adipokines such as leptin, lipocalin, and resistin regulate inflammation and bone metabolism through 
distinct or synergistic signaling pathways. Their modulation of inflammatory responses and bone remodeling processes plays a critical 
role in the pathogenesis and progression of OA. Due to their central role in regulating inflammation and bone remodeling, metabolic 
adipokines not only deepen our understanding of MetS-OA pathogenesis but also represent promising targets for novel therapeutic 
strategies that could slow disease progression and improve clinical outcomes in affected patients.
Keywords: osteoarthritis, metabolic syndrome, adipokines

Introduction
OA is a chronic degenerative disease characterised by pain, joint stiffness, and swelling, mostly in the knee joint and hip joint.1–4 

There are gender differences in the prevalence and incidence of OA, with women generally being at higher risk than men, 
especially post-menopausal women around the age of 50; age is also an influencing factor in OA, with the incidence of OA of the 
knees and hips increasing with age for both men and women. Furthermore, the socio-economic level is an influencing factor in 
the incidence of OA, with poorer areas, such as rural areas, tending to have higher incidence rates than cities do.5–9 The 
prevalence and burden of OA are growing exponentially and are expected to affect 78.4 million people by 2040.10,11 As China 
gradually enters an ageing society, OA can seriously affect the quality of life of patients and impose a huge social and economic 
burden.12 Current treatments for OA are largely limited to steroidal or non-steroidal anti-inflammatory drugs, which only relieve 
pain and inflammatory symptoms.13 As a result, there is no effective treatment for the disease at this time.14

MetS is a multifaceted condition defined by a cluster of metabolic abnormalities, including obesity, hypertension, 
hyperglycemia, insulin resistance, and dyslipidemia.15 While traditionally recognized as a major risk factor for cardio
vascular diseases and diabetes, emerging evidence highlights its critical role in the pathogenesis and progression of 
OA.15–17 MetS-related metabolic disturbances adversely affect multiple joint tissues, such as cartilage, bone, and 
synovium, through mechanisms that involve chronic low-grade inflammation, oxidative stress, and imbalances in 
adipokine regulation.15–17These interconnected processes collectively contribute to the initiation and exacerbation of 
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OA, positioning MetS as a significant driver of disease development. The concept of metabolic syndrome-associated 
MetS-OA has recently been introduced, despite the high prevalence of MetS-OA, its underlying pathogenic mechanisms 
remain poorly understood.16 Metabolic syndrome has been shown to promote the release of inflammatory cytokines, 
particularly adipokines, which play a pivotal role in establishing a chronic low-grade inflammatory state, driving cartilage 
degeneration, and disrupting the balance of the intra-articular environment.16,18 These insights underscore the critical 
contribution of adipokines to the pathogenesis of MetS-OA.16

Adipokines, primarily secreted by white adipose tissue, are signaling molecules that regulate inflammation and 
metabolic processes, with dysregulation linked to various diseases, including OA.19–21 In OA, they are central mediators 
of pathogenesis, contributing to chronic inflammation, cartilage degradation, and bone remodeling imbalances through 
shared inflammatory and metabolic pathways such as NF-κB, PI3K/Akt, and MAPK.22,23 Recent clinical studies have 
highlighted their dual roles in OA progression, with some exacerbating the disease while others exhibit protective effects. 
This duality not only establishes adipokines as key contributors to OA pathophysiology but also underscores their 
potential as diagnostic biomarkers and therapeutic targets. Emerging targeted therapies for specific adipokines offer 
promising opportunities to modulate their activity, paving the way for personalized treatment strategies that address both 
inflammatory and metabolic components of OA and potentially transforming the management of this complex disease.

Further research is needed to confirm these relationships and investigate the role of adipose tissue in OA develop
ment. This review focuses on the impact and mechanisms of metabolic diseases and adipokines on OA onset and 
progression (Figure 1).

Metabolic Syndrome
MetS is a global health problem that is increasing globally and will account for approximately 1/3 of the world’s 
population by 2022, making it a major public health problem.24–26 It is usually made up of four components: 
hyperglycaemia, hypertension, dyslipidaemia, and obesity.27–29 The relationship between MetS and OA has been 
extensively studied (Figure 2).Some studies argue that metabolism minimally impacts OA, with one study showing no 
significant effect of MetS on OA incidence after adjusting for body mass index (BMI).30 Conversely, other research 

Figure 1 Metabolic diseases and adipokines influence the progression of OA through regulating inflammation and matrix degradation.
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suggests that MetS contributes to OA by increasing systemic inflammatory mediators from adiposity.31 Moreover, in 
patients aged 18–78 years with OA, those with MetS develop OA earlier, have more extensive pathology, increased 
inflammation, and increased joint pain than do those without it.32,33 MetS manifests in a variety of ways, depending on 
the components that make up the syndrome,34 making its early recognition particularly important. In the context of 
economic development and improved living standards, the number of patients with MetS has increased dramatically 
worldwide.35,36 Therefore, there is a need to explore the links and mechanisms between MetS and OA to facilitate better 
prevention and treatment of OA.

Relationship Between Obesity and OA
Obesity, a hallmark of MetS, is characterized by excessive fat accumulation. Over the past 50 years, its prevalence has risen 
steadily worldwide, with more than 2 billion individuals expected to be affected in the near future.37,38 As a major global 
health challenge, obesity has emerged as a significant risk factor for OA progression through adipose tissue-dependent 
inflammation.39–43 BMI, the primary clinical and research metric for measuring obesity, is positively correlated with OA risk. 
Specifically, individuals with a BMI greater than 30 face a two-thirds lifetime risk of OA and a doubled risk of asymptomatic 
OA.44,45 While mechanical joint overload caused by a high BMI has long been considered a primary driver of OA,46–49 it 
fails to fully explain the high prevalence of OA in non-weight-bearing joints, such as the hands.45 Recent evidence highlights 

Figure 2 A Comprehensive Overview of OA Pathophysiology Linked to Metabolic Diseases: Mechanisms of Onset. This figure illustrates the mechanisms by which MetS 
contributes to OA development through shared pathways of inflammation, oxidative stress, and metabolic dysregulation: Obesity: Drives cartilage degradation and joint 
instability via pro-inflammatory cytokines (IL-6, TNF-α), ROS, and increased joint loading. DM: Amplifies oxidative stress and inflammation through AGEs and ROS while 
reduced H2S levels and impaired collagen synthesis exacerbate cartilage degeneration and joint instability. HT: Activates renin-angiotensin, endothelin, and Wnt-β-catenin 
pathways, leading to subchondral bone calcification and remodeling imbalance. DL: Induces chronic inflammation and oxidative stress, disrupting cartilage homeostasis and 
accelerating OA progression. OP: Weakens subchondral bone, resulting in cartilage calcification, biomechanical imbalance, and rapid OA progression.
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the critical role of obesity-associated systemic inflammation and metabolic dysregulation in OA pathogenesis.50 In obesity, 
adipose tissue undergoes inflammatory remodeling, marked by a significant increase in pro-inflammatory macrophage 
infiltration. These macrophages release cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), 
disrupting chondrocyte homeostasis and accelerating cartilage degradation.51–55 Concurrently, elevated leptin levels in 
synovial fluid enhance the interaction between chondrocytes and synovial fibroblasts, further amplifying IL-6 production 
and exacerbating local inflammatory responses.56,57 This adipose tissue-driven inflammatory cascade links systemic meta
bolic disturbances to localized joint pathology, establishing a critical connection between obesity and OA.

By elucidating the interplay between systemic inflammation, local joint damage, and metabolic dysregulation, this 
framework underscores the central role of adipose tissue-dependent inflammation in OA. These insights deepen our 
understanding of obesity-induced OA and provide a robust foundation for developing targeted interventions that address 
both the inflammatory and metabolic components of this complex disease.

