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Abstract: Prostate cancer is prevalent among men aged 65 and older. Bone metastasis occurs in up to 90% of advanced prostate 
cancer patients, metastatic prostate cancer is generally considered a non-curative condition which can impact quality of life. The tumor 
microenvironment, comprising diverse cellular and non-cellular elements, interacts with prostate cancer cells to affect tumor growth 
and bone metastasis. Within the bone microenvironment, different cell types, including osteoblasts, osteoclasts, adipocytes, endothelial 
cells, hematopoietic stem cells, and immune cells, engage with tumor cells. Some cells alter tumor behavior, while others are impacted 
or overpowered by tumor cells, leading to different phases of tumor cell movement, dormancy, latency, resistance to treatment, and 
advancement to visible bone metastasis. This review summarizes recent research on the tumor microenvironment and bone micro-
environment in prostate cancer bone metastasis, exploring underlying mechanisms and the potential value of targeting these 
environments for treatment. 
Keywords: prostate cancer, tumor microenvironment, bone microenvironment, epithelial-mesenchymal transition, bone metastasis, 
tumor dormancy

Introduction
Recent studies indicate that prostate cancer(PCa) is the most prevalent malignancy in men and has the second highest 
mortality rate.1 Prostate cancer incidence in China is rising annually at the highest growth rate, with generally poor 
prognosis.2 According to the National Cancer Center of China’s 2024 National Cancer Report, there has been an 
increasing trend in both the incidence and mortality rates of prostate cancer in China in recent years, ranking sixth 
among the top ten malignant tumors in men.3 The 2022 American Cancer Statistics Report estimated that prostate cancer 
would be the most common newly diagnosed cancer, accounting for 27%, and the second leading cause of cancer death, 
accounting for 11%.4 Localized tumors in early-stage PCa patients can be effectively treated through surgical resection, 
radiotherapy, or hormone therapy. As androgen receptor (AR) signaling is crucial for the proliferation of many PCa cells, 
androgen deprivation therapy (ADT) plus an androgen receptor pathway inhibitor (ARPI) is the preferred treatment for 
advanced PCa.5 Despite the initial efficacy of anti-androgen therapy, nearly all advanced prostate cancer patients will 
eventually develop castration-resistant prostate cancer (CRPC), a life-threatening condition.6 Bone metastasis frequently 
occurs in advanced prostate cancer patients, resulting in complications like pathological fractures, spinal cord compres-
sion, and potential permanent paralysis and limb function loss. Existing treatments for bone metastasis primarily offer 
palliative care. The incomplete understanding of the molecular mechanisms underlying metastasis formation has resulted 
in ineffective treatments and low five-year survival rates.

In recent decades, while alternative treatments like taxane chemotherapy, ARPIs, radium-223 chloride, and 177 Lu- 
labeled prostate-specific membrane antigen (177-Lu-PSMA) have demonstrated acceptable benefits for overall survival 
in metastatic CRPC (mCRPC), most strategies and research on drug resistance primarily target tumor cells rather than the 
tumor microenvironment (TME) and bone microenvironment (BME), which are critical in the progression of PCa bone 
metastasis. Research indicates that the tumor microenvironment of prostate cancer plays a crucial role in driving tumor 
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progression,7 evading immune system surveillance,8 inducing prostate cancer aggressiveness,9 metastasis,10 and drug 
resistance.11 Furthermore, tumor cells are capable of releasing factors and proteins such as plasminogen activator12 or 
matrix metalloproteinases13 to regulate the bone marrow microenvironment or facilitate the formation of a pre-metastatic 
niche, thereby creating favorable conditions for tumor metastasis.14 The bone microenvironment also modulates tumor 
differentiation via numerous signaling pathways, including IL6-RANKL, Wnt, and CXCL12 pathways, among others.15 

It is evident that the interplay between the bone microenvironment and prostate cancer cells governs the formation of 
bone metastasis. A thorough understanding of the underlying molecular mechanisms can facilitate clinicians in better 
managing bone metastasis in prostate cancer and making informed decisions. Therefore, the next step is to strengthen 
research on the TME and BME to better understand their roles in prostate cancer bone metastasis. By gaining a deeper 
understanding of how these microenvironments promote cancer development and metastasis, researchers may identify 
new therapeutic targets. This will help in developing novel therapies that can target both tumor cells and modulate the 
microenvironment, thereby more effectively controlling disease progression, improving patient survival rates, and 
enhancing their quality of life.

As early as 1889, Stephan Paget proposed the famous “seed and soil” theory: tumor metastasis depends on the 
interaction between tumor cells (as “seeds”) and the host microenvironment (as “soil”).16 Although this is a classic 
theory, it still cannot fully explain the molecular mechanisms of organ-specific metastasis. The TME is composed of 
tumor cells, stromal cells, extracellular matrix, cytokines, growth factors, and their metabolic products. Studies have 
found that various components in the TME play a positive promoting role in the process of bone metastasis of prostate 
cancer.17,18 Similarly, the bone microenvironment, which consists of osteoblasts, osteoclasts, stromal cells, immune cells, 
and vascular endothelial cells, is essential for maintaining bone health and has a significant impact on the progression of 
prostate cancer bone metastasis (Figure 1). Circulating tumor cells progress through distinct stages in the bone 
microenvironment: (1) colonization, where they enter the bone marrow cavity; (2) dormancy, during which they adapt 
and remain inactive for extended periods; (3) reactivation and progression, involving a shift to active proliferation; and 
(4) remodeling, where they modify the bone’s structure and function. Additionally, factors released by osteoclasts further 
stimulate the proliferation of tumor cells.

This review offers a summary of current research on the relationship between the TME and BME in the setting of 
prostate cancer bone metastasis, while also uncovering potential underlying mechanisms. Its goal is to enhance our 
understanding of prostate cancer bone metastasis and provide guidance for future clinical trials.

