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Abstract: Breast cancer is one of the most common types of cancer in women worldwide and is a leading cause of cancer deaths 
among women. As a result, various treatments have been developed to combat this disease. Breast cancer treatment varies based on its 
stage and type of pathology. Among the therapeutic options, ultrasound has been employed to assist in the treatment of breast cancer, 
including radiation therapy, chemotherapy, targeted immunotherapy, hormonal therapy, and, more recently, radiofrequency ablation for 
early-stage and inoperable patients. One notable advancement is ultrasound-targeted microbubble destruction (UTMD), which is 
gradually becoming a highly effective and non-invasive anti-tumor modality. This technique can enhance chemical, genetic, immune, 
and anti-vascular therapies through its physical and biological effects. Specifically, UTMD improves drug transfer efficiency and 
destroys tumor neovascularization while reducing toxic side effects on the body during tumor treatment. Given these developments, 
the application of ultrasound-assisted therapy to breast cancer has gained significant attention from research scholars. In this review, 
we will discuss the development of various therapeutic modalities for breast cancer and, importantly, highlight the application of 
ultrasound microbubble-targeted disruption techniques in breast cancer treatment. 
Keywords: ultrasound-targeted microbubble destruction, breast cancer, microbubble, chemotherapy, TME, radiofrequency ablation

Introduction
Breast cancer has emerged as the most prevalent cancer among women globally, accounting for 11.7% of all cancer 
cases.1 Alarmingly, projections indicate that by 2040, the global incidence of breast cancer could increase by a staggering 
40%.2,3 Despite significant advancements in medical care that have improved survival rates, the challenges remain 
substantial. Approximately 20–30% of patients still face the risk of recurrence, leading to poor prognoses and other 
burdens. Consequently, breast cancer remains the leading cause of death among middle-aged women worldwide.4,5 In 
clinical practice, the specific subtype of breast cancer plays a crucial role in determining treatment options and predicting 
patient prognosis.6 Breast cancer is categorized based on the detection and analysis of certain molecular markers in 
patients. These markers help divide breast cancer into four main subtypes: Luminal A, Luminal B, HER2-positive, and 
triple-negative7 (Figure 1). Individualized treatment for Luminal and HER2-positive breast cancer typically involves 
a combination of surgical procedures, chemotherapy, endocrine therapy, and targeted therapy. Advanced stages of the 
disease are associated with higher malignancy, earlier recurrence and metastasis, and poorer prognoses, which under-
scores the importance of early and aggressive intervention.8–10 Triple-negative breast cancer (TNBC) is distinguished by 
the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 
(HER2) expression, making it the most aggressive subtype of invasive breast cancer. Characterized by rapid progression 
and a pronounced tendency for recurrence and metastasis, TNBC poses significant clinical challenges. Patients with 
TNBC typically do not benefit from endocrine therapy or HER2-targeted therapies due to the lack of hormone receptor 
and HER2 gene expression. This lack of therapeutic targets has historically rendered TNBC one of the most difficult to 
treat.11,12 In cases of highly malignant breast cancers, including TNBC, clinicians often employ neoadjuvant systemic 
therapies to enhance patient survival and quality of life, and potentially achieve a cure. These therapies typically include 
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cytotoxic chemotherapy, hormone therapy (where applicable), and targeted therapies directed at specific tumor cell 
characteristics.13 However, recent advancements in immune checkpoint blockade (ICB) offer a novel approach to 
targeted therapies. Unlike conventional therapies that target tumor cells directly, ICB modulates the tumor microenvir-
onment (TME), thereby influencing tumor growth even in the absence of readily targetable molecular alterations within 
the tumor cells. To further advance precision oncology in TNBC, a more comprehensive molecular characterization of 
TNBC subtypes is essential. This molecular typing is crucial for guiding the development and implementation of 
personalized therapies. The emerging use of immune checkpoint inhibitors (ICIs) and antibody-drug conjugates 
(ADCs) exemplifies the promise of these new therapeutic strategies, offering hope for improved outcomes in this 
challenging breast cancer subtype.14,15 For instance, drugs targeting CDK4/6i have significantly inhibited tumor growth 
in patients with HR+/HER2- breast cancer.16,17 However, despite the development of numerous anti-cancer drugs and 
therapies, most treatments are limited by drug resistance or relapse, rendering them ineffective.18,19 The underlying 
mechanism for these therapeutic challenges lies in the tumor microenvironment, which offers a sanctuary and optimal 
conditions for tumor cell survival and growth. Moreover, it ‘shields’ and ‘promotes’ their malignant biological 
behaviors.20–22 Consequently, researchers have shifted their focus towards understanding how drugs can penetrate the 
tumor microenvironment to effectively target and eliminate tumor cells and enhance anti-tumor immunity.

