
R E V I E W

Research Progress on Neural Processing of Hand 
and Forearm Tactile Sensation: A Review Based 
on fMRI Research
Hao Chen1,*, Shifang Fu2,*, Xiaoyu Zhi2, Yu Wang2, Fanqi Liu2, Yuetong Li2, Fengjiao Ren2, 
Junfeng Zhang 1,3,4, Longsheng Ren1, Yanguo Wang 2

1Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China; 2Rehabilitation Department, Tianjin 
University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China; 3Rehabilitation Center, First 
Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China; 4National Clinical Research 
Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China

*These authors contributed equally to this work 

Correspondence: Yanguo Wang, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of 
China, Email tjwangyanguo@163.com 

Abstract: Tactile perception is one of the important ways through which humans interact with the external environment. Similar to 
the neural processing in visual and auditory systems, the neural processing of tactile information is a complex procedure that 
transforms this information into sensory signals. Neuroimaging techniques, such as functional Magnetic Resonance Imaging 
(fMRI), provide compelling evidence indicating that different types of tactile signals undergo independent or collective processing 
within multiple brain regions. This review focuses on fMRI studies employing both task-based (block design or event-related design) 
and resting-state paradigms. These studies use general linear models (GLM) to identify brain regions activated during touch 
processing, or employ functional connectivity(FC) analysis to examine interactions between brain regions, thereby exploring the 
neural mechanisms underlying the central nervous system’s processing of various aspects of tactile sensation, including discriminative 
touch and affective touch. The discussion extends to exploring changes in tactile processing patterns observed in certain disease states. 
Recognizing the analogy between pain and touch processing patterns, we conclude by summarizing the interaction between touch and 
pain. Currently, fMRI-based studies have made significant progress in the field of tactile neural processing. These studies not only 
deepen our understanding of tactile perception but also provide new perspectives for future neuroscience studies. 
Keywords: neural processing mechanism, tactile perception, functional magnetic resonance imaging, review

Introduction
Tactile perception is one of the important ways through which humans perceive information about their external 
environment. It represents the earliest method by which individuals understand their bodies and connect with the 
world around them. The tactile sense enables humans to perceive important details about objects, including shape, 
texture, temperature, and other important information through touch, forming a fundamental basis for interaction with the 
surrounding environment. Concurrently, tactile perception plays a crucial role in motor performance and control. It can 
both facilitate and disrupt motor processes depending on various factors such as the nature of the tactile stimulus, the 
context of the motor task, and the individual’s state of neural adaptation.1,2 Furthermore, it is posited that social contact, 
which transcends verbal communication, serves as a potent vehicle for expressing emotions and conveying authentic 
intentions. Extensive animal studies underscore the profound effects of early physical contact on both neurological 
development and lifelong behavior.3,4 Harlow’s classic sheds light on the impact of a lack of comfortable and caring 
touch on young monkeys, revealing that it can lead to psychological stress, making them irritable and aggressive as they 
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mature.5,6 In humans, parental touch emerges as a critical factor in reducing an infant’s physiological responses to stress 
and plays a crucial role in the normal development of the infant’s nervous system.7–10

Touch, akin to other sensory modalities like vision and hearing, does not materialize spontaneously. Rather, it undergoes 
complex neural processing prior to converting external touch and pressure information into sensory signals.11 The genesis of 
tactile sensation involves a complex interplay of neurophysiological processes. Low-threshold mechanoreceptors, located in 
the superficial layers of the skin, conduct non-noxious stimuli and constitute the foundation for afferent tactile information. 
These receptors respond to mechanical stimuli resulting from physical interactions such as pressure and vibration.

The Low-Threshold Mechanoreceptors (LTMRs) consist of the Merkel disc, Pacinian corpuscle, Meissner corpuscle, and 
Ruffini corpuscles. The Merkel disc, which is distributed in the epidermis, responds to sustained stimulation.12,13 In contrast, 
the Pacinian corpuscle,14 located in the subcutaneous tissue, and the Meissner corpuscle,15 present in the dermis, are both 
responsive to transient stimulation. The Ruffini corpuscle, distributed in the dermis and subcutaneous tissue, shows a different 
response pattern, being sensitive to sustained changes in skin tension.16 Merkel disc and Meissner corpuscles, characterized by 
smaller receptive fields, form the basis for perceiving skin light touch and roughness, with a higher density in areas requiring 
precise touch, such as fingertips.17–19 In contrast, the Pacinian corpuscle, with its larger receptive field, excels in detecting 
high-frequency (20–1000Hz) vibrations. Ruffini corpuscles, on the fingers, demonstrate sensitivity to skin stretch, serving 
both as skin touch receptors and also responsible for proprioceptive function.20–22 In hairless skin of healthy adults, Meissner 
corpuscles comprise approximately 43% of touch receptors, while Pacinian corpuscles make up about 13%. Merkel discs and 
Ruffini corpuscles represent approximately 25% and 19%, respectively, of the total touch receptors.23 A previous study24 

demonstrated that receptor density increases significantly from proximal to distal regions, with a significant increase at the 
fingertips. The relative densities of receptors in the palm, fingers, and fingertips are approximately 1, 1.6, and 4.2, respectively. 
Merkel disc and Meissner corpuscles primarily contribute to these density variations, whereas the distribution of Pacinian 
corpuscle and Ruffini corpuscles shows little difference from proximal to distal regions.

The classic touch signal transduction pathway posits that LTMRs receive diverse tactile signals and convert physical 
forces into neuronal signals.25 Subsequently, these signals are conveyed from the periphery to the spinal cord via afferent 
fibers, such as the thick myelinated Aβ fibers or thin unmyelinated C-tactile afferent fibers (CT fibers).26,27 Aβ afferent 
fibers serve as the main discriminative touch receptors distributed throughout the body. While CT afferent fibers are 
distributed on hairy skin, their presence on glabrous skin remains unclear, additionally, the function of CT afferent fibers 
is related to the transmission of social interaction, interpersonal relationships, and affective touch.28–31 Following the 
transmission of tactile signals to the spinal cord, the pathway predominantly involves the posterior cord and the cuneate 
nucleus, crosses the medial lemniscus, and reaches the ventrolateral nucleus of the thalamus.32 Finally, tactile information 
is projected to the cerebral cortex for representation and processing, particularly in the somatosensory cortex.33–35

Histological studies have provided the cutaneous physiological basis for touch production. Penfield et al36 mapped the 
cortical sensory homunculus in the last century, determining the distribution of human sensory processing in the Primary 
Somatosensory Cortex (S1). However, as neurofunctional imaging technologies like functional Magnetic Resonance Imaging 
(fMRI) gained prominence researchers discovered representation of tactile stimulation signals is not confined to a specific 
functional area of the brain. It involves multiple neural functional networks such as cognition and emotion.37–39 Consequently, 
the exploration of the central integrated and processing mechanism of tactile information remains a challenging issue.

fMRI is one of the most commonly used neurofunctional imaging techniques due to its non-invasiveness, non- 
radioactivity, and high spatial resolution. It reveals how the brain responds to and processes tactile information in 
different parts and forms. By observing activity changes in specific cortical areas of the brain under tactile stimulation 
through fMRI, the neural basis for tactile perception can be inferred. Therefore, fMRI emerges as an effective research 
tool for gaining a deeper understanding of how the brain perceives and processes tactile information.