Reduce Cell Adhesion and Epithelial-Mesenchymal Transition (EMT)
The process of tumor spreading to other parts of the body requires separation from the original tumor site, which includes 
breaking down the extracellular matrix, the transition of tumor cells from epithelial to mesenchymal states, and entering 
either the blood or lymphatic system. Throughout the process, integrins and molecules related to EMT play crucial roles 
in promoting the metastatic process.

Integrins
Integrins are cell surface glycoproteins that form heterodimers with adhesion molecules and bind to various extracellular 
matrix components. They regulate the cytoskeleton to maintain cell shape and facilitate migration.19,20 These integrins 
are being explored as potential targets for treating prostate cancer, with researchers focusing on different subtypes. In 
prostate cancer, integrins such as αvβ3, αvβ5, a2β1, a3β1, a5β1, a6β1, a6β4, and αvβ6 have been linked to the disease.21 

Among them, integrins like αvβ3, α2β1, α4β1, α6β1, and α5β1 facilitate the communication between cancer cells and the 
bone environment.22–25 Particularly studied in prostate cancer bone metastasis, αvβ3 is involved in both tumor-induced 
metastasis and bone growth.26 Studies suggest that the interaction between integrin αvβ3 and TGF-β signaling influences 
how cancer cells respond to the bone environment, aiding in their transition to a bone-damaging behavior.27 By blocking 
TGF-β1 receptors or disrupting genes in the TGF-β signaling pathway, the growth of bone metastases can be reduced by 
inhibiting the expression of genes that support bone metastasis, including interleukin-11 (IL-11), Jagged1, and para-
thyroid hormone-related peptide (PTHrP)28–31 (Figure 1). The most important cytokine currently promoting the forma-
tion of osteoclasts is receptor activator of nuclear factor kappa-B ligand (RANKL).32,33 Enhancing TGF-β signaling,34 
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integrin αvβ3 can stimulate tumor cells to express PTHrP and induce osteoblasts to express RANKL (Figure 1), thus 
promoting bone destruction mediated by osteoclasts.35 In neuroendocrine prostate cancer (NEPrCa), small extracellular 
vesicles (sEVs) released by prostate cancer cells containing integrin αvβ3 promote neuroendocrine differentiation in 
receptor cells by binding to NgR2. This process can lead to the development of bone metastasis.36–38 Therefore, αvβ3 has 
the potential to be a valuable biomarker for bone metastasis, and inhibiting this integrin could reduce the ability of tumor 
cells to spread to the bone39 (Figure 1).

The Molecules Related to EMT
Surrounded by fibroblasts, macrophages, pericytes, and various extracellular matrix components, tumor epithelial cells in 
the primary tumor microenvironment are exposed to a range of cytokines such as tumor necrosis factor α (TNFα), TGF- 
β, Wnt, and hypoxia-inducible factor-1 (HIF-1α) (Figure 2), which promote EMT. As EMT occurs, the expression of 
E-Cadherin decreases, reducing cell-cell adhesion and promoting detachment from the basement membrane, facilitating 
cell migration. During the process of EMT, important mesenchymal markers like vimentin, S100 calcium binding protein 
A4 (S100A4),40 as well as transcription factors Snail, Slug, Twist1, and zinc-finger-enhancer binding protein 1 (ZEB1) 
are increased, leading to improved cell motility41 (Figure 2).

The acquisition of an invasive phenotype by cancer cells is a prerequisite for bone metastasis. Transformed epithelial 
cells can transition into a motile mesenchymal phenotype through EMT. The loss of E-cadherin and the accompanying 
increase in vimentin expression serve as hallmarks of EMT in prostate cancer.42 Studies have shown that E-cadherin 
knockout enhances the expression of EMT markers (vimentin, integrin β3, β-catenin, and NF-κB) in PC-3 cells. 

Figure 1 Bone homeostasis and dysregulation of bone homeostasis. Integrin αvβ3 interacts with the TGF-β receptor, leading to the induction of PTHrP and Jagged1 
expression. Tumor cell-induced RANKL and IL-6 cause the fusion of OCs precursors into multinucleated OCs. OPG can inhibit the activation of OCs. Enhanced bone matrix 
resorption mediated by OCs releases cytokines such as TGF-β, EGF and IGF.
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Concurrently, the expression of several bone metastasis-associated molecules, namely CXCR4, uPA, RANKL, and 
RunX2, is also upregulated.43 The non-peptide α(v)-integrin antagonist GLPG0187, acting as a potent inhibitor of 
osteoclast bone resorption and angiogenesis, increases the E-cadherin/vimentin ratio, promoting a more epithelial and 
adherent phenotype in cells. This, in turn, inhibits the de novo formation and progression of bone metastasis in prostate 
cancer.44

The zinc finger protein known as Snail binds to the E-box sequence within the promoter region of E-cadherin.45 

Increased levels of Snail have been observed in both enzalutamide-resistant prostate cancer cell lines and in samples from 
patients with highly metastatic forms of the disease46–48 (Figure 2). Studies have indicated that the absence of E-cadherin 
promotes the expression of Snail1 and several bone metastasis-associated molecules, thereby facilitating the occurrence 
of bone metastasis in prostate cancer.43 Sun et al49 revealed that RelB-IL-8 can promote the occurrence of EMT by 
activating Snail 1, while simultaneously upregulating calcium-binding protein A4 (S100A4). S100A4, in turn, exacer-
bates osteolytic metastasis in prostate cancer through calcium depletion. Additionally, Snail influences the expression of 
tight junction proteins by suppressing the promoter activity of genes like claudins and occludin, and by decreasing the 
post-transcriptional expression of ZO-150–52 (Figure 2).