Relationship Between Diabetes Mellitus and OA
Diabetes mellitus (DM) is a prevalent non-communicable disease characterized by systemic metabolic dysregulation 
caused by an imbalance between risk and protective factors.58,59 Studies have demonstrated a strong association between 
DM and the onset and progression of OA.58 Compared to non-diabetic OA patients, those with DM typically exhibit 
greater pain intensity and poorer physical and mental health.60 While numerous studies have identified a significant link 
between DM and OA—such as an increased risk of joint replacement surgery—the exact mechanisms underlying this 
relationship remain unclear and controversial.61,62

Emerging evidence indicates that DM exacerbates OA progression through three primary mechanisms: chronic 
inflammation, joint structure degeneration, and joint instability.63 Elevated levels of IL-6 and Progranulin(PGRN) in 
OA joint tissues of DM patients suggest that cartilage in these individuals is more susceptible to pro-inflammatory stress, 
leading to heightened inflammatory responses.64 Furthermore, increased reactive oxygen species (ROS) in DM- 
associated OA not only stimulate the production of inflammatory mediators such as IL-1β but also inhibit collagen 
synthesis in cartilage, accelerating cartilage degradation.65–67 This oxidative stress further disrupts cartilage homeostasis, 
potentially due to decreased levels of protective factors such as hydrogen sulfide (H2S) and nuclear factor erythroid 
2-related factor 2 (Nrf-2).68 DM also contributes to neuromuscular deficits, which exacerbate joint instability and 
increase cartilage friction, thereby further advancing OA progression.68 These DM-induced structural changes amplify 
joint instability, accelerating disease development. However, some studies dispute the direct relationship between DM 
and OA, arguing that DM is not an independent risk factor for OA. Such discrepancies may arise from differences in 
study design, patient populations, and the multifactorial etiologies of both diseases.69–71

To resolve these controversies, future research should clarify the molecular mechanisms linking DM to OA, 
particularly through inflammatory and oxidative stress pathways. Studies should examine how DM differentially affects 
weight-bearing and non-weight-bearing joints and explore variations in OA progression across DM types. Addressing 
these gaps will enhance our understanding of the DM-OA relationship and facilitate the development of targeted 
therapies addressing shared metabolic and inflammatory pathways.

Relationship Between Hypertension and OA
Hypertension (HT) affects more than 1 billion adults worldwide, and its prevalence is on the rise.72 HT has been 
found to be significantly associated with the development of OA, and OA prevalence in patients with hypertension 
is approximately 40%.73,74 Gender is an influential factor in the relationship between HT and OA, with Lawrence 
suggesting that HT is associated with OA in women.75 Yang et al concluded that HT is linked to an increased OA 
risk in men, potentially due to joint structural degeneration and biochemical pathways.76 Increased subchondral 
bone calcification was found in hypertensive OA animals compared to normal OA animals,77 and a meta-analysis 
reported a stronger correlation between hypertension and knee OA on imaging, suggesting that hypertension is 
strongly associated with structural damage to the OA.78 Furthermore, HT activates the renin-angiotensin and 
endothelin systems, affecting the Wnt-β-catenin signalling pathway and potentially influencing joint disease.76 The 
causal link between OA and HT is unclear, and future research should clarify how HT impacts OA joints.
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Relationship Between Dyslipidaemias and OA
Dyslipidaemias (DLs) are typically characterised by abnormal levels of serum cholesterol, triglycerides, or both, as well 
as abnormal levels of associated lipoprotein species.79 The link between DL and OA is debated. Several studies indicate 
DL may elevate OA risk,80–83 likely due to its impact on body homeostasis and association with chronic inflammation 
and oxidative stress.84,85 Conversely, Inoue found no significant of DL on hand OA risk.86

Relationship Between Osteoporosis and OA
Osteoporosis (OP) is a systemic skeletal disease increasingly prevalent with aging, marked by reduced bone strength and 
microarchitectural deterioration.87 Both OP and OA are complex, multifactorial disorders lacking a complete cure, sig
nificantly contributing to pain and socio-economic burdens worldwide. It is imperative to explore their interrelation and 
devise new therapeutic strategies.88–90 Recent studies highlight OA’s susceptibility to subchondral fragility, potentially 
leading to the emergent concept of OP-OA, meriting further attention.91 Although a negative correlation between OP and 
subsequent OA development is suggested by most research, including a two-sample MR analysis indicating that OP may 
lower OA incidence, this relationship remains debated.92,93 Further findings indicate that OP-OA patients experience faster 
OA progression due to abnormal subchondral bone remodelling, increased cartilage calcification and damage, and biome
chanical deterioration.94–96 However, the exact mechanisms linking these conditions require more investigation.

The study of metabolic diseases associated with OA has transformed our understanding of its pathogenesis. It is now 
recognized that OA extends beyond mere joint “wear and tear” due to overloading; it is a chronic inflammatory condition 
influenced by systemic metabolism, inflicting both physical and psychological stress on patients, and imposing 
a significant economic burden on society. Consequently, exploring the link between metabolic diseases and OA to 
identify novel treatment strategies is a promising approach. The various roles of metabolic diseases in the context of OA 
have been discussed in Table 1.

Metabolic Diseases and OA Pathogenesis
Obesity, DM, HT, DL, and OP collectively drive the onset and progression of OA through convergent mechanisms 
involving inflammation, oxidative stress, and metabolic dysregulation. Together, these MetS not only contribute to 
structural joint damage but also reveal the intricate, multifaceted complexity of OA pathogenesis.

Pro-inflammatory factors associated with obesity, such as IL-6, TNF-α, and leptin, aggravate cartilage degradation 
and local inflammation through the activation of NF-κB and PI3K/Akt signaling pathways.51–55 In DM, the accumu
lation of advanced glycation end-products (AGEs) and elevated levels of ROS amplify oxidative stress in cartilage 
while suppressing protective mechanisms mediated by nuclear factor Nrf-2 and H2S.68 This interplay accelerates 
cartilage deterioration and exacerbates joint instability. Hypertension contributes to OA-related structural damage by 
activating the Wnt-β-catenin pathway, which promotes subchondral bone calcification and remodeling 
imbalances.76,77 Although the precise role of dyslipidemia remains contested, chronic inflammation and oxidative 
stress likely mediate its contribution to OA progression.84,85 Osteoporosis introduces the concept of “OP-OA”, 
emphasizing how subchondral bone fragility exacerbates cartilage calcification and biomechanical imbalances, further 
driving OA advancement.93,95

Future research should focus on the differential effects of shared inflammatory and metabolic pathways in various 
joints and the synergistic impact of MetS components like obesity, DM, and HT. Targeting common molecular 
mechanisms through precision medicine approaches based on inflammatory and metabolic biomarkers can improve 
clinical outcomes and reduce OA’s socioeconomic burden.

Relationship Between Metabolism-Related Adipokines and OA and Their 
Pathways of Action
Adipokines
Adipokines are bioactive molecules secreted primarily by adipose tissue, particularly white adipose tissue, and include 
hormones, cytokines, and chemokines.19 These molecules function through autocrine, paracrine, and endocrine pathways 
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Table 1 Major Epidemiological Studies of Metabolic Diseases Associated with OA

Metabolic 
Disease

Major Findings Reference

Mechanism Signaling Pathway Related Effectors

Obesity
Abnormal mechanical loading NF-κB,Wnt TGF-β,miRNA IL-1β,TNF-α [49]

Systemic inflammatory response and 
Metabolic dysregulation

Wnt/β-catenin IL-1β,TNF-α, NF-κB,Wnt TGF-β [51]

Metabolic dysfunction and accumulation of 

apoptotic cells

GAS6/Axl TNF-α,IL-1β, IL-6 and Axl [52]

Metabolic dysregulation and immune cell 

infiltration and polarization.

Inflammatory pathway, adipokine pathway, and immune cell 

infiltration and polarization

IL-6,TNF-α,adiponectin,visfatin, adipsin, macrophages, 

and T cells.

[53,54]

Local synovial inflammation Inflammatory pathway, macrophage polarization, chondrocyte 
dysfunction.