Ultrasound-targeted microbubble destruction (UTMD), an emerging non-invasive therapeutic modality, has demon-
strated enhanced drug transfer efficiency and tumor neovascularization disruption via its multifaceted physicobiological 
effects. Consequently, UTMD exerts synergistic effects in tumor-related therapies, encompassing chemical, genetic, 
immune, and anti-vascular modalities.23–25 Furthermore, UTMD can be integrated with acoustic power therapy and 
composite nanoparticles to potentiate anti-tumor efficacy, thereby offering a novel avenue for targeted tumor therapy. In 
a seminal study, the intra-tumoral delivery of STAT3 transcription factor decoys into squamous cell carcinoma (SCC) 
tumors using UTMD resulted in the significant abrogation of STAT3 signaling, leading to markedly suppressed tumor 
growth.26 Similarly, in another pivotal investigation, UTMD-mediated delivery of siRNA-loaded nanobubbles (siRNA- 
NBs) targeting PDLIM5 in human non-small cell lung cancer PC9GR cells effectively silenced PDLIM5 expression, 
induced autophagy, and promoted both growth inhibition and apoptosis.27 These findings collectively underscore the 

Figure 1 Breast cancer subtypes, their origin and staging.
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potential of UTMD as a versatile and effective tool in the armamentarium of anti-cancer therapeutics.27 Moreover, 
UTMD technology has also been explored in the context of breast cancer therapy, wherein it was utilized to induce 
reactive oxygen species (ROS) production, thereby modulating the miR-200c/ZEB1 axis and suppressing the epithelial-to 
-mesenchymal transition (EMT) properties of breast cancer MDA231 cells, as well as inhibiting the migration of breast 
cancer tumor cells.28 Furthermore, a recent study demonstrated the efficacy of UTMD technology in delivering dual- 
targeted cationic microbubbles, which augmented gene transfection efficiency, enhanced ultrasound molecular imaging of 
tumors, and exhibited pronounced tumor growth inhibition in in vivo experiments, with favorable safety and efficacy 
profiles.29 Collectively, these findings highlight the potential of UTMD technology to surmount the limitations of 
emerging breast cancer treatments, rendering it a promising adjunctive therapeutic modality for the management of 
this disease.30

This review commences with an overview of the various subtypes of breast cancer, elucidating the distinct treatment 
modalities and therapeutic challenges associated with each. We specifically delve into the tumor microenvironmental 
factors contributing to drug resistance and suboptimal treatment efficacy, as elucidated by recent advancements in 
ultrasound oncology. Subsequently, we summarize the clinical status and potential of ultrasound-targeted microbubble 
destruction (UTMD) in combination with emerging therapeutic modalities for breast cancer patients.

Mechanisms of Ultrasound Therapy in Tumor Treatment
Ultrasound-Targeted Microbubble Destruction (UTMD), an innovative non-invasive precision oncology technique, has 
garnered considerable attention in tumor and tumor microenvironment therapy over recent years.23 This technology 
capitalizes on the synergy between ultrasound and microbubbles to facilitate targeted drug, gene, and other therapeutic 
agent delivery, followed by site-specific release. Consequently, UTMD enhances therapeutic efficacy while minimizing 
collateral damage to healthy tissues24,31(Figure 2).