Tactiles play an important role in object recognition, awareness of the current environmental state, and social and 
emotional communication. Therefore, studying how the healthy brain executes the processing of tactile perception forms 
the basis for understanding sensation and behavior. Moreover, investigating aberrant sensory processing in pathological 
conditions offers potential targets for clinical neuroregulation. Hence, the depiction of the somatosensory cortex is vital 
for comprehending the neural underpinnings of human somatic sensation. This article provides a brief overview of the 
basic principles of fMRI, summarizes the current findings of fMRI touch research, and elucidates the central nervous 
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system processing mechanisms of different aspects of touch. The possible pathological mechanisms of tactile impairment 
caused by some diseases are also summarized. Additionally, recognizing that pain induced by external nociceptive factors 
might share a processing pattern similar to touch in the human brain,40 this article further explores the interaction 
between touch and pain based on a review of tactile neural processing.

The Principle of fMRI and Its Experimental Paradigm in Tactile Research
fMRI uses changes in blood oxygen concentration levels as an indicator of neural activity. When neural activity increases, the 
surrounding blood flow also increases to supply more oxygen, resulting in an increase in oxyhemoglobin levels in the local 
blood and a change in magnetism, producing a Blood Oxygenation Level-Dependent (BOLD) signal intensity across multiple 
functional areas of the entire brain.41,42 By exploring the changes in BOLD signal intensity in multiple functional areas of the 
whole brain, we can infer the functional activity of the corresponding brain areas.43

Functional connectivity(FC) refers to the linking of spatially separated brain regions sharing similar functional 
attributes, commonly characterized by the temporal correlation of brain activity patterns during neurophysiological 
events.44 Resting-state fMRI measures the spontaneous neural activities of the brain when there is no specific task 
requirement. Such signals mainly reflect the coordinated activity patterns among different brain regions in the resting 
state.45,46 In tactile research, resting-state fMRI can help us understand the strength and patterns of FC among tactile- 
related brain regions (such as the S1, S2, insula) when there is no tactile stimulation. These patterns may provide a basic 
neural activity framework for tactile processing. If abnormal FC is observed in the resting state, it represents an inherent 
disorder of the brain’s neural activities. For example, in stroke patients, it has been found that the FC between the 
ipsilateral S1 and the contralateral S1 is reduced in the resting state.47 This may indicate a decline in the brain’s ability to 
integrate sensory information during the process of tactile perception. Even when no tactile tasks are being performed, 
such potential neural abnormalities can still be detected. Resting-state fMRI serves as a tool to assess the strength of 
functional connectivity between and within the cerebral hemispheres.48,49 However, this paradigm is currently less 
frequently applied compared to Task-based fMRI in this field.

The main paradigm for fMRI in tactile research is Task-based fMRI. The design paradigm encompasses active 
exploration50,51 and passive touch,52,53 and the task or stimulus presentation types include block design54,55 or event- 
related design.56 Task-based fMRI, on the other hand, measures the brain’s activity when subjects are performing specific 
tactile tasks.57,58 The general linear model(GLM) is used to analyze the task-related activation signals. The activation signals 
at this time reflect the reactive neural activities of the brain in response to specific tactile stimuli. Such activities are mainly 
related to the sensory, motor, and cognitive processes associated with the tasks. The activation analysis of task-based fMRI can 
identify which brain regions are recruited and to what extent they are activated during specific tactile tasks. By comparing the 
differences in brain region activation under different task conditions, the dynamic processing process of the brain for tactile 
information can be revealed. For example, when subjects touch surfaces with different roughness using their hands, S1 will 
encode the physical properties (such as texture) of the tactile stimuli, and the degree of its activation is related to the intensity 
and complexity of the tactile stimuli.59,60 Meanwhile, depending on the nature of the task, the activation of other brain regions 
may also be involved. Mapping the brain based on the hands and forearms is particularly convenient and effective, as these 
body regions offer excellent representation within the brain and are easily accessible physically.61 Subjects often use their 
fingers or palms as active touch areas to investigate the brain activation areas involved in discriminative touch. Stimulation 
methods that can be applied in passive touch include manually operated stroke tools, (eg watercolor brushes,62 brushes,54,63 

real hand touch64,65), air puffs, pneumatically driven stimulators,66,67 and piezo electric devices.68–70 These methods are 
adaptable for tactile stimulation on various areas such as fingers, palms, or forearms, making them suitable for both 
discriminative and affective tactile investigations.

Neural Processing of Typical Tactile Perception in the S1 Area Represented 
by Fingers
Fingers constitute one of the most sensitive parts of the human body and are frequently used to interact with external 
objects. The tactile mapping of fingers occupies a significant area in the cerebral cortex, underscoring the high sensitivity 
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and complexity of finger touch.71 Researchers have been exploring the intricacies of finger tactile mapping, examining 
the spatial location of different finger mappings and their interactions with other sensory systems.72,73 Accurate mapping 
of cortical responses to finger stimuli at the individual level is crucial for comprehending and delineating abnormal 
sensorimotor cortical function or cortical reorganization. This aspect is also significant for the clinical application of 
fMRI.

The main brain response to hand touch is localized in the contralateral S1 and bilateral S2.74 The main tactile 
processing function occurs in the S1, while the S2 is responsible for surface texture recognition.60 When fingers are 
stimulated, fMRI typically enables the differentiation of finger responses across various subregions of S1.61 The S1 is 
divided into four sub-areas, namely Brodmann Area 1 (BA 1), BA 2, BA 3a, and BA 3b, with BA 3 receiving the 
majority of thalamocortical projections from sensory input areas.75 BA 3a is believed to receive proprioceptive 
information from muscles and joints,76,77 while BA 3b, BA 1, and BA 2 process signals from the skin.78

The arrangement of human fingers in the postcentral gyrus is orderly,61 with the primary sensory areas mapping from 
the thumb (D1) to the little finger (D5) in a continuous representation from lateral-anterior-inferior to medial-posterior- 
superior.79,80 The BOLD signal strength of the thumb in S1 is the highest among all fingers, with higher stimulus 
selectivity,72,81 followed by the ring finger (D4) and the index finger (D2).71,82 This outcome is attributed to the thumb’s 
greater functional demands for tactile exploration and fine movements, leading to more neurons responding in the S1 and 
a larger cortical volume. In other fingers, the cortical representation size correlated with finger length.83 Although there 
are differences in the dominant hand, tactile perception sensitivity remains independent of hand dominance. Fingertip 
perception ability is similar between hands, and the finger representations’ positions are generally comparable.82 