IFN-γ and IL-1β, CD68, iNOS and Arg1, MMP13 and 
ADAMTS5

[55]

The inflammatory interaction between 

synovial fibroblasts

Inflammatory pathway and cellular cross-talk mechanism IL-6, IL-8, leptin [56]

Carbon stress Carbon stress pathway and Sirt5 pathway SCK, MAK and Sirt5 [57]

Diabetes
Metabolic dysregulation and local synovial 
inflammation

Wnt/β-catenin IL-6,TNF-α,IL-1β,Adiponectin, Visfatin,Adipsin,CD68, 
iNOS,Arg1, MMP13,ADAMTS5 and Sirt5

[64]

Abnormal cellular metabolism and 

increased oxidative stress

Glucose metabolic pathway IL-6,PGE2,ROS,NO and GLUT-1 [66]

Accelerated degradation of the cartilage 

matrix

Diabetes-induced systemic inflammatory pathways Collagen 

matrix changes in high glucose environments

AGEs [67]

Disorder of chondrocyte metabolism Nrf-2/HO-1 H2S,Nrf-2,HO-1,COX-2 and IL-6 [68]
Hypertensive

Mechanical wear and cartilage remodelling RAS, Wnt-β-catenin VEGF,MMPs,ET1,RUNX2, RANKLand TGF-β [76]

Autonomic nervous system disorder Autonomic nervous system dysregulation pathways and bone 
remodelling pathway

Angiotensin II receptor and ET1 [77]

Dyslipidemia
Chronic inflammatory response and 
abnormal lipid metabolism

NF-κB,MAPK TNF-α,IL-6,HDL-C,LDL-C,ApoE,PPARγ and LXR [84]

Degeneration of articular cartilage and 

increased inflammatory response

NF-κB IL-1β,TNF-α,HDL and 8-isoprostanesOsteoporosis [85]

Osteoporosis
Inflammatory response and abnormal 

angiogenesis

NF-κB and mTORC1 FABP4 [93]

Degeneration and damage to articular 

cartilage

MMP-13 [95]
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to regulate a range of physiological and pathological processes, including energy metabolism, inflammatory responses, 
immune regulation, and insulin sensitivity.20 Beyond their critical role in maintaining metabolic homeostasis, adipokines 
are deeply involved in the pathogenesis of various diseases, such as metabolic syndrome, cardiovascular diseases, and 
OA.21 Adipokines play a central role in the pathogenesis of OA by modulating chronic inflammation, disrupting cartilage 
metabolic balance, and impairing bone remodeling.21 These interconnected mechanisms not only accelerate joint 
degeneration but also underscore the pivotal role of metabolic disturbances in driving OA progression.97–100 

Furthermore, the unique contributions of adipokines, independent of mechanical loading, in obesity- and metabolic 
syndrome-associated OA highlight their potential as key targets for elucidating OA pathophysiology and developing 
innovative therapeutic strategies.101,102 This understanding offers a comprehensive perspective on the multifaceted roles 
of adipokines in OA and provides a robust foundation for future research focused on personalized interventions targeting 
adipokines and their associated signaling pathways.

Adipokines in Osteoarthritis: Clinical Evidence and Therapeutic Implications
Recent clinical studies have demonstrated that adipokines play a pivotal role in the onset and progression of OA, 
particularly in the regulation of inflammation, cartilage degradation, and metabolic dysregulation. Leptin levels are 
significantly associated with the severity of joint pain in OA patients, likely by exacerbating inflammation-induced 
pain.103,104 In contrast, adiponectin levels are reduced in late-stage OA and are inversely correlated with the severity of 
pain in OA patients, highlighting its potential protective role in joint health.103 Furthermore, leptin concentrations in 
synovial fluid are strongly correlated with BMI and waist circumference, suggesting that obesity and metabolic syndrome 
accelerate OA progression through leptin-mediated mechanisms.105 LCN2, a pro-catabolic adipokine, is markedly 
elevated in the synovial fluid and cartilage of OA patients. It enhances the activity of MMPs, promoting cartilage matrix 
degradation and intensifying inflammatory responses.106 Similarly, visfatin levels in serum and synovial fluid are strongly 
associated with inflammation severity and disease progression in OA, further exacerbating joint tissue damage.103 

Resistin levels are significantly increased in the synovial fluid and serum of OA patients, accelerating OA pathogenesis 
by promoting extracellular matrix degradation and the release of pro-inflammatory cytokines.103,107 Additionally, adipsin 
levels are significantly associated with lateral cartilage volume loss in the knee, suggesting its role in structural joint 
damage.108 OPN levels in serum are strongly correlated with OA severity, particularly in the early stages of the disease, 
highlighting its potential as a biomarker for early diagnosis and intervention.104 RBP4 is highly expressed in the serum 
and synovial fluid of OA patients, with levels significantly associated with matrix metalloproteinase (MMP) activity and 
pro-inflammatory cytokines, underscoring its critical role in cartilage degradation and inflammation.109 Omentin-1 levels 
are significantly reduced in the plasma and synovial fluid of OA patients. This reduction is closely linked to joint pain, 
stiffness, and advanced radiographic severity, indicating a potential protective role for omentin-1 in joint health.110 

Metrnl levels are notably lower in late-stage OA patients compared to those in earlier stages, with higher Metrnl levels in 
synovial fluid inversely correlated with MMP-13, a key marker of cartilage degradation.111 These findings suggest that 
Metrnl may protect cartilage and mitigate inflammation. Conversely, nesfatin-1 levels are significantly elevated in the 
serum of OA patients, and its synovial fluid concentrations are positively correlated with pro-inflammatory cytokine IL- 
18, further supporting its role as a pro-inflammatory mediator.112

These findings collectively underscore that adipokines are not only critical regulators of inflammation and metabolic 
processes in OA progression but also represent promising diagnostic and therapeutic targets. This evidence provides 
a robust foundation for developing personalized treatment strategies based on adipokine levels, offering new avenues for 
precision medicine in OA management.

Therapeutic Potential of Adipokines in OA Treatment
Adipokines have recently emerged as promising therapeutic targets for OA, offering innovative strategies to mitigate 
disease progression by modulating inflammation, cartilage degradation, and metabolic dysregulation. Leptin, a pro- 
inflammatory adipokine, has been targeted through therapeutic approaches such as leptin receptor antagonists (eg, Allo- 
aca) and leptin analogs (eg, Metreleptin), which have shown potential in alleviating inflammation and addressing 
metabolic disorders by modulating leptin signaling pathways.113,114 In contrast, adiponectin exhibits anti-inflammatory 
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and chondroprotective properties. Its receptor agonist, AdipoRon, demonstrated efficacy in preclinical models by 
significantly reducing inflammation and preserving cartilage integrity.115 Similarly, visfatin, another pro-inflammatory 
mediator associated with OA, has been targeted using the specific inhibitor FK866, which has shown promise in 
suppressing inflammatory responses and represents a potential therapeutic target.116 Additionally, RBP4 exacerbates 
metabolic dysregulation in OA. The RBP4 inhibitor Fenretinide has demonstrated efficacy in mitigating metabolic 
disturbances, highlighting its potential as a viable treatment option for OA.117

These findings underscore the pivotal role of adipokines in OA pathophysiology and highlight their targeted 
therapeutic potential. Future research should prioritize validating these therapeutic strategies through rigorous clinical 
trials and evaluating their integration into precision medicine frameworks.