Figure 2 UTMD combined with nano microbubble therapy for tumor treatment.
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The application of ultrasound in tumor treatment primarily encompasses high-intensity ultrasound and low-frequency, 
low-intensity ultrasound. High-intensity ultrasound principally eliminates or damages tumor cells directly through 
thermal and mechanical effects (eg, High Intensity Focused Ultrasound, HIFU).32–34 Clinically, HIFU focuses ultrasound 
waves to generate localized high temperatures, thereby destroying tumor tissues.35,36 In contrast, low-frequency, low- 
intensity therapeutic ultrasound, with frequencies ranging from 20 kHz to 1 MHz and intensities between 0.1 to 3.0 W/ 
cm², is characterized by its deep tissue penetration, low tissue attenuation, and minimal damage to normal cells. This 
modality can enhance the efficacy of antitumor drugs such as curcumin in glioma cells when combined with 
microbubbles.37,38 Moreover, the targeted and non-invasive nature of low-frequency ultrasound allows it to act as 
a carrier for gene and drug delivery, inducing apoptosis in tumor cells and blocking tumor microvessels.39,40 In recent 
years, Ultrasound-Targeted Microbubble Destruction (UTMD) has emerged as a non-invasive treatment method that 
leverages low-frequency ultrasound and microbubbles to enhance the therapeutic efficacy on tumors by improving drug 
or gene delivery efficiency.41 The effects of UTMD are multifaceted, encompassing enhanced drug permeability, 
improved tumor microenvironment, and stimulated immune responses, among other benefits.42,43 Notably, studies 
have demonstrated that the combination of low-frequency ultrasound and microbubble cavitation can induce apoptosis 
in various tumor cells, including those associated with breast cancer, bladder cancer, and prostate cancer, ultimately 
facilitating targeted tumor cell destruction through increased sensitivity to chemotherapeutic agents.44,45 Further research 
has explored the application of UTMD in miR-34a-mimic delivery to tumor tissues. An in vitro cellular assay revealed 
that upon localized irradiation of the tumor surface following microbubble injection, ultrasound-triggered cavitation at 
the target site effectively inhibited tumor growth.46,47 These findings underscore the potential of UTMD in localizing 
gene or drug delivery to tumors, thereby improving treatment efficacy. Additionally, animal model studies have 
demonstrated the efficacy of UTMD in enhancing the delivery of therapeutic agents into the interior of solid tumors, 
thereby reducing the required dose of chemotherapy without compromising treatment efficacy.48,49 This significant 
reduction in dosage can lead to diminished side effects, making UTMD a promising approach in the treatment of various 
cancers. Previous research has investigated the silencing of breast cancer-associated genes, such as MTDH, using UTMD 
technology. The findings of this study indicate that UTMD is more efficacious than liposome transfection alone in 
reducing MTDH expression levels and consequently inhibiting tumor growth.23 UTMD technology represents an 
innovative and effective strategy for cancer treatment.50 It not only enhances the accumulation of chemotherapeutic 
agents or gene therapies within tumor tissues but also minimizes damage to normal tissues, thus exhibiting considerable 
potential for clinical translation.

Within the tumor microenvironment, the rapid proliferation of tumor cells outpaces the development of an adequate 
neovascular system, leading to the formation of hypoxic regions. This hypoxic microenvironment not only facilitates the 
maintenance and proliferation of tumor cells but is also intrinsically linked to enhanced tumor aggressiveness and 
resistance to chemotherapy and radiotherapy.51,52 To address the challenge of oxygen deprivation, researchers have 
employed various strategies, such as the development of oxygen-sufficient nanobubbles. These nanobubbles release 
oxygen at the tumor site upon activation by ultrasound, thereby increasing local oxygen concentration.53 Moreover, the 
application of UTMD technology has been demonstrated to modulate the tumor microenvironment, including the 
disruption of tumor tissue barriers and the promotion of drug penetration. For instance, a study employed a paclitaxel 
prodrug that was activated under hypoxic conditions and combined it with a photosensitizer to form nanoparticles. These 
nanoparticles exhibited enhanced cytotoxicity towards cancer cells upon exposure to light, highlighting the potential of 
UTMD-based approaches in cancer therapy.54 Another investigation demonstrated the potential of UTMD in facilitating 
the delivery of IR780 and oxygen-enriched nanoparticles to tumor sites, thereby promoting the generation of reactive 
oxygen species (ROS) and inducing apoptosis in cancer cells.53 These findings collectively suggest that UTMD 
represents a promising strategy to overcome the limitations of tumor resistance and sensitivity. The UTMD approach 
not only enhances the tumor microenvironment by promoting drug penetration and delivery to tumor cells, but also 
potentially reduces the systemic toxicity associated with tumor treatment by allowing for targeted drug release.55 