Furthermore, several investigations have been conducted to map the positions of tactile perception of various finger 
phalanges in BA3b. A previous study68 indicated that the Euclidean distance between the area of the palm beneath finger 
and the activation peak of the distal phalanges is 5.0 ± 0.7mm in D5 and 6.7 ± 0.5mm in D2. These distance 
measurements provide a quantitative understanding of the spatial relationships between palm and finger activation 
areas. Schweisfurth et al69 employed a Piezo-electric device to stimulate the phalanges of all fingers in the right hand 
and the corresponding areas of the palm beneath each finger. Their study revealed a continuous arrangement of 
homologous phalanges from medial to lateral, spanning from D5 to D1. This finding facilitates the establishment of 
a finger mapping atlas in BA3b. However, only an organized arrangement from the first to the third phalange was 
observed on D5. The BOLD response in BA3b exhibits strong finger-selective effective compared with other areas,79 and 
the average cortical thickness in response to finger activation in this area is 1.75 ± 0.5 mm.84 This suggests that this area 
is highly specialized for processing tactile information from the fingers. Martuzzi’s study83 investigated touch sensation 
on the distal two phalanges of the right-hand fingers in healthy individuals. It revealed that the brain representation of 
finger touch was most extensive in the BA3b region, spanning a distance of 15.5 ± 2.4 mm from Digit 1 to D5. This was 
followed by BA1 and BA2, with distances from D1 to D5 measuring 15.1 ± 4.3 mm and 8.6 ± 4.2 mm, respectively. 
Schweisfurth’s study,69 on the other hand, found that in BA 3b, the mapping distance between D1 and D5 was 16.7 ± 
4.2 mm in the first phalanx, 14.7 ± 7.0 mm in the second phalanx, and 18.0 ± 3.2 mm in the third phalanx. The variation 
in mapping distances between different phalanx in BA3b may represent the complexity and specificity of neural 
processing in this region. Although the results of this study are not entirely consistent, they reflect a relatively stable 
range of finger mappings within the S1 subregion. The inconsistency in results can be attributed to several factors. Firstly, 
individual differences among subjects highlight the need for larger sample sizes in future studies to account for 
variability. Moreover, variations in detection and statistical methods can influence the identification of finger mapping 
overlap areas, potentially diminishing the detectability of overlapping activation.85 Consequently, the measured distance 
of finger representation at BA3b may not align completely. Moreover, since the BOLD response serves as an indirect 
measure of neuronal activity, it can introduce spatial blur and broaden the spatial range of representation. Therefore, 
higher magnetic field strength is necessary to enhance BOLD contrast.86 The above results highlight that the region of 
finger touch is mainly located in the BA 3b of the S1. The finger response area is larger, which implies greater sensitivity 
to finger touch. The brain’s precise control of the fingers facilitates their engagement in more complex tasks. This 
underscores the close connection between fingers and brain areas, demonstrating that stimulation on the hands can 
regulate the activity of the corresponding brain areas. Sanchez-Panchuelo et al also found somatotopic maps in the BA3a 
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area of fingers in their study,87,88 and speculated that the reason why other studies rarely found similar results may be 
related to statistical methods and stimulation patterns. Group-level analysis may be affected by statistical methods, which 
makes it difficult to reveal this fine-scale organization. In addition, BA3a does not respond as strongly to weak skin 
stimulation as area 3b and 1, and requires stronger skin stimulation to activate.

Neural Processing of Discriminative Touch
Touch, encompassing mechanical stimulation such as touch, sliding, and pressure, serves as a vital means for humans to 
perceive information about the external environment. Its uniqueness lies in its discriminative properties, enabling the 
identification of different objects and the perception of their properties through touch. This involves multiple aspects, 
including texture, shape, softness, stickiness.89 The processing and integration of tactile discrimination of different object 
features primarily occur in the somatosensory cortex of the cerebral cortex. This cortex plays a pivotal role in the careful 
processing of tactile information, enabling the brain to generate more complex cognitions and experiences based on touch.90

Neural Processing of Tactile Surface Texture
One of the touch’s primary functions is to identify objects, including size, material, hardness, smoothness.89 The finger 
pads are particularly sensitive to discriminative touch.17–19 Current research on discriminative touch commonly employs 
methods such as true hand touch, Braille, textured plastic samples, etc. The research typically involves two stages: the 
encoding stage, where different tactile stimuli are presented, and the recognition stage, where the test stimulus is assessed 
for its similarity to the encoding stimulus.91,92 The complexity of the texture correlates with higher brain activation 
intensity, proportion, and percentage signal change.75

Research indicates59,60 the involvement of the Primary Motor Cortex (M1), inferior parietal lobule, and supramarginal 
gyrus in tactile perception. However, the main information processing occurs in the S1. It was previously reported that 
tactile information is first received by BA 3b in the S1 sub-region, and then object size and shape information are 
projected to BA 2.75 Another study on Braille recognition observed significant activation of contralateral BA 2 during 
tactile perception.67 Further discrimination of texture information is completed by S2, mainly for parietal operculum 
(OP)1 and OP4,60,93 and the somatosensory association cortex. While it is generally accepted that both contralateral S1 
and bilateral S2 are activated in discriminative touch,39,74,94 and the activation intensity of S1 on the opposite side during 
active exploration is higher compared with that of passive touch.95 Unilateral touch stimulation induces a higher BOLD 
response in contralateral S2 during the encoding stage, with no difference observed in the recognition stage.92 Ipsilateral 
S2 exhibits consistent activation level in both stages, and presents with psychophysiological interaction effects, 
representing an interaction between the time series of brain regions and task design variable,96 observed with the 
contralateral Posterior Parietal Cortex (PPC) during the recognition stage. Previous studies suggest PPC’s involvement in 
functions such as sensorimotor conversion of human movement planning97 and decision-making.51,98 Therefore, the 
functional network formed by ipsilateral S2 and contralateral PPC may play a key role in texture recognition. The 
activation pattern of finger tactile stimulation may also change with age. Brodoehl et al99 found that the pattern of 
decreased S2 activation and increase S1 activation in the elderly aged 62–71 years was similar to that in young adults 
aged 21–28 years. Another study53 speculated that this phenomenon may be related to the aging trajectory.

Furthermore, the prefrontal cortex, particularly the dorsolateral prefrontal cortex (DLPFC), plays a pivotal role in 
tactile recognition and decision-making.100,101 Stoeckeletal’s study102 indicated that activation of the contralateral 
prefrontal and parietal lobes during tactile tasks may be associated with short-term storage of somatosensory information, 
while activation of the ipsilateral prefrontal lobe occurs during tactile object discrimination. Similarly, Hartmann et al,51 

employing active exploration of objects with the right hand as a task stimulus, suggested that the ipsilateral DLPFC 
might be involved in decoding and retrieving stored surface features from working memory. Given the disparate findings, 
it remains unclear whether tactile decision-making following texture recognition predominantly relies on the ipsilateral or 
contralateral frontal lobe. Further research is warranted to elucidate this matter.
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Neural Processing of Sticky Touch
When fingertips come into contact with a sticky surface, separation generates a sticky feeling due to the mechanical 
stimulation caused by skin deformation, allowing the sensing of sticky information.103 Surface stickiness, a type of object 
texture, undergoes tactile neural processing with S1 as the main sensory area:104 The sticky stimulus information is then 
transmitted to adjacent areas (for example, S2, PPC) for high level processing. Kim’s study105 reported unexpected 
engagement of the Inferior Frontal Gyrus (IFG) in tactile stickiness perception, a region conventionally linked with 
language processing. The IFG is an important sensorimotor circuit106 and has been linked to the motor observation- 
execution system,107,108 which may explain why sticky touch elicits a response in this region. In a study by Yeon et al,56 

significant activation of the ipsilateral DLPFC and bilateral insula cortex was observed in response to sticky stimulation. 
Similarly, Sasaki et al109 reported significant activation of the middle frontal gyrus and insular cortex during active 
grasping of a sticky ball. The involvement of these brain regions may contribute to discerning various levels of tactile 
stickiness. Furthermore, varying degrees of pleasant or disgusting emotions caused by the perception of sticky touch may 
lead to different levels of activation in the insular region.