Leptin’s Role in OA
Leptin was first identified as a product of the ob gene in 1994;118 it is one of the most intensively studied adipokines, 
exhibiting pleiotropic properties and being mainly involved in both pro-inflammatory and bone metabolism in the 
pathomechanisms of OA.119–121 Inflammatory factors play an important role in the developmental process of inflamma
tion in OA, and IL-1, IL-6, TNFα, and IL-17 are the major cytokines involved in the pathogenesis of OA.122 

Furthermore, some studies have found that the levels of IL-6, IL-18, and leptin are significantly correlated with the 
severity of post-traumatic osteoarthritis (PTOA), with the combination of IL-6 and leptin being the most discriminatory 
biomarker of PTOA.123 IL-1β is the factor most correlated with leptin and has been extensively studied, with reports 
indicating that levels of both leptin and IL-1β correlate with OA.124 Both leptin and IL-6 significantly contribute to the 
development of OA through the JAK-STAT pathway, a crucial element in OA pathogenesis.125 Both molecules operate 
via the JAK-STAT3 pathway and play roles in OA-associated regulatory mechanisms; notably, leptin not only activates 
the OBRl receptor, which subsequently activates the IRS-1, PI3K, Akt, and AP-1 pathways enhancing IL-6 
expression.126 Specifically, in fibroblasts of the temporomandibular joint (TMJ-SFs), leptin engages the JAK2/STAT3 
or p38 MAPK or PI3K/Akt signalling pathway and binds to the leptin-specific receptor (Ob-Rb) in the TMJ-SFs to 
regulate IL-6 production in vitro.127 Furthermore, leptin, in synergy with IL-1β, prompts chondrocytes to secrete pro- 
inflammatory agents such as IL-6, IL-8, nitric oxide, and cyclooxygenase-2 and modulates IL-6 and IL-8 production 
through CD4+ T cells.128–130 Furthermore, leptin regulates bone metabolism,125,131 in correlation with the extent of 
cartilage destruction;132 bone metabolism is also partially affected. Inflammatory factors such as TNF-α, IL-1, and IL-6 
notably induce MMP and prostaglandin production and inhibit proteoglycan and type II collagen synthesis, therefore, 
they play a key role in cartilage matrix degradation and bone resorption in OA.133 Leptin and its downstream factors 
influence bone metabolism via multiple pathways, these include the induction of human ADAMTS-4 in chondrocytes 
through the mitogen-activated protein kinase and NF-kB signalling pathways; similarly, leptin promotes the expression of 
ADAMTS-4 and ADAMTS-5 in human chondrocytes, which are implicated in joint damage and the onset of OA.134 

Furthermore, leptin induces cellular senescence in OA chondrocytes by activating the mTOR pathway. Additionally, 
a high level of Ob-Rb expression accelerates chondrocyte senescence through the leptin pathways in OA.135 Moreover, 
leptin enhances VCAM-1 expression in cartilage cells via the kinase kinases JAK2, PI3K, and AMPK, leading to 
accelerated cartilage degradation by promoting leukocyte and monocyte infiltration in inflamed joints.136 Leptin increases 
MMP production via the JAK2 signal transducer and activator of STAT3 signalling pathway, which has a catabolic effect 
on OA cartilage and promotes apoptosis.137 Finally, leptin acts through the JAK2/STAT3 signalling pathway to inhibit 
chondrogenicity and prevent chondrocyte apoptosis.138 Factors downstream of leptin also play a partial role in bone 
metabolism, with DUSP19 downstream inhibiting chondrocyte apoptosis by dephosphorylating JNK.139 Furthermore, 
LOXL3, downstream of leptin, stimulates chondrocyte apoptosis and inhibits chondrocyte autophagy.137 Taken together, 
the evidence increasingly supports the potential role of leptin in OA.122,140,141 Leptin and its receptors are critical targets 
for intervention in OA.142

Lipocalin’s Role in OA
Lipocalin is a metabolism-related adipokine that regulates lipid metabolism, bone metabolism, and glucose 
homeostasis.16,143 It has been found that in joints, joint adipose tissue and synovium in patients with inflammatory 
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joint diseases are important sources of lipocalin.144,145 Current research highlights the significant relationship between 
lipocalin, adipose tissue, and synovium in patients with inflammatory joint diseases. The association between lipocalin 
and OA remains a subject of debate, with various studies indicating that lipocalin levels are positively correlated with the 
development of OA and associated with OA joint pain.16,142,146,147 However, the underlying mechanisms by which 
lipocalin contributes to OA are still not fully understood and warrant further investigation.148 Notably, lipocalin has been 
shown to correlate positively with IL-6 levels and enhance IL-6 production in synovial fibroblasts via the AdipoR1 
receptor/AMPK/p38/IKK alpha beta and NF-κB signalling pathways.149 This process is crucial for the pathogenesis of 
OA.150 Lipocalin has also been found to increase VCAM-1 expression in chondrocytes through kinases such as JAK2, 
PI3K, and AMPK, accelerating chondrocyte degradation by inducing infiltration of leukocytes and monocytes in the 
inflamed joints.136 However, other studies have indicated that lipocalin levels are negatively correlated with the severity 
of OA and exhibit an anti-inflammatory role in its development. Notably, lipocalin levels were observed to decrease 
significantly with the increasing severity of Kellgren-Lawrence OA; furthermore, the concentrations of lipocalin in blood 
and synovial fluid were significantly and negatively correlated with the grading of OA, leading researchers to suggest that 
lipocalin may serve a protective role in OA.151 Feng et al reviewed the protective mechanisms of lipocalin in OA in terms 
of both apoptosis and autophagy.143 Liu et al found that lipocalcin activated the AdipoR1/AMPK/PKC pathway to reduce 
endoplasmic reticulum stress-induced apoptosis and reduced apoptosis by regulating anti-apoptotic proteins, such as Bcl- 
2, in mouse adipose tissues, thereby reducing the severity of OA.152 He and Duan discovered that LipocalinRon induces 
autophagy to mitigate cartilage calcification in OA, where He demonstrated that lipocalcin activates autophagy by 
mediating the AMPK-mTOR signalling pathway.27 It has been proposed that lipocalcin levels do not correlate with OA 
development.50 Lipofuscin-2 (Lipofectin) also plays a critical role in OA development. Lipocalin-2 (LCN2), also known 
as neutrophil gelatinase-associated lipocalin, is identified as a novel adipokine with catabolic functions in OA.153,154 

Most studies indicate that LCN2 serves as a biomarker for cartilage degradation in OA, and complexes comprising LCN2 
and MMP9 are prevalent in synovial fluid from patients with OA, contributing to matrix degradation and OA 
exacerbation.155,156 However, other research has shown that while LCN2 expression is elevated in OA chondrocytes 
and cartilage, its overexpression does not change the expression levels of metabolic enzymes involved in matrix 
degradation, such as catabolic MMP3 or anabolic chondrogenic matrix molecules; thus, its increased levels are neither 
sufficient nor necessary for cartilage destruction in mouse OA.157 These conflicting findings indicate that lipocalin and 
LCN2 have dual or complex roles in OA, highlighting the uncertainty of their impact on OA and underscoring the need 
for further investigations.