Moreover, UTMD may modulate vascular structure and boost the immune response to augment the overall therapeutic 
effect. However, as an emerging field, further clinical trials are necessary to validate the safety and efficacy of UTMD 
technology.
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Therapeutic Strategies and Challenges Associated with Various 
Pathological Subtypes of Breast Cancer
Breast cancer, a heterogeneous and complex disease, is driven by a confluence of genetic, hormonal, and environmental 
factors.56,57 A critical mediator in breast carcinogenesis and progression is the Wnt/β-catenin signaling pathway.58 

Clinically, breast cancer subtypes, including estrogen receptor-positive (ER+), progesterone receptor-positive (PR+), 
human epidermal growth factor receptor 2 overexpressing (HER2+), and triple-negative breast cancer (TNBC), exhibit 
distinct therapeutic responses.10,59 In HER2-positive breast cancer, targeted therapy with anti-HER2 agents such as 
trastuzumab (Herceptin), often in combination with chemotherapy, has demonstrated significant clinical benefits.60,61 

Conversely, endocrine therapy remains the mainstay for ER+ or PR+ breast cancer.62 The presence of estrogen receptor 
(ER) and/or progesterone receptor (PR) in hormone receptor-positive (HR+) breast cancer defines a clinically significant 
subgroup highly responsive to endocrine therapy. This treatment modality leverages the dependence of these tumors on 
hormonal stimulation for growth, employing agents like tamoxifen and aromatase inhibitors to effectively block 
estrogen’s actions.63,64 In sharp contrast, triple-negative breast cancer (TNBC) is defined by the absence of ER, PR, 
and HER2, rendering endocrine and anti-HER2 targeted therapies ineffective. The absence of these established ther-
apeutic targets necessitates the ongoing development of innovative approaches, such as immunotherapy and targeted 
therapies directed against alternative pathways critical for TNBC pathogenesis and progression.65,66 This active area of 
investigation holds considerable promise for improving outcomes for TNBC patients.67,68 Beyond the common subtypes, 
special types of breast cancer, such as invasive lobular carcinoma (ILC), have distinct characteristics that necessitate 
tailored treatment approaches. ILC, for instance, responds poorly to neoadjuvant chemotherapy, highlighting the need for 
more individualized treatment regimens.69,70 The advent of immunotherapy has recently brought renewed hope to the 
management of these and other breast cancer subtypes. However, the limitations of existing treatments should not be 
overlooked. Surgical treatment, while essential, faces challenges in completely eradicating metastatic tumor tissue. 
Chemotherapy, though systemic, is hampered by low selectivity, significant toxicity, and limited patient tolerability. 
Radiotherapy, while effective, can induce side effects such as radiation dermatitis and myelosuppression. 
Immunotherapy, while promising, can result in skin, gastrointestinal, and hepatic toxicities.71,72 Moreover, the tumor 
microenvironment (TME) plays a crucial role in cancer progression, with immunosuppressive cells potentially impeding 
the function and persistence of chimeric antigen receptor T-cell (CAR-T) therapies.73,74

Additionally, the inherent heterogeneity of breast cancer poses significant challenges to treatment. This diversity is 
reflected in variations in histological features, molecular profiles, and clinical behaviors, ultimately contributing to the 
complexity of therapeutic decision-making. Ongoing research aims to elucidate the underlying mechanisms and develop 
more targeted and personalized treatment strategies to overcome these hurdles.

Ultrasound-Targeted Microbubble Destruction Technology in Adjuvant 
Breast Cancer Therapy
UTMD in the Chemotherapy of Breast Cancer
Breast cancer chemotherapy plays a pivotal role in the treatment of breast cancer (Table 1). While significant progress 
has been made in extending patient survival and reducing tumor recurrence, several challenges persist. Notably, 
conventional chemotherapy methods often face issues with non-specificity and high toxicity.75 To address these 
challenges, the integration of nanocarriers or other drug delivery systems can enhance drug specificity and mitigate 
toxic side effects.76,77 In a recent study, researchers developed lipid microbubbles loaded with paclitaxel (PTX) and LyP- 
1 peptides to validate their in vitro tumor targeting efficiency and chemotherapeutic efficacy. The results demonstrated 
that the targeted drug-loaded microbubbles exhibited efficient and stable attachment to breast cancer cells under both 
static and dynamic conditions. Furthermore, PTX-loaded microbubbles (MBs) significantly enhanced the anti-tumor 
effects of chemotherapy. This study highlights the potential of targeted drug delivery systems in improving the specificity 
and effectiveness of chemotherapy, thus offering a promising avenue for future breast cancer treatments.78 The results 
indicated that the targeted drug-loaded microbubbles effectively and stably attached to breast cancer cells under both 
static and dynamic conditions. Moreover, paclitaxel (PTX)-loaded microbubbles (MBs) significantly enhanced the anti- 
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Table 1 | Studies on the Use of UTMB in the Treatment of Breast Cancer