Neural Processing of Tactile Softness
Beyond the somatosensory area,93 brain areas related to softness discrimination include the insula, medial superior 
frontal gyrus, parietal operculum, putamen, cerebellum, etc. These areas constitute the brain network involved in 
processing softness perception.110 Finger discrimination of object softness arises from differences in force feedback to 
the finger caused by surface deformation.111 The neural signal, generated by changes in stress levels due to object touch, 
is transmitted to the brain, resulting in corresponding BOLD signal changes.75 The brain network then processes this 
information, leading to the perception of softness. Studies have demonstrated that the intensity and spatial distribution of 
activation in specific brain regions can reflect the perception of stimuli in the human brain.59 It has been observed that 
soft objects are typically perceived as more pleasant than hard ones,112 suggesting a dual response of the insula to 
discriminative touch and affective touch. Few neuroimaging studies have explored the brain networks underlying tactile 
softness perception. Kitada113 conducted passive stimulation of the right middle finger to study the brain network 
mechanism of softness discrimination. The results confirmed that the insula and parietal lobe are key brain regions for 
processing softness information of touch materials. Kim et al114 also found similar results, indicating the involvement of 
the posterior insula in the right hemisphere in discriminating the hardness of objects. The difference is that Kim also 
reported activation of the right posterior lobe of the cerebellum. The difference between the two studies may be attributed 
to Kim’s active touch test, while Kitada performed passive recognition. Therefore, it is demonstrated that the ipsilateral 
cerebellum also plays a very important role in discriminating softness through active touch. Sasakietal109 also concluded 
that the cerebellum may be involved in object softness perception based on results from an active grasping study.

Differences Between Active and Passive Touch in the Discriminative Touch
In the field of discriminative touch research, active and passive touch exhibit differences in several aspects. These 
differences are crucial for a deeper understanding of the neural mechanisms and behavioral manifestations of tactile 
perception. Active touch involves a more complex neural activity network. When an individual actively touches to 
identify the characteristics of an object, the brain not only processes tactile information from skin receptors but also 
integrates proprioceptive information from the motor system and commands related to motor intentions. Research shows 
that the activation of S1 during active touch is significantly stronger than that of passive touch.95 Compared with passive 
touch, active touch elicits more extensive and scattered brain activities in areas outside the somatosensory region, 
including the cerebellum, lenticular nucleus, some areas of the frontal lobe, the Supplementary Motor Area (SMA), and 
the parietal lobe.95 These areas are related to motor planning, control, and coordination. Similarly, Sasaki found that in all 
active grasping tasks, the precentral gyrus (including M1) and the external part of the cerebellum were significantly 
activated.109 These results reflect the close interaction between the motor and sensory components during active touch, 
such as motor planning, coordination, and sensory feedback from the skin, which is closely related to high - level 
cognitive functions. In contrast, passive touch mainly relies on the direct reception of external stimuli by S1 and S2.75,92 
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During passive touch, the brain does not need to perform complex motor planning and control, so the activation 
strengthen and extent of related brain regions are limited. For example, Ackerley115 found that when actively touching 
the palm and arm, a significant positive BOLD signal appeared in the left cortical network (including S1, M1, PMC, and 
the somatosensory association area). When passively touching the palm and arm, a significant negative BOLD signal was 
presented in the S1, covering most of the S1 area and extending to the M1. This difference further highlights the essential 
distinction in neural mechanisms between active and passive touch.

Neural Processing of Affective Touch
Touch serves as a means to express emotions such as intimacy, kindness, and tenderness. Animals can make tactile 
contact through head contact, licking, and grooming. Similarly, humans can transmit these emotions through gestures like 
hugs, caresses, and handshakes, with the brain processing emotional information in social behavior. Prolonged exposure 
to affective touch in children may facilitate the development of the “social brain”, particularly the mentalizing 
network.116 Enhancing our comprehension of the brain’s functional mechanisms in response to affective touch could 
aid in alleviating stress, pain, anxiety, depression, and other mental health conditions. Furthermore, this understanding 
could offer valuable insights into disorders such as autism, depression, and chronic pain, potentially enhancing the 
therapeutic benefits of affective touch.

Affective touch is an act that elicits an emotional response and typically possesses social characteristics.117,118 Social 
touch refers to tactile behaviors associated with social interactions and relationships, conveying emotion and fostering 
connections. Social touch and affective touch are often related, both involving physical contact to build relationships, 
convey emotions, and maintain social connections.119,120 The encoding of this type of tactile information differs slightly 
from other sensory information. In addition to the somatosensory cortex, it is mainly facilitated by the insula, Anterior 
Cingulate Cortex (ACC), Orbitofrontal Cortex (OFC), posterior Superior Temporal Sulcus (pSTS), and other social 
sensation and cognition region-related representations.52,121

The sensory discrimination and somatosensory network activation of children and adolescents are similar to those of 
adults,53 but the neural processing of affective touch varies between different ages and genders. In terms of development, 
human infants lack distinct brain regions for processing emotional information until around 7 months of age. Between 7 
and 10 months, the functions of brain regions associated with affective touch processing gradually mature.37–39 This 
suggests that the processing of affective touch develops throughout infancy. Research on individuals spanning childhood, 
adolescence, and adulthood53 revealed that when a watercolor brush was used to touch the right forearm and palm, the 
regions of interest in the S1, S2, insula, and right pSTS were significantly activated. Activation of ipsilateral S2 was 
positively correlated with age whereas activation of S1 did not significantly increase with age. The study53 also found 
that the sensitivity of the posterior superior temporal sulcus (pSTS) increases with age in females, but no similar trend 
was observed in males. This may be related to the fact that the cortical thinning of the temporal region (including STS) in 
females is faster than that in males.122 Another study123 showed that adolescents aged 15–17 exhibited the strongest 
activation in the insula and bilateral inferior frontal gyrus compared to young adults and older adults. Although some 
researchers have yielded positive results, another study suggests that the function and structure of the STS is related to an 
individual’s experience during development.124 Individuals who avoid touch may have a decreased activation response to 
affective touch. Therefore, there is currently no clear result proving a linear correlation between age and the activation 
response of brain areas related to affective touch.