Resistin’s Role in OA
The primary source of resistin is white adipose tissue, which can be produced by macrophages as well as by cartilage 
itself.96,157 Resistin plays an important role in synovial inflammation and cartilage degradation.158 It is a highly potent 
pro-inflammatory cytokine that elevates the production of various inflammatory factors, including IL-1, TNF, and other 
inflammatory factors.159,160 It has been observed that resistin facilitates the release of pro-inflammatory factors through 
multiple pathways.159 It suppresses the expression of miR-149 and boosts the expression of TNF-α and IL-1β via MEK 
and ERK signalling.161 Nirupama et al discovered that the enhanced secretion of pro-inflammatory cytokines could also 
be mediated by NF-κB;162 resistin can further activate the p38-MAPK and NF-κB signalling pathways in human OA 
chondrocytes by binding to CAP1, fostering the expression of pro-inflammatory cytokines (CCL3, CCL4) and matrix- 
degrading enzymes (MMP-13, ADAMTS-4), and the release of these substances disrupts intra-articular homeostasis, 
leading to synovitis in knee joints and cartilage degeneration.163 Moreover, resistin induces the expression of pro- 
inflammatory cytokines as well as miR-34a and miR-146a, which mediate mucin-induced oxidative stress in OA through 
the NF-κB pathway.159 Chen et al also noted that resistin inhibits the synthesis of miR-381 via the PKCα, p38, and JNK 
signalling pathways, thereby influencing the expression of VCAM-1 and the adherence of monocytes to OASFs, in turn, 
impacts OA progression.164 Some studies have found that resistin levels are positively associated with cartilage defects in 
OA,165,166 promoting the generation of bone nodules.167 Moreover, some researchers have found that resistin in OA bone 
fragments are mediated by p38 MAPK, which increases the release of pro-inflammatory mediators from osteoclasts and 
chondrocytes, aggravating the process of OA.21 Additionally, resistin is known to be a key component in the 
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development and growth of bone mineralisation. Resistin inhibits cartilage synthesis by inducing the expression of pro- 
inflammatory factors such as degradative enzymes through the binding to Toll-like receptor 4 and adenylyl cyclase- 
associated protein 1 receptor;168 moreover, resistin stimulates the significant overexpression of miR-34a, leading to 
apoptosis in OA chondrocytes and limiting proliferation.169 Additionally, resistin promotes the expression of MMP-1 and 
MMP-13 in chondrocytes and increases Col2a1 mRNA, the primary collagen synthesized by these cells, thereby 
contributing to cartilage degradation.169 Resistin has also been associated with OA and joint pain.142,170,171 Notably, it 
has been found that garlic supplementation can reduce the severity of pain in women who are overweight or women with 
obesity suffering from OA, possibly through a reduction in resistin.172 Therefore, resistin is a critical factor in the 
severity of OA and cartilage degeneration of the knee joint. Resistin, as a potential biomarker of knee OA disease 
severity and cartilage degeneration,173,174 is closely related to the course of OA,146,175,176 and further in-depth studies are 
needed to elucidate its effect on disease outcome.

Osteopontin’s Role in OA
Osteopontin (OPN) is an extracellular matrix glycoprotein that plays an important role in the release of inflammatory 
factors and bone remodelling in OA.177,178 The expression of OPN is regulated by the β-catenin/TCF-4 pathway and 
miRNA-127-5p.179,180 Currently, several studies have concluded that OPN is significantly associated with the level of 
severity of OA.104,181 OPN can promote the expression of metalloproteinase 13 (MMP13) in OA through the NF-kB 
signalling pathway,182 and its deficiency induces the secretion of pro-inflammatory cytokines, such as COL10A1, IL-1β, 
IL-6, IL-8, and TNF- β, which exacerbate the progression of OA.183,184 Recent studies have shown that OPN plays 
a crucial role in bone metabolism.185 Moreover, the overexpression of many inflammatory factors also causes an 
imbalance in bone metabolism. Overexpression of MMP-1 degrades the main component of type II collagen of cartilage 
matrix proteins in mice;186 the release of TNF-α, IL-6, and IL-1β induces apoptosis of chondrocytes.187 Furthermore, IL- 
1β, OPN, p53 upregulation, and COL1A1 and COL2A1 overexpression significantly inhibit chondrocyte viability and 
migration, enhance apoptosis, and induce cartilage damage.188 Notably, OPN promotes NF-κB signalling, accelerates 
chondrocyte proliferation, and thus induces OA in rats.189 Additionally, OPN-induced expression of VEGF in articular 
cartilage causes severe vascular invasion of cartilage and exacerbates the process of OA.190

Visfatin’s Role in OA
Visfatin, an adipokine, is negatively correlated with the severity of OA.169,191 It enhances inflammation in OA, as 
demonstrated by Yang, who reported increased levels of inflammatory markers such as MMP3 and MMP13 in 
chondrocytes.192 Furthermore, Laiguillon observed that visfatin was implicated in pro-inflammatory activation between 
chondrocytes and osteoblasts, significantly inducing IL-6 release.193 Moreover, Cheleschi noted that visfatin substantially 
upregulated the expression of inflammatory factors, including IL-1β, IL-6, TNF-α, MMP-1, and MMP-13.159 In this 
regard, Han and other scholars have provided a more comprehensive summary of the role of visfatin in OA: visfatin 
affects the differentiation of mesenchymal stem cells (MSCs) to adipocytes or osteoblasts by increasing the production of 
MMPs and ADAMTS, leading to alterations in cartilage and bone tissue; induces the production of inflammatory factors, 
such as IL-6 and TNF-α, and promotes an inflammatory state; and inhibits the production of osteoblasts. 
Osteoclastogenesis, which may promote bone regrowth formation in the context of inflammatory diseases.194

Adipsin’s Role in OA
Adipsin, discovered in 1987, is produced by adipocytes through activation of PPAR.195–197 Notably, lipocalin deficiency 
protects joint tissues from the progression of OA.198 Adipsin levels are significantly elevated in serum, SF, and cartilage 
in patients with OA.199 However, the pathway of action between adipsin and OA remains unclear. Adipsin levels have 
been significantly associated with cartilage volume loss in the lateral compartment of the knee and correlated with the 
incidence of Total Knee Arthroplasty.140,200
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Fatty Acid Binding Protein 4’s Role in OA
Fatty acid binding protein 4 (FABP4), also known as adipocyte FABP, is involved in lipolysis and is secreted by 
macrophages and adipocytes.93,201 In patients with OA, FABP4 levels negatively correlate with cartilage thickness and 
have been identified as playing a role in cartilage degradation.202–205 Furthermore, FABP4 has been found to activate the 
NF-κB signalling pathway via PPARγ, enhancing IL-1β-induced inflammation, oxidative stress, apoptosis, and extra
cellular matrix degradation in chondrocytes;thus, FABP4 is implicated in promoting chondrocyte degeneration and plays 
a significant role in the progression of OA.206,207

Nesfatin-1’s Role in OA
Nesfatin-1, an adipokine, is pivotal in OA development by modulating inflammatory mediators and chondrocytes, though 
its role in inflammation is debated. This adipokine notably enhances rat chondrocytes’ collagen type II alpha-1 chain 
(Col2a1) expression and diminishes several inflammatory agents, such as MMPs, cyclooxygenase-2, nitric oxide, 
prostaglandin E2, and IL-6; additionally, reduces chondrocyte apoptosis, thus safeguarding against OA.112,208 

Conversely, most studies have demonstrated a significant positive correlation between nesfatin-1 levels and OA severity.
209,210 Furthermore, Lee reported that nesfatin-1 contributes to the production of inflammatory cytokines, particularly 
promoting IL-1β production in osteoarthritic synovial fibroblasts by suppressing miR-204-5p synthesis through the AP-1 
and NF-κB pathway.211 In contrast, some studies suggest that Nesfatin-1, by blocking the activation of the RhoA/ROCK 
pathway, prevents excessive autophagy in OA cartilage and enhances chondrocyte cytoskeletal integrity.212 Thus, 
Nesfatin-1 is pivotal in OA progression, yet its interactions with inflammatory factors are underexplored, warranting 
further investigation as a potential therapeutic target for OA.

Serpin Peptidase Inhibitor, Clade E, Member 2’s Role in OA
Serpin peptidase inhibitor, clade E, member 2 (Serpin E2) exhibits beneficial effects on the progression of OA, offering 
chondroprotective benefits, inhibiting cartilage degradation, and preventing joint destruction in rabbits.213,214 Crucially, 
the efficacy of Serpin E2 hinges on its interaction with MMPs.215,216 Among these, MMP-13 emerges as a critical 
collagenase involved in cartilage catabolism in OA. Santoro et al demonstrated that Serpin E2 obstructs IL-1-induced 
MMP-13 expression in chondrocytes via pathways involving ERK, NF-κB, and AP-1, thereby mitigating cartilage 
catabolism.215