Slug serves as a critical regulator of the EMT process in numerous types of cancer, including prostate cancer.53–55 

One of its roles involves suppressing various genes that normally inhibit metastasis, such as KISS1. By decreasing the 
expression of N-cadherin and vimentin, KISS1 suppresses the migratory and invasive abilities of tumor cells, while 
increasing the expression of E-cadherin. Reintroducing KISS1 into prostate cancer cell lines that exhibit high metastatic 

Figure 2 The composition of the prostate cancer tumor microenvironment and the occurrence of EMT. The tumor microenvironment is composed of tumor cells, 
fibroblasts, macrophages, vasculature, various components of the extracellular matrix, and numerous signaling molecules. High expression of tumor necrosis factor alpha 
(TNFα), transforming growth factor-beta (TGF-β), Wnt, and hypoxia-inducible factor-1 alpha (HIF-1α) promotes the occurrence of EMT. During the process of EMT, the 
expression of molecules such as E-cadherin, occludin, and ZO-1 decreases, while the expression of Snai1, Twist1, Slug, ZEB1, and matrix metalloproteinases (MMPs) 
significantly increases.
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potential can mitigate their invasive behavior.56 In a study on how chronic hypoxia promotes prostate cancer cell 
invasion, Slug was found to be specifically upregulated under chronic hypoxia conditions.57 Slug can induce significant 
expression of Eph receptor tyrosine kinase ligand - ephrin-B1 and promote cell migration and invasion through E-box 
motifs.57 It is evident that Slug not only promotes EMT at the genetic level but also facilitates the occurrence of EMT in 
the context of chronic hypoxia in solid tumors57 (Figure 2).

A crucial role in developmental processes and tumor formation is played by Twist1, a transcription factor with a basic 
helix-loop-helix structure.58,59 Twist1 enhances the metastatic potential of prostate cancer cells by promoting EMT.60 

Additionally, Twist1 may regulate bone remodeling mediated by prostate cancer cells by modulating the expression of 
dickkopf homolog 1 (DKK-1), a factor that promotes osteolytic metastasis. Furthermore, it potentially promotes 
osteogenesis in prostate cancer cells through RUNX2, thereby facilitating the progression of prostate cancer to bone 
metastasis.60

Involved in skeletal development regulation, ZEB1, a zinc finger homeodomain-containing transcriptional repressor, 
suppresses E-cadherin transcriptional activity in various cancers.61–65 An in vitro investigation demonstrated that PC3 
cell subpopulations that had acquired the ability for transendothelial migration showed elevated ZEB1 alongside 
diminished E-cadherin levels (Figure 2), contrasting with their parental cell lines. Research indicates that as prostate 
cancer progresses, ZEB1 plays a crucial role in governing the vascular extravasation of cancer cells and is a key mediator 
of EMT.66,67 Dai et al68 found that overexpression of ZEB1 inhibits the expression of miR-33a-5p at the transcriptional 
level, thereby facilitating EMT, invasion, and migration of PCa cells, ultimately contributing to the occurrence of bone 
metastasis in prostate cancer. Additionally, secreted protein acidic and rich in cysteine (SPARC) plays a significant role in 
regulating the interaction between prostate cancer cells and the bone microenvironment. Meanwhile, the αvβ3/ZEB1 
signaling pathway is crucial in SPARC-induced downregulation of E-cadherin and the exacerbation of bone metastasis in 
prostate cancer.69

Invasion and Metastasis
Tumor cells detach from the primary site, invade the extracellular matrix (ECM), bind to molecules in the basement 
membrane (BM) and interstitial space, and activate the synthesis and secretion of degradative enzymes like matrix 
metalloproteinases and serine proteases, assisting tumor cells in penetrating the ECM to enter blood vessels (Figure 2). 
Subsequently, under the influence of inflammatory cells or cytokines, they traverse through the blood vessel wall and 
extravasate to secondary sites, thereby acquiring the ability to invade and metastasize (Figure 2).

Matrix Metalloproteinases (MMPs)
Prostate cancer invasion necessitates partial ECM degradation, with numerous studies linking elevated MMP expression 
to poor prognosis in prostate cancer patients.70,71 Nabha et al72 illustrated that when PC3 cells are co-cultured with bone 
marrow stromal stem cells, there is an increase in the levels of MMP-12 within the PC3 cells. Using RNA interference to 
target MMP-12 in these cells led to a reduction in their invasive capacity by decreasing the degradation of type I collagen 
in bone tissue. Tumor-derived MMP-3 promotes the growth of prostate cancer in bone.73 Recent findings suggest that 
MMP-3 is also engaged in the modulation of the tumor bone microenvironment via Notch3. In tumors expressing NICD3 
(the intracellular domain of Notch3), MMP-3 is upregulated and secreted; inhibiting MMP-3 can revert the osteogenic 
phenotype induced by NICD3. In human prostate cancer bone metastasis, the Notch3-MMP-3 axis fosters osteogenesis 
by suppressing osteoclast differentiation and enhancing osteogenic lesion formation.74 MMP-7 destabilizes cell-cell 
junctions in microtumors by digesting the PSPN complex, causing a loss of co-localization of E-cadherin and F-actin, 
and promoting the transition of prostate cancer cells from a dormant cohesive phenotype to a dispersed migratory 
phenotype, which facilitates the generation of circulating tumor cells and metastasis to bone.75 Researchers used co- 
culture models to elucidate the molecular signaling underlying the interactions between CRPC cells and osteoblasts. 
Their findings indicated that matrix metalloproteinase-1 (MMP-1) is the sole molecule capable of blocking AR function 
while simultaneously enhancing CRPC proliferation.76 It is evident that MMPs facilitate tumor invasion and modulation 
of the bone microenvironment in prostate cancer by degrading the extracellular matrix, with MMP-7, MMP-1, MMP-12, 
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and MMP-3 involved in invasion and lipid metabolism, and MMP-3 additionally participating in the formation of 
osteogenic lesions mediated by Notch3.