In the neural processing of affective touch, the somatosensory cortex plays a role in recognizing tactile stimuli and is 
involved in distinguishing affective touch independently from other areas.125 Consequently, the processing of the 
emotional aspects of touch may involve neural mechanisms that partially overlap. Case126 used inhibitory rTMS at the 
S1 on the subject’s right side, and found that the subject’s sensory discrimination ability decreased. However, the tactile 
pleasure score was not changed, indicating that S1 only encodes tactile intensity and does not process tactile pleasure. 
Malinen et al127 also found similar results.

In research, social touch123,128 is often represented by touching a subject with true hands (skin-to-skin contact). The 
tactile stimulation used in affective touch usually includes soft brushes, feathers.55,65 Using soft brushes may induce 
a relatively simple tactile sensation with relatively weak emotional color. In some experimental situations, the brushing 
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of a brush may be regarded as a standardized and relatively neutral tactile stimulation, which may induce an affective 
reaction. The touch site typically located on hairy skin. This is related to the emotional function of CT fibers and their 
distribution on hairy skin.129 Skin-to-skin contact often carries more emotional and social functions, especially in 
intimate interactions, which may make it easier to generate affective resonance, and parts of the brain regions related 
to emotions and social cognition will be more actively involved in processing tactile stimuli. In contrast, true hands are 
more likely to induce the prosocial nature of touch, while tools such as soft brushes can eliminate the interpersonal effect. 
This distinction is crucial to our understanding of the neural processing mechanisms underlying affective touch. Strauss’s 
study65 found that touching the dorsal side of the subject’s left forearm with the experimenter’s hand caused a stronger 
tactile pleasure than brush strokes. They detected that the S1 and S2 extended to a stronger bold signal in the superior 
temporal cortex. Ebisch130 stimulated subjects’ right hands through animate target (human hand), inanimate target (fake 
hand), and massage brushes, and also found that the touch of human hands produced a higher degree of pleasure.

If skin-to-skin touch originates from oneself, the social nature between people will also disappear. Boehme et al121 

instructed subjects to touch their left forearm with their right index finger. They found that deactivation occurred in the 
insula, ACC, superior temporal gyrus, amygdala, parahippocampal gyrus, and prefrontal area, and the deactivation 
expanded to brain regions encoding low-level sensory representations, including the thalamus and brainstem. Touching 
the forearm triggers distinct BOLD signal responses in various brain regions including the somatosensory cortex, insula, 
superior temporal gyrus, and others, suggesting diverse mechanisms underlying interpersonal social touch processing.

For instance, the study by Schaefer et al128 reported that when the palm was touched by the experimenter’s hand, S1, 
bilateral S2, M1, bilateral Premotor Cortex (PMC), inferior frontal gyrus, insula, and other regions were significantly 
activated. In addition, they found that the BOLD reaction in S1 was negatively correlated with empathy personality traits, 
personal pain, and perspective-taking abilities.

The prosocial nature of touch was studied using similar methods. Prosocial behavior, characterized by positive 
behavior benefiting others, is typically driven by empathy and concern for the rights, feelings, and well-being of others. 
This encompasses behaviors such as helping, sharing, comforting, and cooperating, ultimately contributing to mood 
enhancement and stress reduction.131 For example, one study demonstrated that holding hands among lovers instills 
a sense of safety and comfort while reducing the connection between the anterior part of the insula and the ACC.132 In 
a study conducted by Schaefer et al,64 subjects’ palms were touched with true hands and rubber hands, resulting in 
activation of the contralateral sensorimotor cortex, PMC, inferior frontal gyrus, and anterior insula. Post touch, the 
activation of S1 and S2 regions was suppressed when participants chose to exhibit prosocial behavior. Notably, higher S1 
activation during touch correlated with more significant S1 deactivation during prosocial behavior decision-making, 
leading subjects to display increased selflessness and generosity in the dictator game. Consequently, the inhibition of 
somatosensory cortex activity after touch may promote altruistic behavior.

It is crucial to highlight that the tactile stimulation site in some of the aforementioned studies is the palm, generally 
considered an area where non-CT fibers are distributed. CT fibers, responsible for conducting affective touch and social 
interaction stimuli, are primarily found in hairy skin.28–31 Schaefer’s work demonstrated that sensory processing of glabrous 
skin touch can induce pleasurable sensations and elicit altruistic prosocial behaviors. This body of research indicates that 
social touch can enhance cognitive and emotional processing, fostering empathy, altruism, generosity, and happiness, with the 
involvement of the somatosensory cortex. Another study, focusing on touching palms with real hands133 confirmed that tactile 
stimulation of the palm elicits a strong response in the insula. Touch on the glabrous area of the palm is capable of inducing 
a pleasant feeling of touch, ultimately resulting in detectable activation in the insular cortex. Perini et al134 speculated that the 
insula may receive mixed input from CT and Aβ fibers from the arms and palms, which is another reason for the observed 
activation of the insula during palm stimulation. In addition, Sailer135 observed that the striatum, OFC, and putamen were 
activated during 40 minutes watercolor brush stimulation, and proposed that the participation of these regions influenced 
subjective reward values of the stimulation, which may promote sustained social contact interaction.

Tactile Neural Processing in Disease States
Disease states, such as autism, chronic fibromyalgia, anorexia nervosa, stroke, etc., may affect normal touch processing 
functions, leading to disrupted or absent tactile sensations. These tactile impairments not only reduce the quality of life 
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but also increase patients’ psychological stress and feelings of social distance. Understanding the central mechanisms 
responsible for these tactile abnormalities is crucial to better understanding and managing these issues, ultimately 
enhancing quality of life and offering patients improved diagnostic and treatment options.

Neural Processing of Touch in ASD
Autism Spectrum Disorder (ASD), which is not a disease in the traditional sense, is a neurodevelopmental disorder 
primarily characterized by impairments in social interaction and communication. Its basic characteristics include 
persistent impairment of social interaction, restricted interests, and repetitive behaviors.136–138 ASD can result in 
abnormal responses to sensory input, affecting the sensory processing of touch.139,140 Presently, the neural mechanism 
underlying abnormal tactile processing in ASD individuals has not yet been determined.141 Employing an fMRI-based 
tactile stimulation test can reveal the key brain regions and neural mechanisms responsible for these abnormalities in 
ASD individuals. fMRI studies of tactile processing in ASD individuals often employ hairy skin for tactile stimulation, 
observing differences in brain response compared to typically developing participants (control group).