Progranulin’s Role in OA
PGRN is an adipokine with multifaceted functions, contributing to chondrogenesis and anti-inflammation in OA and 
preventing further OA deterioration.217,218 Atsttrin, a derivative of PGRN, protects against early OA.219 Autophagy 
serves as a protective mechanism for normal cartilage,220 and its loss is linked to pathological changes in OA.221 PGRN 
regulates chondrocyte autophagy by modulating the interaction with the ATG5-ATG12 complex, thus providing 
a protective effect on cartilage.222 Furthermore, PGRN interacts with the inositol-requiring enzyme 1α, an inositol- 
requiring enzyme, enhancing the expression of collagen type 2 and maintaining collagen homeostasis to protect 
cartilage.223 As an antagonist of TNF-α signalling, PGRN plays a crucial role in the pathogenesis of inflammatory 
arthritis in mice, antagonizes TNF-α, and protects against cartilage destruction in OA.224,225 Additionally, PGRN restores 
chondrocyte metabolic homeostasis by activating the ERK1/2 signalling pathway and elevating anabolic biomarkers, 
including collagen type 2 and Aggrecan.226

Chemerin’s Role in OA
Chemerin exhibits a pro-inflammatory effect, and in vitro studies suggest its role in inflammatory lesions and cartilage 
degeneration in OA.17,227,228 This protein is pro-inflammatory in OA; notably, chemerin induces the release of inflam
matory mediators such as IL-6, TNF-a, and metalloproteinases from macrophages and chondrocytes.229 Furthermore, 
chemerin elevates TLR4 expression and triggers CCL2 release from synovial fibroblasts, enhancing leukocyte migration 
to inflammation sites and amplifying inflammatory signalling in chondrocytes.155 Moreover, chemerin intensifies 
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inflammatory signals in macrophages and chondrocytes,230 influences chondrocyte metabolism by boosting AKT/ERK 
phosphorylation, and decreases chondrocyte proliferation, worsening OA symptoms.231 Therefore, while chemerin’s role 
in OA development is acknowledged, its precise pathways and mechanisms warrant further study.

Wnt-1-Induced Signalling Pathway Protein 2’s Role in OA
Emerging adipokines, such as Wnt-1-induced signalling pathway protein 2 (WISP-2) or CCN5, have been linked to OA 
progression. Found in the chondrocytes and synovial membranes of OA patients, WISP-2 significantly influences OA 
pathogenesis.232–234 Studies indicate that WISP-2 counters the effects of IL-1β on MMP-13 and ADAMTS-5, and 
decreases IL-6 and IL-8 levels in OA chondrocytes through the WNT/β-catenin pathway, thus potentially slowing OA 
progression.235

Visceral Adipose Tissue-Derived Serpin’s Role in OA
Visceral adipose tissue-derived Serpin (vaspin), which is expressed at multiple sites and possesses pleiotropic properties, 
has also emerged.236 Serum vaspin levels are lower in OA patients than in healthy controls.237 Vaspin may inhibit the 
release of pro-inflammatory factors and certain adipokines such as leptin and resistin,238 influencing the inflammatory 
process in OA and promoting the development of bone mesenchymal stem cells through activation of the PI3K/AKT 
pathway.239,240 Reduced expression of vaspin inhibits cholesterol synthesis via the miR155/LXRα efflux pathway, 
contributing to the accumulation of cholesterol in the cartilage and the development of OA.241

Serum Amyloid A’s Role in OA
Serum Amyloid A (SAA) is a newly discovered adipokine; studies have shown that the level of SAA in serum and 
synovial fluid (SF) of OA patients was higher than normal, and its expression level was positively correlated with the 
severity of OA.242,243 Furthermore, it was found that SAA induces the release of pro-inflammatory cytokines,244,245 

which plays a key role in the inflammatory process of OA and induces the secretion of MMPs by chondrocytes under the 
control of TGF-b, exacerbating the progression of OA.246

Omentin-1’s Role in OA
Omentin-1 (also known as Intelectin-1) is a newly discovered adipokine, and multiple studies have found that its level is 
negatively correlated with OA severity.247,248 Omentin-1 displays anti-inflammatory effects in OA, with both omentin-1 
and IL-4 levels significantly reduced in OA patients relative to controls. Studies have shown that omentin-1 triggers IL- 
4-dependent anti-inflammatory responses and M2 macrophage polarization in OA synovial fibroblasts via PI3K, ERK, 
and AMPK pathways, thereby preventing cartilage degradation and bone erosion.249 Additionally, omentin-1 has been 
described as a pleiotropic protective adipokine that offers a repair mechanism for chondrocytes in joint tissue. This is 
done by attenuating IL-1β-induced G1-phase cell cycle block and inhibiting IL-1-induced cellular senescence, thus 
protecting chondrocytes from senescence.250

Metrnl’s Role in OA
Metrnl, a newly discovered adipokine, has been linked to the pathogenesis of OA. Studies have shown that higher levels 
of Metrnl correlate with a reduced likelihood of developing OA.251–253 It has also been shown that Metrnl can regulate 
IL-4 and IL-13 expression levels to exert anti-inflammatory effects;Liu has noted that its anti-inflammatory effects are 
mediated by inhibiting the PI3K/Akt/NF-κB pathway.254,255

Adipokines as Key Mediators in the Pathogenesis of OA
Adipokines play a pivotal role in the pathogenesis of OA through complex interactions within shared inflammatory and 
metabolic signaling pathways, including NF-κB, PI3K/Akt, MAPK, and others. These molecules influence critical 
processes such as chronic inflammation, cartilage metabolism, and bone remodeling, contributing to the progression 
of OA.
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Firstly, Chronic Inflammation Driven by NF-κB and JAK/STAT Pathways: Adipokines such as leptin, resistin, 
and lipocalin establish a positive feedback loop by co-activating NF-κB and JAK/STAT signaling 
pathways.21,113,146 This significantly amplifies the release of pro-inflammatory cytokines (eg, IL-6, TNF-α), 
maintaining a chronic low-grade inflammatory microenvironment in the joint.21,113,146 Such sustained inflamma
tion exacerbates cartilage degradation, synovial inflammation, and overall OA progression. Secondly, Cartilage 
Metabolic Imbalance via PI3K/Akt and MAPK Pathways: Leptin, Visfatin, and Nesfatin-1 also converge on the 
PI3K/Akt and MAPK pathways to regulate chondrocyte metabolic activity.104,112,194,197 This disrupts the balance 
between cartilage matrix synthesis and degradation, accelerating cartilage degeneration and further driving OA 
progression.

Thirdly, Bone Remodeling Imbalance via ERK and mTOR Pathways: adipokines such as leptin and osteopontin 
modulate osteoclast and osteoblast activity through ERK and mTOR signaling pathways.118,119,177 This results in 
increased bone resorption, inhibited bone formation, and progressive structural deterioration of bone tissue, destabilizing 
joint integrity and worsening OA outcomes. Lastly, Insufficient Anti-Inflammatory Protection via PPARγPathways: anti- 
inflammatory adipokines, including metrnl, and FABP4, exhibit protective effects by mitigating inflammation and 
preserving joint structures through Wnt/β-catenin and PPARγ pathways.116,239 However, these protective mechanisms 
are often insufficient to counteract the strong pro-inflammatory signals driven by other adipokines, limiting their ability 
to effectively slow OA progression.