Plasminogen Activator (PA)
Plasminogen activator, a primary serine protease, is responsible for the breakdown of the ECM. When uPA binds to its 
receptor (uPAR), it activates plasminogen, transforming it into plasmin, which then degrades the ECM.77,78 Studies of 
prostate cancer specimens have indicated that an upsurge in uPA and uPAR expression is strongly linked with more 
aggressive tumor grades.79,80 Dong et al81 demonstrated that when PC3 cells, stably transfected with uPA siRNA, were 
injected into fetal bone and implanted in immunodeficient mice, the tumor burden and bone degradation were notably 
reduced compared to control groups, underscoring the essential part played by tumor-derived uPA in the growth of 
prostate cancer within bone. Elevated expression of uPA and uPAR has been statistically linked to biochemical 
recurrence, with hazard ratios (HR) of 1.75 and 1.22, respectively (P<0.05).82 Moreover, enolase 1 (ENO1), a protein 
typically involved in glycolysis, can be expressed on the cell surface by tumor or immune cells, functioning as a receptor 
for plasminogen activation and promoting cell migration. The ENO1 monoclonal antibody (HuL227) has shown promise 
in experimental studies for inhibiting the growth of subcutaneous PC-3 xenografts, reducing monocyte recruitment, and 
limiting tumor vascularization. In vitro studies have demonstrated that blocking surface-bound ENO1 can effectively 
decrease VEGF-A-induced vascular tubule formation. Additionally, HuL227 can suppress inflammation-induced osteo-
clast activity and the secretion of invasion-promoting cytokines such as CCL2 and TGF-β by osteoclasts.83 Additionally, 
uPA and uPAR, besides promoting invasion and metastasis in prostate cancer, can also act as predictive markers for 
biochemical recurrence following radical prostatectomy. Furthermore, targeted therapy against plasminogen activator 
receptors may become a novel immunotherapy approach for late-stage prostate cancer patients.

Inflammatory Response and Immune Cells
The inflammatory response influences prostate pathophysiology through multiple mechanisms: generating reactive 
oxygen species that cause mutations, producing factors that support tumor growth and suppress anti-tumor immunity, 
and facilitating immune cell infiltration into tumors to aid metastasis.

Regulatory T cells (Tregs) are recognized for their role in facilitating tumor progression.84,85 These cells, specifically 
CD4+ T cells, possess the ability to inhibit the activities of effector T cells. In the peripheral blood of prostate cancer 
patients, CD4+ CD25 (high) Tregs display a more potent immunosuppressive function compared to those found in 
healthy individuals.86 Besides Tregs, another subset of CD4+ T cells, known as Th17 cells, also exerts an influence on the 
course of prostate cancer and the effectiveness of immunotherapies. Th17 cells are characterized by their production of 
the pro-inflammatory cytokine interleukin-17 (IL-17), which aids in recruiting and activating neutrophils and 
monocytes.87 Furthermore, CD4+ tumor-infiltrating lymphocytes (TILs) have been identified as an independent risk 
factor for the development of bone metastases in prostate cancer patients.88 Recent research has revealed that the 
transcription factor BATF (basic leucine zipper transcription factor ATF-like) is essential in the differentiation of Th17 
cells. The differentiation of Th17 cells relying on BATF regulates the IL-23/IL-23R signaling pathway, which is crucial 
for the initiation and advancement of PCa.89

Tumor-associated macrophages (TAMs) are the predominant immune cells found within the tumor microenvironment. 
Typically, macrophages perform the vital task of clearing apoptotic cells-a process called efferocytosis—which is 
essential for maintaining tissue balance under normal circumstances. However, peritoneal macrophages (P-MΦ) exhibit 
distinct characteristics compared to bone marrow-derived macrophages (BM-MΦs). While both types of macrophages 
are capable of engulfing apoptotic prostate cancer cells, BM-MΦs show a stronger expression of pro-inflammatory 
cytokines, which is contingent upon the M2 polarization state of these cells. The efferocytosis carried out by BM-MΦs 
creates a unique pro-inflammatory milieu that is more favorable for tumor expansion. Importantly, interferon-gamma 
(IFN-γ) can shift BM-MΦs towards an M1 phenotype, thereby substantially mitigating the pro-inflammatory effects 
driven by efferocytosis.90 In investigations of patients with bone metastatic castration-resistant prostate cancer 
(bmCRPC), a significant increase in CD206-positive (CD206+) macrophages was observed.91 When comparing TAMs 
from non-osteoblastic tumors (ctrl-TAMs) to those isolated from osteoblastic tumors (bone-TAMs), the latter displayed 
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a higher expression of genes indicative of an M2-like profile.91 Macrophages drive resistance through the cytokine 
Activin A, which induces a fibronectin (FN1)-integrin alpha 5 (ITGA5)-tyrosine kinase Src (SRC) signaling cascade in 
prostate cancer cells, leading to an ECM receptor gene expression response akin to wound healing, thereby alleviating 
resistance to enzalutamide.92 These studies emphasize the important role played by macrophages in the metastatic 
microenvironment of prostate cancer, and provide a theoretical basis for the development of new therapeutic approaches 
targeting mCRPC.