Tumor Treatment Modality Applied Microbubble 
Classes

Tumor cell 
type

UTMD Combined Therapy Killing Machine Tumor Treatment Results

Targeted Cationic Microbubbles Conjugated with 
CD105 Antibody83

CMB105 MDA-MB-231 Microbubbles, loaded with the endothelial 
marker CD105, increase local gene 

concentration and mediate targeted aggregation, 

resulting in significant tumor cell apoptosis84

Angiogenesis and tumor cell invasion were 
successfully inhibited in vitro, with apoptosis and 

tumor growth inhibition observed in vivo83

Enhanced therapeutic effect of Adriamycin on 

multidrug resistant breast85

ABCG2-siRNA MCF-7 The ABCG2-siRNA-loaded nanoparticles, 

combined with UTMD, efficiently silenced the 
ABCG2 gene and enhanced the susceptibility of 

MCF-7/ADR cells to adriamycin (ADR)85

The siRNA-loaded nanoparticles, combined with 

UTMD and adriamycin (ADR), exhibited 
a superior tumor inhibition effect and good 

safety in vivo85

Facilitating the accumulation of porphyrin and 

siRNA at the tumor site through the cavitation 

effect86

SiHIF@CpMB MDA-MB-231 HIF-1α siRNA down-regulated HIF-1α levels, 

induced by the common hypoxic tumor 

environment or ROS generated by photodynamic 
therapy (PDT). This enhancement of PDT efficacy 

partly inhibited tumor progression86

Utilizing UTMD technology, in situ efficient 

accumulation of siHIF@CpMBs at tumor sites 

was achieved, significantly enhancing the efficacy 
of combined therapy86

SiRNA inhibit the proliferation of estrogen- 

dependent ER+ breast cancer (BC)87

CpMBs-PGL-NH2 MCF-7 Amino groups can adsorb siRNA through 

electrostatic interactions to facilitate FOXA1 

knockdown (KD), thereby inhibiting the 
proliferation of estrogen-dependent ER+ BC87

CpMBs/siRNA, combined with ultrasound- 

targeted microbubble destruction (UTMD), 

significantly augmented the local accumulation of 
porphyrin and siRNA via ultrasound-induced 

sonoporation, as guided by contrast-enhanced 

ultrasound (CEUS). This approach demonstrated 
excellent therapeutic efficacy for estrogen- 

dependent ER+ breast cancer87

Paclitaxel (PTX) interfering with the mitotic 

spindle, resulting in cell cycle arrest and 
ultimately apoptosis82

PTX@RGD-MBs MDA-MB-231 An effective drug carrier system for precisely 

delivering PTX into TNBC cells reduces side 
effects and enhances therapeutic efficacy82

In vitro and in vivo ultrasonic experiments 

demonstrated that PTX@RGD-MBs yielded 
high-quality contrast-enhanced ultrasound 

(CEUS) images, thus improving the diagnosis and 

evaluation of triple-negative breast cancer 
(TNBC)82
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Doxorubicin (DOX) is a first-line 

chemotherapeutic drug for breast cancer 
treatment. By enhancing ROS production in 

cancer cells, DOX induces oxidative stress- 

mediated cell death88

DSPC:DSPE-PEG2000 4T1 cells UTMD-induced reactive oxygen species (ROS) 

elevation in tumor regions can enhance the 
tumor-killing effect of DOX, which is dependent 

on intratumoral ROS levels. Therefore, the 

antitumor efficacy of the combination treatment 
was investigated88

UTMD offers a novel, simple, and non-invasive 

technique for tumor-targeted drug delivery. 
When combined with chemotherapy, UTMD 

holds significant potential to enhance the 

antitumor efficacy of chemotherapeutic drugs88

Doxorubicin (Dox) and paclitaxel (PTX), 
commonly used in breast cancer management, 