Chronic low-grade inflammation and bone destruction, mediated by key adipokines, are fundamental to OA 
pathogenesis within the framework of MetS. Pro-inflammatory adipokines, including leptin, resistin, and osteopontin, 
exacerbate cartilage degradation and synovial inflammation by activating signaling pathways such as NF-κB, PI3K/ 
Akt, and WNT/β-catenin, leading to chondrocyte catabolism and inflammatory cascades.21,128,183,256 Conversely, 
protective adipokines like Serpin E2, PGRN, and WISP-2 counteract these processes by suppressing cartilage 
degradation and enhancing anti-inflammatory mechanisms, promoting tissue homeostasis.213,215,217 Notably, adipo
kines such as lipocalin, adipsin, and nesfatin-1 exhibit context-dependent dual roles, either promoting inflammation or 
supporting cartilage stability, reflecting their complex contributions to OA progression.112,152,200 Understanding these 
diverse functional phenotypes and underlying molecular mechanisms is critical for identifying therapeutic targets and 
advancing treatments for metabolic OA. Epidemiological studies strongly reinforce the link between adipokines and 
OA, underscoring their pivotal roles in disease initiation and progression. Tables 2 and 3, along with Figure 3, 

Table 2 The Role of Different Adipokines in the Pathogenesis of OA

Adipokine Major Findings Reference

Mechanism Signaling Pathway Related Effectors

Leptin Release of inflammatory factors IRS-1/PI3K/Akt,AP-1 IL-6,c-Jun [126]

Release of inflammatory factors and cartilage 
degradation

JAK2/STAT3, PI3K/Akt and p38 
MAPK

IL-6 and Ob-Rb receptor [127]

Inflammatory response, cartilage degradation, 

apoptosis and phenotype loss

JAK2/STAT3,MAPK,PI3K/Akt 

and NF-κB

MMPs,ADAMTS enzymes, 

iNOS and COX-2

[128]

Inflammation response, extracellular matrix and 

cartilage degradation

IL-1β,MMPs,ADAMTS and 

miR-27

[129]

Interaction of metabolism and inflammation, bone 
remodeling

IL-1β, interferon-γ, IL-6, 
TNF-α, MMPs and NO

[130]

Pro-inflammatory effects and bone metabolic 

imbalance

JAK-STAT,NF-κB and MAPK/ 

ERK

IL-1β, TNF-α and IFN-γ, 

MMPs

[134]

Cellular senescence, inhibition of autophagy Leptin-Ob-Rb, mTOR signaling 

pathway

ob-Rb,mTOR,p53 and 

p21

[135]

Pro-inflammatory response and Cellular 
senescence and autophagy

JAK2/PI3K/AMPK, mTOR and 
p53/p21

VCAM-1,MMPs and iNOS [136]

(Continued)
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Table 2 (Continued). 

Adipokine Major Findings Reference

Mechanism Signaling Pathway Related Effectors

Proinflammatory effects and cartilage matrix 

degradation

JAK/STAT,PI3K/AKT and MAPK/ 

ERK

OB-Rb,MMPs,IL-1, TNF-α 
and other pro- 
inflammatory factors

[138]

Pro-inflammatory and inhibits apoptosis 

protective factor

JAK/STAT,MAPK/JNK DUSP19,JNK,IL-1β,TNF- 

α and other pro- 
inflammatory factors

[139]

Lipocalin
Oxidative stress, apoptosis, pyroptosis, and 
autophagy

Adiponectin-AMPK-mTOR, 
Adiponectin-AMP K-ULK1, 

Adiponectin-NLRP3

Adiponectin, AMPK, 
mTOR and NLRP3 

inflammatory bodies

[143]

Pro-inflammatory AMPK/Mtor IL-6,TNF-α1 and NLRP3 [149]
Pro-inflammatory, apoptosis and dysregulation of 

lipid metabolism

AMPK/PKC, PPARα/ ATF2 PPARα and IL-6,TNF-α [152]

Regulates autophagy and inhibits calcification AMPK-mTOR AMPK,mTOR,LC3 and 
Beclin-1

[153]

Exacerbates the degradation of cartilage NF-κB MMP-9, IL-1β [156,159]

Resistin
Promotes chondrocyte proliferation and 

differentiation

NF-κB,JAK/STAT and MAPK ROS,MMPs and IL-8 [21]

Pro-inflammatory effects, degradation of cartilage 
matrix, interference of oxidative stress and 

autophagy

NF-κB, MAPK and JAK/STAT MMPs,IL-6 and TNF-α [156]

Pro-inflammatory, matrix degradation and inhibits 
matrix synthesis

NF-κB and JAK/STAT MMPs,IL-1,IL-6,TNF-α [158]

Inflammatory response, oxidative stress, 

apoptosis and cartilage degradation

NF-κB and ERK/p38/MAPK MMPs, IL-1β,IL-6,IL-17A [159]

Pro-inflammatory MEK/ERK, TNF-α, IL-1β and miR- 

149

[160]

Pro-inflammatory, inhibits cartilage matrix 
proteins

NF-κB, C/EBPβ CCL3 and CCL4 [161]

Inflammatory response and matrix degradation p38-MAPK and NF-κB CCL3,CCL4,MMP13 and 

ADAMTS-4

[163]

Cartilage degradation NF-κB MMP-1, MMP-13 and 

miRNA

[169]

Osteopontin
Cartilage degradation NF-κB MMP13, NF-κB [182]

Promotes inflammatory response and matrix 

degradation

NF-κB,MAPK MMPs, TNF-α and IL-1β [183]

Promotes sclerosis of subchondral bone and 

enhances breakdown of cartilage matrix

FAK/PI3K/Akt,TGF-β MMPs, Integrin Receptors 

IL-1β,TNF-α
[256]

Cartilage erosion and abnormal bone metabolism TGFβ-Smad2/3 Alkaline phosphatase, 
osteocalcin

[184]

Cartilage degeneration NF-κB Cyclin D1, Caspase-3 [189]

Degeneration and inflammation of joints PI3K/AKT and ERK1/2 VEGF, MMPs [190]
Visfatin

Pro-inflammatory and oxidative stress NF-κB IL-1β,IL-6, MMP-1 SOD- 

2, CAT, NRF2

[159]

Accelerated cartilage degradation HIF-2α, MMPs and IL-6 [191]

(Continued)
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Table 2 (Continued). 

Adipokine Major Findings Reference

Mechanism Signaling Pathway Related Effectors

Pro-inflammatory effect IL-6,MCP-1 and 

keratinocyte Chemokine

[192]

Pro-inflammatory, promotes degradation of 

cartilage matrix

IL-6/STAT-3/HIF-2α,PI3K/Akt/ 

MAPK

ADAMTS-5 [194]

β1 integrin/ERK/p38 MAPK/NF- 
κB pathway

IL-1β,IL-6,TNF-α, 
ADAMTS-4

Adipsin
Promotes cartilage volume loss PPAR activation TNF-α,IL-1β [140]
Loss of cartilage volume Monocyte chemotactic 

protein-1 and C-reactive 

protein

[200]

FABP4
Pro-inflammatory effects, lipid metabolism and 

cartilage degradation

NF-κB MMP-13,ADAMTS4,IL-6 [205]

Pro-inflammatory, oxidative stress and apoptosis PPARγ/NF-κB MMPs,IL-6,TNF-α, Bax 

and Bcl-2

[206]

Chondrocyte degeneration NF-κB PGE2,IL-6,MMP3 and 
MMP13

Nesfatin-1
Inhibition of the inflammatory response, 
reduction of chondrocyte apoptosis and 

protection of the cartilage matrix

NF-κB,MAPK MMPs,ADAMTS5,Bax and 
Bcl-2

[207]

Pro-inflammatory effect NF-κB,MAPK IL-6,MIP-1α,COX-2 [208]
Pro-inflammatory effect PI3K/Akt,AP-1 and NF-κB IL-1β and miR-204-5p [211]

Inhibition of chondrocyte autophagy and 

improvement of cytoskeletal integrity

RhoA/ROCK Autophagy-related 

proteins, f-actin and 
G-actin

[212]

Serpin E2
Inhibition of the expression of MMPs and 
inflammatory factors

ERK,NF-κB and AP-1 MMP-13,IL-1β and TNF-α [213]

Regulation of chondrocyte apoptosis and matrix 

degradation

CircSERPINE2-miR-1271-ERG MMPs,miR-1271 and ERG [214]

Reduced degradation of cartilage matrix ERK 1/2, NF-κB and AP-1 MMP-13 and ERK 1/2 [215]

Progranulin
Inhibits the production of inflammatory mediators 
and reduces matrix-degrading enzymes

PGRN-TNFR1/TNFR2 and 
PGRN-ADAMTS

TNF-α,TNFR1,TNFR2 
and ADAMTS-7 and 

ADAMTS-12

[217]

Regulates autophagy ATG5-ATG12 PGRN, ATG5, ATG12 
and LC3

[222]

Maintain cartilage matrix homeostasis IRE1α-XBP1 PGRN,IRE1α and XBP1s [223]

Regulates inflammation and bone repair PGRN-TNFR1/2 PGRN,TNF-α,TNFR1 and 
TNFR2

[224,225]

Prevents osteophyte formation and cartilage 

damage

PGRN-TNFR PGRN,TNF-α,TNFR and 

β-Catenin

[226]

Chemerin
Promotes inflammatory response and cartilage 

degradation

ChemR23 IL-6,IL-1β,TNF-α and 

MMPS

[229]

Exacerbates inflammation and cartilage 

degradation

TLR4 TLR4 and CCL2 [230]

(Continued)
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Table 2 (Continued). 