Homing, Survival, and Settlement of Prostate Cancer Cells
The bone matrix is primarily made up of 95% collagen type I, along with 5% non-collagenous proteins and 
proteoglycans.93 Within the bone marrow, one finds a diverse population of cells including osteoblasts and osteoclasts, 
as well as hematopoietic cells, adipocytes, and various immune cells94 (Figure 3). The bone matrix and marrow cells 
secrete a plethora of growth factors, creating a nutrient-rich environment that supports the proliferation of prostate cancer 
cells. Reports indicate that these components-bone cells, the bone matrix, and the growth factors they produce-all 
contribute to the progression of prostate cancer metastasis.95,96

Homing to the Bone Niche
In the final phase of metastasis, tumor cells leave the bloodstream and settle in distant organs. This process begins with 
the attachment of tumor cells to the endothelial lining of blood vessels, aided by growth factors and integrins/adhesion 

Figure 3 Illustrates the interaction between disseminated prostate cancer cells and bone cells. Disseminated prostate cancer cells interact with E-selectin expressed on 
endothelial cells and extravasate into the bone marrow stroma in response to CXCL12. Prostate cancer cells expressing the chemokine ligand 16 (CXCL16) bind to the 
corresponding receptor CXCR6 on bone marrow stromal cells (BMSCs), inducing the transformation of BMSCs into tumor-associated fibroblasts, which in turn produce 
more CXCL12. CXCR4 and its ligand CXCL12/SDF1 guide tumor cells into the bone marrow microenvironment through homing signals. DTCs expressing Annexin II 
receptor (Annexin II R) bind to osteoblasts expressing Annexin II, promoting bone metastasis of tumor cells. Growth factor PDGF-AA from tumor cells stimulates stromal 
matrix cells to produce CXCL5, thereby promoting the growth of metastatic prostate tumors in the bone microenvironment. Mesenchymal stem cells induce already 
disseminated prostate cancer cells to enter a dormant state by upregulating p27 and GAS6 through the production of TGF-β2. Wnt5a may also induce prostate cancer cells 
to enter a dormant state. Cathepsin K plays a crucial role in bone remodeling and resorption, playing a vital role in bone absorption.
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molecules. The successful migration process depends on the delicate balance of these factors, with CXCL12 being 
crucial in the early colonization stages.97–99 The chemokine receptor CXCR4 and its ligand CXCL12 (also known as 
SDF1) guide tumor cells to the bone marrow environment through homing signals100,101 (Figure 3). The tumor cells then 
establish themselves in the perivascular niche, where they are in close proximity to mesenchymal stem cells (MSCs) and 
hematopoietic stem cells (HSCs)102,103 (Figure 3). E-selectin, an adhesion molecule found on endothelial cells, is 
interacted with by disseminated tumor cells, this molecule is increased in the bone marrow stroma due to CXCL12.104 

Studies have revealed that prostate cancer cells with E-selectin ligands bind to E-selectin on bone marrow endothelial 
cells, leading to adhesion.105,106 Prostate cancer cells expressing CXCL16 can enhance their spread to bone by interacting 
with the CXCR6 receptor on bone marrow mesenchymal stem cells (BMSCs).107 This interaction prompts BMSCs to 
transform into tumor-associated fibroblasts and release additional CXCL12107 (Figure 3). A promising therapeutic 
approach for treating bone metastasis in prostate cancer is to disrupt the interactions between tumor cells and the bone 
marrow microenvironment. Research suggests that CXCR4 inhibitors Balixafortide99 and AMD310097,108 show promis-
ing potential in the prevention and treatment of bone metastasis in prostate cancer. These drugs can disrupt the CXCR4 
signaling pathway, preventing prostate cancer cells from metastasizing to bone tissue and inhibiting bone resorption. By 
inhibiting the CXCR4 signaling pathway, these drugs can reduce the settlement and growth of tumor cells in the bone 
marrow, thereby decreasing the occurrence and progression of bone metastasis.

CD44 plays a role in various normal physiological processes and is critically involved in tumor development, 
especially in the metastasis of cancer to bone tissue. Studies have shown that prostate cancer cells expressing CD44 
can adhere to endothelial cells through vascular cell adhesion molecule 1 (VCAM-1), thereby promoting the penetration 
of prostate cancer cells through the vascular wall and settling in distant organs.109 Additionally, the expression of 
different CD44 isoforms can enhance tumor formation, promote osteomimicry (where cancer cells adopt bone cell 
characteristics), facilitate cell migration, and assist in the homing and anchoring of cancer cells to specific bone regions, 
thereby contributing to bone metastasis.110 In the bone microenvironment, disseminated tumor cells (DTCs) that express 
the Annexin II receptor can bind to osteoblasts expressing Annexin II, this process plays a crucial role in establishing 
niche selection for prostate cancer111,112 (Figure 3).

Tumor Dormancy and Reactivation
DTCs must acclimate to the bone marrow environment, elude the immune system, and can remain in a dormant state for 
periods ranging from one to ten years.113 The growth factors, cytokines, chemokines, adhesion molecules, and other 
molecules secreted by endothelial cells and mesenchymal stem cells in the perivascular niche can induce tumor cells to 
enter a dormant state.114–117 The growth arrest specific 6 (GAS6)/AXL signaling pathway is essential for inducing 
dormancy in cancer cells within the bone microenvironment. Prostate cancer cells express GAS6, while the bone 
expresses its receptor AXL, facilitating this interaction118–120 (Figure 3). Activation of cAMP responsive element binding 
protein 1 (CREB1) by Protein Kinase D1 (PKD1) in osteoblasts triggers dormancy in prostate cancer cells, leading to 
increased expression and secretion of GAS6.121 In the perivascular niche, mesenchymal stem cells that are positive for 
NG2 and Nestin (NG2+/Nestin+) can induce dormancy in metastatic cancer cells through the production of transforming 
growth factor-β2 (TGF-β2).122 Similarly, TGF-β2 can cause disseminated prostate cancer cells to enter a dormant phase 
and later re-enter the cell cycle by upregulating p27 and GAS6.123,124

The dormancy of prostate cancer cells is also regulated by bone morphogenetic protein 7 (BMP7). It has been 
reported that BMP7 promotes the dormancy of metastatic cancer cells by activating p38 mitogen-activated protein kinase 
(MAPK) and increasing the expression of p21.125 The acidic secreted protein rich in cysteine contributes to the dormancy 
and subsequent resurgence of prostate cancer cells by increasing the expression of BMP7.126 Studies have shown that 
injecting BMP7 into nude mice can inhibit the growth of prostate cancer119 within bone tissue.