Kaiser et al62 used a watercolor pen to brush at a speed of 7 cm/s on the arms (CT fiber-targeted sites) and palms 
(non-CT targeted sites) of ASD individuals. The individuals exhibited robust responses to both CT touch and non-CT 
touch in the S1 cortex. However, responses specific to CT touch in the bilateral insula, insular opercular area, right pSTS, 
bilateral temporoparietal junction of the inferior parietal lobule, right fusiform gyrus, right amygdala, and the ventro-
lateral prefrontal cortex, including the inferior frontal gyrus and precentral gyrus, were reduced. Interestingly, the severity 
of ASD is inversely correlated with brain signal response. Perini et al63 exclusively stroked the forearms of ASD 
individuals with a wool brush. Results indicated that the affective touch experience of typically developing individuals in 
behavioral tests surpassed that of ASD participants. Moreover, individuals did not exhibit right pSTS activation, 
a response observed in normal individuals when receiving stimulation. These results suggest that fMRI-detected brain 
activation signals using touch as the stimulation paradigm can serve as indicators to assess the severity of autism. 
Changes in neural coupling between brain areas (such as the insula and pSTS) and affective touch in ASD, may be 
related to their avoidance of social touch and decreased affective touch perception.63

Some scholars speculate from the perspective of functional connectivity that sensory processing abnormalities may be 
caused by abnormal connections between major sensory regions such as S1 and the brain networks involved in 
transmitting and processing sensory information. However, Cechmanek’s research49 challenges this hypothesis, revealing 
no significant difference in the functional connectivity of the somatosensory cortex between adolescent participants with 
ASD and a typically developing control group. Similarly, Frost-Karlsson’s results142 showed no significant difference in 
brain activation between ASD individuals and typically developing control subjects when their forearms are touched. 
Notably, Cechmanek analyzed resting-state data from ASD individuals, without specifically incorporating sensory 
stimulation. Consequently, it cannot fully represent the tactile processing mechanism of ASD. Future research could 
conduct a correlation analysis between functional connectivity and behavioral measurements, comparing differences in 
functional connectivity between typically developing control subjects and ASD individuals under sensory stimulation, 
such as touch. Additionally, the subjects in Frost-Karlsson’s study were all adults, using skin-to-skin contact. Behavioral 
studies suggest that adults with autism and typically developing individuals can experience similar pleasant touches.143 In 
contrast, both Kaiser’s and Perini’s studies involved adolescent subjects who were touched with brushes. The differences 
in results may be linked to different age distribution of subjects and whether the task stimuli contain social tendencies. 
Therefore, further studies are needed to understand the developmental patterns of tactile perception and processing in 
ASD individuals as they age. Furthermore, a study144 found that among ASD individuals, females had significantly lower 
tactile pleasure scores than males, and exhibited more complex patterns in the perception and processing of touch and 
emotions. This further indicates that gender and emotional factors play an important role in tactile processing.

In summary, the tactile perception and social interaction impairments in ASD individuals may be due to the 
insensitivity of regions such as the insula and pSTS to CT-targeted touch, which play a crucial role in affective touch 
processing. Kaiser’s research also confirmed this, showing children and adolescents with ASD experience interruptions 
when processing the affective touch of CT fibers, impacting the development of the social brain.62 Specifically, the insula 
is not only the brain region for processing affective touch but is also involved in multiple functions such as body 
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perception and pain modulation.145 Abnormal function of the insula may lead to impairments in processing tactile 
information in ASD individuals, further influencing their tactile perception quality and affective touch experience. The 
pSTS also plays a vital role in the social perception network and emotional recognition, especially in detecting and 
interpreting social signals of human intent.146 Research shows that the pSTS can help individuals understand other’s 
social signals, such as facial expressions and body movements,147 and it is particularly important in processing affective 
touch. Dysfunction of the pSTS may cause ASD individuals to inaccurately perceive the emotional information conveyed 
through touch, leading to increased social avoidance behavior. A study pointed out that the pSTS connectivity patterns in 
ASD individuals is immature, negatively correlated with the severity of autistic symptoms, and has a weak or non- 
existent correlation with anatomical measurements. However, due to the high heterogeneity of ASD, this mechanism is 
only one of the potential explanations, and the specific mechanism requires further verification. Patil pointed out in 
a review that the differences in sensory processing in ASD individuals may stem from multiple mechanisms, including 
Altered Neural Connectivity, Sensory Gating Dysfunction, Atypical Sensory Modulation, Imbalance in Sensory 
Excitation and Inhibition, and Atypical Multisensory Integration.148 These potential mechanisms explain the complex 
patterns and individual differences in tactile processing in patients ASD individuals.

In recent years, with the development of multimodal neuroimaging techniques, such as the combination of fMRI and 
Diffusion Tensor Imaging, has provided new opportunities to explore the mechanisms of tactile impairments in 
individuals with ASD. Currently, due to the inconsistency in the resting-state functional connectivity results in ASD 
individuals, future research could combine methods such as Granger causality analysis and dynamic functional con-
nectivity under tactile conditional stimulation to further explore the mechanisms of tactile processing in ASD individuals. 
These research findings are expected to support the development of neuroimaging-based assessment tools and provide 
a theoretical foundation for the formulation of personalized treatment plans.

Neural Processing of Touch in AN
Anorexia nervosa (AN) is a condition in which individuals exhibit excessive control of diet and a strong fear of weight 
gain. The incidence rate in women is higher than that in men. This leads to image disturbance,138 resulting in 
dissatisfaction with body shape and weight, leading to cognition, emotional and sensory disorders. Although the 
mechanism leading to body image disturbance is currently unclear, it is postulated to be associated with the inability 
to conduct correct body sensory evaluation as confirmed by Davidovic et al.54 In the study, a wool brush was used to 
stroke the dorsum of the right forearm of AN patients (producing an affective touch). Behavioral tests demonstrated 
a significantly lower level of pleasure derived from tactile stimuli in AN patients compared to healthy subjects. Brain 
imaging revealed similar activation intensity in the S1, S2, and insula regions for both groups. However, healthy 
individuals exhibited significantly higher activation in the bilateral occipital lobes, a brain region associated with visual 
processing and body image perception. This difference in brain activity suggests a potential neurophysiological basis for 
the observed discrepancies in body image perception between AN patients and healthy individuals. Similarly, AN 
patients showed reduced activity in the contralateral caudate nucleus, which was ascribed to the patient’s inability to 
correctly evaluate pleasant tactile stimuli. Frost-Karlsson et al142 started with social contact and touched the left arm with 
the subject’s own right hand. They reported that during self-touch, the AN group exhibited significant changes in S1, 
pSTS, claustrum, cingulate gyrus, insula and hippocampus gyrus activation was higher compared to that of healthy 
controls. In general, considering that the behavior of self-touch is predictable and planned, the brain attenuates the 
response generated by perceiving self-touch.121

In summary, AN patients have abnormal tactile perception and processing, especially the inability to generate pleasant 
perception in response to the external affective touch.149 When receiving external stimuli, AN patients show decreased 
activation in the occipital lobe and caudate nucleus. AN patients exhibit increased activation in S1, pSTS, and the insula, 
and are unable to deactivate brain activity in response to self-touch. This may contribute to distorted self-body 
predictions and a reduced perception of body shape, potentially serving as a central mechanism underlying body 
image disturbances. Previous studies have found that females are more sensitive to information about their own bodies 
than males.150 Some studies have shown that during the same-sex body perception task, healthy males have stronger 
activation in the left lateral occipital cortex than healthy females.151 Therefore, AN females may have a less distinct or 

https://doi.org/10.2147/NDT.S488059                                                                                                                                                                                                                                                                                                                                                                                                                                          Neuropsychiatric Disease and Treatment 2025:21 202

Chen et al                                                                                                                                                                           

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



more vulnerable body schema of their own, which makes them more prone to internalized distorted perception of their 
own bodies. This may be the reason why the incidence rate in females is higher than that in males.