Adipokine Major Findings Reference

Mechanism Signaling Pathway Related Effectors

Exacerbates inflammation and ChemR23-AKT/ERK MMP-1,MMP-3,MMP-13 [231]

Regulates cartilage degradation Wnt/β-catenin MMP-13,ADAMTS-5 [235]
WISP-2 
Vaspin

Anti-inflammatory, reduces degradation of 
cartilage matrix

NF-κB TNF-α,IL-6 and MMPs [238]

Regulates cholesterol metabolism and reduces 

the expression of inflammatory factors

MiR155-LXRα MiR155,LXRα,ABCA1, 

ABCG1 and SR-B1

[241]

Serum 
Amyloid A

Inhibits the production of inflammatory PGRN-TNFR1/TNFR2 and 
PGRN-ADAMTS

TNF-α,TNFR1,TNFR2 
and

[217]

Exacerbates articular cartilage damage and 

inflammatory responses

SAA-TLR4 TLR4,IL-6,IL-8,GRO-α, 

and MCP-1 and MMPS

[246]

Omentin-1 Reduces inflammation and protects cartilage NF-κB TNF-α, COX-2, IL-6, and 

IL-1β
[247]

Reducing inflammation and inhibiting cartilage 
degradation

AMPK TNF-α and IL-6 [248]

Promotes anti-inflammatory responses by 

inducing IL-4 expression; facilitates

PI3K, ERK and AMPK IL-4, IL-10, IL-13, IL-1β,IL- 

6, IL-8, TNF-α.

[249]

M2 macrophage polarization protects 

chondrocytes; inhibiting IL-1β-induced 

senescence.

SIRT1-p53 P21, PAI-1 and Caveolin-1 [250]

Metrnl
Reduces inflammation-induced cartilage 

degradation

Metrnl-PPARγ IL-4/IL-13,IL-1β and TNF- 

α
[254]

Anti-inflammatory and anti-pyroptosis 

inflammatory effects

PI3K/Akt/NF-κB, Metrnl-NLRP3 

/caspase-1/GSDMD

Caspase-1,IL-1β,MMP-13 

and ADAMTS-5

[255]

Table 3 Adipokines in Osteoarthritis: Multifaceted Roles, Mechanistic Pathways, and Clinical Implications

Adipokine Functional Phenotype Pathways Clinical Impact Reference

Leptin Promotes inflammation, cartilage 

degradation and bone metabolism 

imbalance

NF-κB, JAK/STAT, 

PI3K/Akt, mTOR

Potential therapeutic target for 

inflammation and cartilage 

degeneration

[126–131,133–139]

Lipocalin Dual role in inflammation, promotes 

VCAM-1 expression and autophagy

AdipoR1/AMPK, 

NF-κB, AMPK- 

mTOR

Controversial roles in OA, needs 

further investigation

[143–145,147–156,257]

Resistin Induces pro-inflammatory 

cytokines, cartilage degradation, and 

apoptosis

NF-κB, p38 

MAPK, PKCα
Critical biomarker for OA 

severity and cartilage 

degeneration

[157–169]

Osteopontin Enhances inflammation, promotes 

vascular invasion and bone 

remodeling

NF-κB, ERK1/2 Key player in vascular invasion and 

cartilage damage

[182–190,256]

(Continued)
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delineate the functional and clinical relevance of various adipokines, illustrating both shared and distinct mechanisms 
underlying OA pathophysiology. Pro-inflammatory adipokines, such as SAA and chemerin, amplify cytokine cascades, 
serving as critical markers of OA progression.217,229 In contrast, anti-inflammatory adipokines like omentin-1 and 
Metrnl show promise in cartilage repair and symptom alleviation by inhibiting NF-κB signaling and promoting anti- 
inflammatory pathways.247,255,

Conclusion
OA is a complex degenerative joint disease significantly influenced by metabolic dysregulation, with metabolism-related 
adipokines playing a pivotal role in the pathogenesis of MetS-OA. While previous studies have highlighted the crucial 
roles of metabolic dysfunction and adipokines in OA progression, the precise mechanisms and interactions remain 
incompletely understood. The relationship between adipokines and OA is multifaceted, with these molecules exerting 
varying effects at different stages of the disease, from promoting inflammation and cartilage degradation to potentially 
modulating repair processes. This complexity underscores the importance of further investigating how adipokines 
influence OA progression and their roles in both early and advanced stages of the disease.

Table 3 (Continued). 

Adipokine Functional Phenotype Pathways Clinical Impact Reference

Visfatin Upregulates inflammatory markers, 

alters cartilage and bone 
metabolism

NF-κB,MAPK Potential target for reducing 

cartilage and bone damage

[191–194]

Adipsin Correlated with cartilage volume 

loss and OA progression

PPAR activation Marker for cartilage volume loss, 

unclear pathway of action

[140,200]

FABP4 Promotes chondrocyte 

degeneration, oxidative stress, and 

ECM degradation

PPARγ, NF-κB Therapeutic target for ECM 

preservation and chondrocyte 

health
Nesfatin-1 Regulates inflammation and 

autophagy, with debated 

inflammatory roles

AP-1, NF-κB, 

RhoA/ROCK

Underexplored target for 

modulating inflammation and 

autophagy

[112,208–212]

Serpin E2 Inhibits cartilage degradation and 

prevents joint destruction

ERK, NF-κB, AP-1 Potential chondroprotective agent 

in OA management

[213–215]

Progranulin Supports anti-inflammatory 
mechanisms and chondrocyte 

homeostasis

TNFR1/2, ATG5- 
ATG12

Supports cartilage preservation 
and metabolic balance

[217–226]

Chemerin Induces inflammatory cytokines and 
cartilage degradation

TLR4, AKT/ERK Pro-inflammatory role, potential 
target for inflammation control

[229–231]

WISP-2 Counters IL-1β effects, slows 

cartilage degradation via WNT/β- 
catenin

WNT/β-catenin Novel target for cartilage 

preservation and OA progression 
control

[235]

Vaspin Inhibits pro-inflammatory factors, 

promotes mesenchymal stem cells

NF-κB, miR155/ 

LXRα
Therapeutic potential in OA 

through MSC regulation

[238,241]

Serum 
Amyloid A

Induces pro-inflammatory 

cytokines, exacerbates cartilage 

degradation

TGF-β mediated 

MMP induction

Biomarker for OA progression 

and therapeutic target

[217,246]

Omentin-1 Triggers IL-4-dependent anti- 

inflammatory responses, prevents 

senescence

PI3K, ERK, AMPK Anti-inflammatory potential in 

cartilage repair and senescence 

prevention

[247–250]

Metrnl Inhibits NF-κB pathway, correlates 

with reduced OA likelihood

PI3K/Akt/ NF-κB Promising therapeutic target to 

inhibit NF-κB pathway in OA

[254,255]
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Future research should focus on elucidating the diverse functions of adipokines at different stages of OA, 
particularly their dual roles in inflammation, metabolism, and tissue remodeling. A deeper understanding of the 
complex mechanisms underlying adipokine actions is essential for the development of targeted therapies. Targeting 
specific adipokines or their receptors could not only alleviate symptoms but also slow disease progression, providing 
long-term therapeutic benefits for OA patients. Moreover, combining adipokine-targeted treatments with other ther
apeutic approaches, such as cartilage repair or immune modulation, may offer a more comprehensive and effective 
disease management strategy.
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