Wnt5a, a member of the Wnt signaling protein family, plays a significant role in development. Studies indicate that 
when osteoblasts secrete Wnt5a, it hinders the growth of prostate cancer cells and hinders in vivo metastasis, suggesting 
its potential as a prostate cancer suppressor.127 Additionally, prostate cancer cells treated with Wnt5a show resistance to 
docetaxel, implying that Wnt5a could induce dormancy in these cells, delaying their proliferation and dissemination128 
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(Figure 3). The existence of dormant prostate cancer cells in the bone microenvironment is a major issue, and creating 
treatment approaches targeted at these cells may offer greater benefits.

The removal of inhibitory signals is necessary to awaken dormant cancer cells. Reports have indicated that VCAM1 
can reactivate dormant micrometastases by attracting osteoclast progenitor cells.129 By inhibiting osteoclast-driven bone 
resorption, researchers have observed a reduction in tumor bone metastasis, which implies that osteoclasts play a pivotal 
role in the activation of dormant tumor cells.130

Bone Marrow Colonization and Remodeling
In normal physiological conditions, osteoblast-mediated bone formation and osteoclast-mediated bone resorption are in 
dynamic balance to maintain the homeostasis of the skeletal system. During bone remodeling, a large number of growth 
factors, cytokines, and cell adhesion molecules are released into the bone microenvironment, which, under chemotactic 
effects, can attract prostate cancer cells to migrate and settle in specific bone microenvironments - similar to the homing 
of HSCs.131,132 Of particular importance is the binding of the CXCL12 expressed by bone marrow endothelial cells to the 
CXCR4 abundantly expressed on the surface of metastatic cancer cells, which promotes cancer cell migration and 
adhesion to the extracellular matrix of the bone marrow.100,101 Additionally, vascular endothelial growth factor (VEGF) 
binds and activates tyrosine kinase receptors on the surface of endothelial cells, inducing endothelial cell proliferation, 
migration, extracellular matrix protein degradation, and promoting angiogenesis, facilitating tumor growth.133,134 Within 
the “tumor niche”, prostate cancer promotes its own growth through paracrine factors and interferes with the physiolo-
gical remodeling of bone. In the early stages, tumor-derived PTHrP and other growth factors promote osteoblasts and 
other stromal cells to produce and release RANKL. RANKL binds to receptor activator of nuclear factor-kappa 
B (RANK) on the surface of osteoclasts, promoting osteoclast precursor fusion and differentiation into mature cells 
through MAPK and NF-kB signaling pathways; bone resorption is enhanced through c-Src signaling.135,136 Mature 
activated osteoclasts release matrix metalloproteinases to degrade collagen and promote bone resorption. Bone resorption 
releases a large number of growth factors, including TGF-β, which in turn promotes prostate cancer cells to produce 
PTHrP. Other growth factors also act on tumor cells, promoting their growth, survival, invasion, and metastasis, forming 
a malignant cycle of bone resorption.105 Denosumab, a humanized monoclonal RANKL antibody, has demonstrated 
potential as selective drugs by inhibiting the RANK-RANKL interaction, thereby reducing osteoclast activity.137 

Disrupting the communication between bone marrow stromal cells and prostate cancer cells may enhance the effective-
ness of chemotherapy in treating prostate cancer. Targeting the molecular interactions between these two cell types could 
offer new therapeutic opportunities for managing bone metastasis in prostate cancer (Figure 3).

The RANKL/RANK/OPG pathway is essential for controlling the proliferation, differentiation, activation, and 
programmed cell death of osteoclasts.138,139 RANKL exists in two forms: a membrane-bound variant and a soluble 
form. Metalloproteinase 14 (MMP14) and a disintegrin and metalloproteinase 10 (ADAM10) primarily generate the 
soluble form of RANKL by enzymatically cleaving the extracellular portion of the membrane-bound RANKL.140 

Additionally, alternative splicing of RANKL mRNA plays a role in producing the soluble form.141,142 Both the 
membrane-bound and soluble versions of RANKL are active biologically and can activate osteoclasts by binding to 
their receptor, RANK.143,144 This binding initiates the recruitment of TRAF proteins and activates downstream signaling 
pathways within osteoclasts. In mice, the deletion of TRAF6 notably impairs osteoclast function and leads to the 
development of osteoporosis.145 Stromal cells present in the bone microenvironment are responsible for the production 
of interleukin 6 (IL-6) and RANKL, which interact with osteoclasts to facilitate their activation and development.146,147 

The activation of osteoclasts is initiated by the signaling triggered by RANKL, which leads to the activation of 
transcription factors like AP1 and NF-κB within these cells.148 Furthermore, the interaction between RANKL and 
RANK boosts the activity of AKT1/PKB and MAPK3/MAPK1.149,150 On the other hand, osteoprotegerin (OPG) has the 
ability to bind to soluble RANKL, effectively neutralizing its impact on osteoclasts.135,150 Research has also found that 
the increase in TGF-β activity leads to an imbalance in RANKL/OPG, thereby exacerbating EMT and bone homing of 
prostate cancer. This imbalance promotes the migration of prostate cancer cells to bone tissue and enhances tumor growth 
and bone resorption in the bone marrow microenvironment.151 In summary, the RANKL/RANK/OPG pathway plays 
a supportive role in the bone metastasis of prostate cancer by promoting the activation of osteoclasts (Figure 3).
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Integrin signaling plays a crucial role in the initiation and progression of tumor metastasis to the bone marrow. 
Prostate cancer cells expressing Integrin α2β1 can adhere to the bone matrix, aiding in their colonization of the bone 
marrow by facilitating migration and attachment.152,153 This process is supported by the release and activation of survival 
and growth factors during bone formation and resorption, which promote the development of bone metastases.152,153 

High expression of Cadherin-11, also called osteoblast-derived cadherin, has been observed in human prostate cancer 
bone metastases and related cell lines. Using shRNA to knock down Cadherin-11 in PC3 cells has been found to greatly 
reduce the occurrence of bone metastasis in mouse models.154,155 Maji et al discovered that PDGF-AA released by 
prostate cancer cells induces bone mesenchymal stromal cells to produce CXCL5, facilitating metastatic prostate tumor 
growth in the bone microenvironment via a positive feedback loop156 (Figure 3).