Tactile Neural Processing in Stroke Patients
Nearly half of stroke patients experience varying degrees of sensory impairment, which are driven by changes in the 
brain’s functional networks.152–154 De Bruyn et al48 recruited 19 acute-phase stroke patients with the tactile disorder and 
used resting-state fMRI to investigate the relationship between brain functional connectivity and severity of somatosen-
sory impairment of the upper extremity in the acute-phase stroke. It was found that the strength of functional connectivity 
between and within hemispheres was inversely associated to the severity of somatosensory deficits. In other words, the 
strength of functional connectivity was lower in patients with severe somatosensory deficits. In the study by Goodin 
et al47 it was found that the cause of impaired tactile function in stroke patients may be associated with decreased 
functional connectivity from the S1 of the hemisphere on the lesion side to the contralateral S1, temporal, parietal, and 
occipital regions (ie, interhemispheric connections). The aforementioned studies have demonstrated the correlation 
between tactile impairment and functional connectivity strength. This highlights the importance of functional brain 
network integrity in the maintenance of somatosensory function. In future, studies should investigate the mechanisms of 
tactile impairment in stroke patients, and the role of treatment in reestablishing functional connectivity between brain 
regions.

Tactile Neural Processing in Other Diseases
In addition to the common disorders associated with typical tactile impairments, chronic fibromyalgia (FM) and Major 
Depressive Disorder (MDD) can make patients avoid social contact, due to altered neural processing of touch in the 
brain. When subjected to the same tactile stimuli, brain activation in patients with FM was comparable to that of healthy 
individuals, but the assessment of pleasure from touch was lower compared with that of healthy individuals. Unlike 
healthy individuals, patients exhibited deactivation of the contralateral posterior insula when receiving tactile stimuli.155 

This study found normal early sensory processing in FM patients, but abnormal sensory assessment linked to posterior 
insula deactivation. Compared to healthy controls, MDD patients showed greater aversion to human contact and lower 
touch pleasure scores. Lower BOLD responses in the nucleus ambiguus, caudate nucleus, and nucleus accumbens during 
touch stimulation are detected in patients using fMRI.156 This suggests that abnormal striatal function during the tactile 
processing stage may be a central mechanism underlying social aversion and isolation in MDD patients. There are gender 
differences in the cortical structure of MDD patients.157 The incidence rate of MDD is higher in female than in male.158 

Research has found that157 the surface areas of the right superior frontal, medial orbitofrontal gyrus, inferior frontal gyrus 
triangle, superior temporal gyrus, middle temporal, lateral occipital lobe, and inferior parietal lobule in female MDD 
patients are smaller than those in male. Structural abnormalities can lead to functional abnormalities. Therefore, there 
may be a complex tactile processing mechanism in MDD, and future research should also focus on the differences in 
tactile neural processing in patients with different genders and disease courses.

In summary, researchers have revealed the processing mechanisms of haptics in disease states through the design of 
task-based or resting-state fMRI experimental paradigms. The aforementioned studies indicate that the above disorders 
presenting with tactile deficits on neurofunctional imaging are associated with diminished BOLD response or functional 
connectivity strength. Moreover, it has been shown that the somatosensory cortex, pSTS, and other regions are potential 
the targets of neuromodulation therapy, and the intensity of the BOLD signal in the target brain regions and alterations in 
functional connectivity between the corresponding brain areas may serve as outcomes. By elucidating both the common 
characteristics of disease occurrence and development and the unique changes observed, we can establish more precise 
directions for disease treatment and rehabilitation efforts. In addition to the biological and clinical factors discussed 
above, socioeconomic status may also affect tactile processing. Although we did not find substantial evidence directly 
linking socioeconomic status to tactile processing in the literature reviewed, it is considered that socioeconomic status 
may indirectly influence sensory processing.159 Factors such as healthcare, life experiences, and environmental stress, 
which are usually influenced by socioeconomic status, may play a role in sensory development and regulation. Further 
research is needed to investigate how these factors influence tactile processing. Furthermore, although our current 
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understanding of the developmental trajectories of tactile processing in ASD and other disorders is limited, the evidence 
presented and the speculative mechanisms discussed highlight the need for further research. Longitudinal fMRI studies, 
along with multimodal approaches integrating genetic, behavioral, and neural measures, are essential to fully elucidate 
the complex relationship between age, tactile processing, and the pathophysiology of these disorders. This will not only 
enhance our understanding of the underlying mechanisms but also pave the way for more effective diagnostic and 
therapeutic interventions.

The Interaction Between Touch and Pain
Pain is an experience related to actual or potential tissue damage that contains multiple sensory, affective, cognitive and 
motor components.160 While both touch and pain are somatosensory sensations detected by specialized receptors on the 
skin, the precise brain region that encodes the perception of pain has not yet been definitively identified.161 The 
processing of painful information and innocuous tactile information is generally considered to exhibit similar hierarchical 
structures in the somatosensory system of the human brain.40 Both perception thresholds of pain and touch influence 
brain functional connectivity. A previous study showed162 that a higher frequency of the Default Mode Network (DMN) 
connection correlates with higher sensitivity of a person’s response to pain. Moreover, the smaller the fluctuation of 
functional connectivity, the higher the person’s response sensitivity to touch. Brain areas that process two types of 
sensory information are highly similar,32,163,164 including S1, S2, insular, prefrontal cortex, Cingulate Cortex and other 
brain regions involved in somatosensory, emotional, cognitive and other functions.165,166 The brain areas activated by 
pain also respond to tactile stimuli, and vice versa, with neural activity reflecting perceived stimulus intensity. Research 
has shown165 that compared with painful stimulation, contralateral S1 is activated to a higher degree under tactile 
stimulation, while S2 is activated to a similar degree under both stimuli.

The specific identification of finger sensations triggered by painful cold and heat stimuli could be encoded by low- 
threshold tactile neurons in the skin, in collaboration with nociceptive neurons. Specialized modules within the S1 region 
effectively handle tactile and pain signals distinctly. A study on squirrel monkeys,167 found that there are separate 
activation modules for processing touch, nociceptive cold and heat stimulation in the S1 area. The activation of 
nociceptive cold stimuli occurs in BA3a, the BA 3b-1 junction, and BA 2. The response areas to noxious thermal 
stimulation are in BA 3b, BA3b-1 junction, BA 1–2 junction and BA 2 area. Chen et al168 also reported activation 
regions in response to finger thermal pain stimulation in BA3b, BA3a, BA1, and BA2 of squirrel monkeys, and stronger 
BOLD signals in BA3b and BA2 were observed.

The insula also modulates thermal pain processing, especially the operculo-insula.169 It is considered to be the only 
brain region where direct electrical stimulation can produce pain. Obvious thermosensory and nociceptive dysfunction 
will appear after injury. In a study examining nociceptive thermal pain and stabbing pain sensations on the dorsum of the 
right hand,170 researchers discovered multiple somatic representations of pain in the operculo-insular area. This finding 
suggests that this region serves as a site for perceptual integration and can also influence emotional responses and 
behavior according to the affected body part. In addition to differences in thermal and cold pain perception, differences in 
the performance of mechanical stabbing pain on glabrous and hairy skin have been detected. In general, the pain intensity 
at the human individual hairy skin is significantly stronger compared with that of glabrous skin. Interestingly, the average 
BOLD signal response observed in the S1 and S2 regions during stinging stimulation is significantly stronger for 
glabrous skin compared to hairy skin.171 This discrepancy may be attributed to the differences in the number and types of 
sensory receptors present in these distinct skin types. Glabrous skin encodes more tactile information of stimulation, 
while hairy skin conducts more emotional information including itching, resulting in differences in the perception of 
external stimuli received by the somatosensory cortex between the two types of skin. Activation of the M1 were observed 
in both squirrel monkeys and human individuals166,172 when receiving painful stimuli. Although few studies have shown 
distinct movements directly associated with pain or touch, painful stimulation, in contrast to tactile stimulation, may 
evoke the inclination for potential escape actions, whether consciously or unconsciously. Thus, in pain stimulation 
studies, areas such as M1, PMC, and SMA typically display significant BOLD signals.173

Studies demonstrate that the perception and processing of pain involve some aspects of the neural circuitry of the 
touch component. Thus, touch and pain can interact with each other. In daily life, individuals often engage in the 
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spontaneous behavior of rubbing a painful body area, suggesting a potential analgesic effect of touch. A study has 
shown174 that touch massage activates the pregenual anterior cingulate cortex, which is believed to play an important role 
in advanced functions related to pain processing.175 This area is activated by both opioid analgesia and placebo, 
suggesting it may be involved in touch-induced analgesia mechanisms. Similarly, the periaqueductal gray (PAG) matter, 
which receives input from the ACC, plays a crucial role in the descending pain system and is associated with pain 
relief.176,177 In women, social support from their partner, such as holding partner’s hand, can reduce pain.178,179 This may 
be related to reduced pain-related activation in areas such as the insula, ACC, orbitofrontal cortex, and DLPFC. fMRI 
studies have suggested that multimodal sensory cortices functionally influence each other and show plasticity.172,180 

Future studies should explore the brain mechanism underlying the interaction between pain and tactile stimulation to 
reveal the central processing mechanism of pain information and provide new ideas and methods for clinical pain relief.

Summary and Future Outlook
Currently, fMRI-based studies have made significant progress in the field of tactile neural processing. These studies not 
only deepen our understanding of tactile perception but also provide new perspectives for future neuroscience studies. An 
examination of the literature above suggests that tactile processing for various features engages distinct networks 
independently. The somatosensory cortex is the primary higher brain area for processing tactile information.181 After 
reaching the S1 area, touch signals are initially sorted in BA 3b. BA 2 processes size and shape,91,182 while texture 
discrimination occurs in S2 and the posterior parietal cortex.183,184 Softness is recognized by the insula and parietal areas. 
Social touch, which conveys rich emotional information, is processed through S1 conduction to several regions such as 
the insula, pSTS, and amygdala. Brain regions that process touch and nociception information are highly similar, 
differing in the activation of M1, PMC, and SMA regions as reported in studies of nociception. For individuals with 
disorder such as ASD, reduced activation of regions such as the insula and pSTS or reduced strength of functional 
connectivity between brain regions has been demonstrated to be one of the reasons promoting the development of tactile 
disorders by fMRI.

The current advancements lay a solid foundation for extending the use of fMRI in clinical settings and research 
related to touch. This holds significant promise for exploring neural processing patterns in tactile perception under both 
normal and pathological conditions, as well as for predicting disease progression.47,63,142,155,156 These results can insight 
further research to further examine the role of various brain regions in tactile processing. However, in recent years, 
research on fMRI-based tactile neural processing still faces the following problems: ①Current research results on tactile 
neural processing presents a relatively simplified functional modular perspective of somatosensory cortex, making it 
difficult to outline the complexity of the tactile system; ②The diversity and complexity of tactile stimuli make it difficult 
to simulate the tactile experience that occurs in the real world in clinical trials; ③fMRI can efficiently reveal the activity 
of a single tactile stimulus, but the process of multisensory integration is relatively complex and incompletely under-
stood; ④Limited by the principles of hemodynamic response generation, the peak of the BOLD signal detected by fMRI 
usually occurs after 3–6 s of nerve stimulation.43,185 Although tactile neural processing involves rapid nerve conduction 
courses, fMRI may not effectively capture the precise details of these processes.

In future research, addressing current challenges necessitates the establishment of more intricate tactile models and 
standardized tactile stimulation procedures. Developing research paradigms that comprehensively simulate various tactile 
properties, such as texture and hardness, will bring us closer to replicating complex tactile stimuli encountered in real- 
world scenarios. It is essential to thoroughly investigate the anatomical basis and functional network involved in 
transmitting stimulus signals from the thalamus to ultimately form sensations in the cortex. This comprehensive approach 
will lead to a more precise understanding of the neural mechanisms underlying tactile processing. In further research, 
researchers should investigate the interplay between tactile information and other sensory inputs to understand the brain’s 
overall perceptual function. They can also examine the involvement of different brain regions in processing diverse 
information and study the patterns of connectivity within related brain networks. Moreover, integrating fMRI with higher 
temporal and spatial resolution techniques like Electroencephalogram (EEG) and functional Near-Infrared Spectroscopy 
(fNIRS) could be instrumental in advancing future research endeavors.
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Notably, translating these findings into clinical practice remains to be a significant challenge. Some studies have 
demonstrated that tactile training has positive effects on improving interhemispheric balance.186 Future studies should 
aim to establish better rehabilitation programs for related diseases from the perspective of tactile stimulation of 
neuroplasticity. Besides, many therapies related to tactile stimulation such as massage,187 manual therapy,188 cupping 
therapy,189 and Guasha190 in complementary and alternative medicine need to be explored to determine the mechanism of 
tactile stimulation, and promote the treatment and rehabilitation management of diseases.

Abbreviation
LTMRS, Low-Threshold Mechanoreceptors; CT fibers, C-tactile afferent fibers; S1, Primary Somatosensory Cortex; 
fMRI, functional Magnetic Resonance Imaging; BOLD, Blood Oxygenation Level-Dependent; S2, Secondary 
Somatosensory Cortices; BA, Brodmann Area; D1, the thumb; D2, the index finger; D4, the ring finger; D5, the little 
finger; M1, Primary Motor Cortex; PPC, Posterior Parietal Cortex; IFG, Inferior Frontal Gyrus; ACC, Anterior Cingulate 
Cortex; OFC, Orbitofrontal Cortex; pSTS, posterior Superior Temporal Sulcus; PMC, Premotor Cortex; SMA, 
Supplementary Motor Area; ASD, Autism Spectrum Disorder; AN, Anorexia Nervosa; FM, Fibromyalgia; MDD, 
Major Depressive Disorder; DMN, Default Mode Network; EEG, Electroencephalogram; fNIRS, functional Near- 
Infrared Spectroscopy; OP, Parietal Operculum; DLPFC, Dorsolateral Prefrontal Cortex; rTMS, repetitive Transcranial 
Magnetic Stimulation; PAG, periaqueductal gray; FC, functional connectivity.
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