The bone matrix, abundant in TGF-β1, releases this factor during osteoclast-mediated bone resorption (Figure 3), thereby 
promoting bone metastasis via both Smad-dependent and non-Smad-dependent pathways.157,158 While TGF-β1 does not 
directly initiate the osteogenic differentiation of mesenchymal stem cells, it enhances the proliferation and chemotaxis of 
bone progenitor cells, thereby increasing their numbers.159 Throughout the differentiation process of osteoblasts into 
osteocytes, TGF-β1 is crucial for cell survival.159,160 Additionally, TGF-β hinders the mineralization of osteoblasts and 
interacts with important pathways that regulate bone health, including Notch, Wnt161–163, and the AR signaling pathway. 
Activation of TGF-β signaling and gene transcription occurs when ADT depletes androgens, leading to the promotion of 
bone metastasis.164,165 While ADT is a fundamental part of prostate cancer treatment, the intricate relationship between 
androgens and signaling molecules like TGF-β1 highlights the necessity for more targeted anti-cancer strategies. These 
insights highlight the importance of bone remodeling in the context of prostate cancer’s invasion into bone.

Endothelin (EDN) is a 21-amino acid peptide synthesized by endothelial cells and vascular smooth muscle cells. One 
of the three subtypes, Endothelin-1 (EDN1), remains inactive until it undergoes proteolytic cleavage, at which point it 
becomes active.166 Once activated, EDN1 binds to the endothelin A (ETA) and endothelin B (ETB) receptors, initiating 
intracellular signaling cascades.166,167 In the case of prostate cancer bone metastasis, EDN1 produced by cancer cells 
binds to ETA receptors on osteoblasts, leading to their proliferation and increased bone density.168–170 Recently, 
researchers have successfully isolated a highly specific anti-ETA antibody (AG8) and its engineered human counterpart, 
MJF1-PFc29. Studies have shown that MJF1-PFc29 and AG8 exhibit significant antitumor activity against various 
cancers, including prostate cancer.171,172 Furthermore, clinical trials have demonstrated promising outcomes for ETA 
inhibitors in the treatment of bone metastasis.173–175 Because of its role in these processes, EDN1 is seen as a potential 
target for therapeutic intervention in advanced prostate cancer. Blocking the EDN1-ETA signaling pathway may help to 
halt the progression of bone metastasis.

In recent years, studies have also found that patients with PCa bone metastasis often have various immune 
abnormalities, including exhaustion of different T cell subpopulations, the presence of macrophages, and the specific 
state of PCa bone metastasis.176 Tumor-associated macrophages interact with tumor cells and stromal cells through 
multiple mechanisms, supporting tumor growth and metastasis, including promoting angiogenesis and regulating immune 
escape.177 Pro-inflammatory macrophages and anti-inflammatory macrophages play important roles in controlling and 
coordinating bone remodeling by osteoclasts and osteoblasts. Interferon-γ and interleukin-12-activated inducible nitric 
oxide synthase-2 (iNOS-2) and tumor necrosis factor (TNF)-positive pro-inflammatory macrophages can promote 
osteoclastogenesis and bone resorption.178 Conversely, anti-inflammatory macrophages are believed to contribute to 
bone formation.179 T cells mainly play an anti-cancer role in PCa bone metastases, and interaction with the CCL20-CCR6 
signaling axis can lead to T cell exhaustion. Furthermore, the bone metastasis microenvironment is characterized by an 
increase in functional Treg cells, forming an immunosuppressive niche and promoting bone deposition.180 The role of 
immune cells in PCa bone metastases remains unclear and requires further research exploration.

Summary and Future Outlook
Within the TME, tumor cells secrete tumor-derived factors, prompting BMSCs and various immunosuppressive cells to 
migrate to the bone and form a pre-metastatic niche. Through the remodeling of the extracellular matrix, activated 
integrins, chemokines, and other mechanisms, the BME is further modified to create a conducive environment for tumor 
metastasis. Circulating tumor cells exit blood and lymphatic vessels and colonize within the bone microenvironment, 
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where various cytokines directly promote the proliferation of tumor cells. Consequently, metastatic foci of the tumor 
gradually develop.

Bone metastasis remains a major cause of death in prostate cancer patients. Scientists have been working tirelessly to find 
effective treatments, however, due to the complexity and heterogeneity of the bone marrow microenvironment, there is still no 
effective drug that can fundamentally treat bone metastasis in prostate cancer. Based on the above mechanisms, a series of drugs 
targeting both tumors and the bone microenvironment are currently under development (Table 1). Bisphosphonates are the 

Table 1 Treatment Strategies for Prostate Cancer Bone Metastasis Targeting Tumor and Bone Microenvironment

Agents Mechanism Therapeutic Target Clinical Data

Bisphosphonates Induce osteoclast apoptosis to reduce 

bone resorption

Farnesyl diphosphate synthase Clinically approved181,182

Denosumab Binds to RANKL and suppresses 
osteoclast activity

RANKL Phase III (NCT00286091) trial183

Ra223 Releases high-energy α particles to 

disrupt cancer cell DNA structure

Accumulates at bone 

metastasis sites as a calcium 
mimetic

Clinically approved184

177-Lu-PSMA Emit β rays to kill PCa cells. PSMA Phase III (NCT03511664) trial185

PROSTVAC-VF Recognize and destroy prostate 
cancer cells expressing PSA

Cancer cells+PSA Phase II (NCT01322490) trial186

Ipilimumab Promote the activation and 

proliferation of cytotoxic 
T lymphocytes

CTLA-4 Phase II (NCT00861614) trial187

Nivolumab Activate the immune system’s attack 

capability against tumor cells

PD-L1 Phase II (NCT03554317) trial188

Cabozantinib and Atezolizumab Inhibit angiogenesis and induce anti- 

tumor immunity

VEGFR, MET and RET Phase III (NCT04446117) trial189

ESK981 and Nivolumab Inhibit angiogenesis and induce anti- 
tumor immunity

VEGFR and PD-1 Phase II (NCT04159896) trial190

PLX3397 Influence macrophage activity and 

regulate the tumor microenvironment

CSF-1R Phase II (NCT01525602) trial191

Dasatinib, saracatinib or bosutinib Inhibit osteoclast activity, anti- 

migration, and inhibit tumor growth

SRC Clinical trials192

BPS804 Inhibit the activity of sclerostin and 
promote bone formation

Sclerostin Experimental193

CT-011 Activate the immune system’s attack 

capability against tumor cells

PD-L1 Experimental194

Tivantinib Inhibit MET signaling pathway MET Phase II studies195

Balixafortide Inhibit the homing and dormancy of 

cancer cells

CXCR4 Experimental196

AMD3100 Inhibit the homing and dormancy of 

cancer cells

CXCR4 Experimental97,108

Carlumab Inhibit the homing of cancer cells CCL2 Phase II studies197

Atrasentan Inhibit tumor neoangiogenesis and 

abnormal bone formation

ETA Phase III (NCT00554229) trial198

Cilengitide Seeding and growth antagonist αvβ3 and αvβ5 Phase II (NCT00093964) trail199

Intetumumab Inhibit tumor neoangiogenesis Pan-αv Phase II (NCT00246012) trail200

MK-0429 Inhibit tumor neoangiogenesis and 
anti-bone metastasis

Pan-αv Phase I (NCT00302471) trail201

Odanacatib Inhibit the activity of cathepsin K and 

reduce bone resorption

Cathepsin K Phase III (NCT00691899)trail202
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cornerstone treatment for malignant tumor bone metastases. They bind to hydroxyapatite in the bone and induce apoptosis of 
osteoclasts during bone resorption, thereby reducing bone destruction. Research has shown that long-term use of 4 mg zoledronic 
acid is safe and effective in hormone-refractory prostate cancer male patients with bone metastases, providing sustained clinical 
benefits.181 However, it is associated with various side effects such as flu-like symptoms, renal toxicity, hypocalcemia, and 
osteonecrosis of the jaw. Ra223 and 177-Lu-PSMA have been approved by the FDA for the treatment of castration-resistant 
prostate cancer bone metastasis.185,203 It binds to hydroxyapatite in the bone matrix or osteoblastic bone metastatic lesions by 
mimicking calcium, and then releases high-energy alpha particles to induce DNA damage and cell death in bone metastatic cells. 
However, it is expensive and cannot fundamentally prevent the occurrence of bone metastasis in prostate cancer.

Based on the discovery of the aforementioned molecular mechanisms, novel therapeutic strategies and interventions are 
continuously being developed and applied to more effectively control the progression and metastasis risk of PCa. In terms of 
bone-targeted therapy, RANKL inhibitors such as denosumab204 have been approved to inhibit osteoclast activation by 
blocking the RANKL/RANK pathway, thereby suppressing tumor bone metastasis activation. In a randomized controlled 
study of patients with castration-resistant prostate cancer and bone metastases in Phase 3, it was found that denosumab was 
superior to zoledronic acid in preventing skeletal-related events.205 Additionally, denosumab significantly prolonged bone 
metastasis-free survival and delayed the onset of bone metastases.183 In addition, EMT inhibitors such as resveratrol206 and 
quercetin207,208 have shown inhibitory effects on EMT and may become new options for adjunctive treatment of PCa 
metastasis. MMP inhibitors such as andecaliximab have shown clinical activity and no toxicity in Phase 1 trials, but have not 
yet successfully entered the clinical application stage for PCa. Currently, there is still controversy surrounding the treatment 
methods targeting EMT and MMPs. The complexity of the ECM means that targeted therapy is not always effective and 
carries off-target risks. The efficacy of MMPs is stage-dependent in cancer, with the optimal timing for application possibly 
being in the pre-metastatic disease stage, but balancing efficacy and toxicity remains a challenge.

Some progress has been made in the field of PCa bone metastasis research in recent years, but many issues still need 
to be addressed. Firstly, the current understanding of this multi-step, multi-cell type, and signaling pathway-involved 
process is not comprehensive. Secondly, some novel treatment strategies are still a distance away from clinical 
application. Furthermore, the significant heterogeneity of PCa bone metastasis implies the need for personalized 
treatment plans. It is important to focus on clinical translation, by integrating multi-omics data such as genomics and 
proteomics to develop precise molecular subtyping and prognostic models for personalized treatment.

Conclusion
In summary, prostate cancer often leads to bone metastasis, which typically progresses through four stages: settlement, 
dormancy, activation, and progression of cancer cells, along with bone reconstruction. The interaction between cancer 
cells and bone cells is crucial in these complex processes. This article discusses the mechanisms of tumor microenviron-
ment, bone microenvironment, bone metastasis of prostate cancer cell dormancy and activation. It summarizes the 
targeted treatment strategies developed in recent years based on the understanding of bone metastasis mechanisms, 
bringing promising breakthrough potential for preventing prostate cancer bone metastasis.
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