were selected as chemotherapies, with Rose 

Bengal (RB) serving as the sonodynamic therapy 
(SDT) sensitizer89

PTX+Dox+RB+US MCF-7 Using MBs to facilitate delivery of chemo- 
sonodynamic therapy for the treatment of 

breastcancer89

Animals receiving microbubble treatment 
maintained constant weight throughout the 

study, whereas those treated with a Cremophor 

suspension of PTX/Dox exhibited a 12.1% weight 
reduction89

Zwitterion-modified gadolinium (Gd)-chelated 
core–shell tecto dendrimers (CSTDs) were 

employed as a nanomedicine platform (PCSTD- 

Gd) for enhanced magnetic resonance (MR) 
imaging-guided chemo-gene therapy of 

orthotopic breast cancer, assisted by UTMD90

PCSTD-Gd/DOX/miR 21i MDA-MB-231 Multifunctional PCSTD-Gd/DOX/miR-21i 
polyplexes, delivered to tumors with the 

assistance of UTMD, exhibited enhanced tumor 

penetration and enrichment for MR imaging and 
combination treatment of TNBC90

PCSTD-Gd/DOX/miR-21i polyplexes, facilitated 
by UTMD, enabled enhanced in vivo MR imaging- 

guided chemo-gene therapy of an orthotopic 

breast cancer model90

Simvastatin (SIM), a clinically used lipid-lowering 

medication, is a well-established inhibitor of the 

mevalonate (MVA) pathway with additional 
anticancer effects, as supported by clinical trial 

results91

SIM-NDs MDA-MB-231 As a key inhibitor of ferroptosis, the 

selenoenzyme glutathione peroxidase 4 (GPX4) 

is a classical therapeutic target. UTMD may be 
employed to enhance the delivery and efficacy of 

GPX4 inhibitors in ferroptosis-based cancer 

therapy91

The combination of UTMD and Self-Assembled 

Ionic Micelles of Nanodiscs (SIM-NDs) offers 

a promising strategy for inducing ferroptosis in 
the treatment of malignant tumors91

PROTACs harness E3-ubiquitin ligases to achieve 

efficient protein degradation, thereby mitigating 
drug resistance due to target overexpression or 

mutation. This approach offers several 

advantages, including repeatability, low 
administration doses, and the ability to degrade 

previously undruggable proteins92

ARV-MBs, MDA-MB-231 ARV-MBs, in combination with ultrasound 

irradiation, enhanced PROTAC delivery and 
permeability, resulting in significant in vitro and 

in vivo cancer toxicity92

Under ultrasound, ARV-MBs mediated BRD4 

ubiquitination and degradation, resulting in an 
effective antitumor effect92

(Continued)
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Table 1 (Continued). 

Tumor Treatment Modality Applied Microbubble 
Classes

Tumor cell 
type

UTMD Combined Therapy Killing Machine Tumor Treatment Results

SOCS3 overexpression inhibits the activity of 

JAK/STAT3 signaling pathway in breast cancer 

cells, inhibits cell proliferation, and improves the 
sensitivity to ADM-induced apoptosis93

UTMD- and liposome- 

mediated SOCS3

MCF-7 UTMD and liposome-mediated SOCS3 reduced 

cell viability, proliferation, migration and invasion, 

blocked cell cycle, inhibited sphere formation in 
BCSCs, and retarded tumor growth in mice93

UTMD increased the transfection rate of 

SOCS3. Furthermore, UTMD and liposome- 

mediated SOCS3 reduced cell viability, 
proliferation, migration, and invasion, blocked 

cell cycle progression, inhibited sphere formation 

in BCSCs, and retarded tumor growth in mice93

Inhibition of MTDH expression by shRNA 

interference effectively reduces breast cancer 
metastasis23

MTDH by shRNA using 

liposome

MCF-7, MCF- 

10A, and T47D

UTMD plus liposomes worked well together to 

deliver shRNA efficiently, reducing the 
expression of MTDH. This, in turn, decreased 

the ability of MCF-7 cells to survive, move, 

invade, and undergo EMT23

Liposomal-UTMD delivery enhanced shRNA 

transfection, suppressing MTDH and thereby 
inhibiting MCF-7 cell proliferation, migration, and 

EMT23

MiR-145-5p inhibits BC cell growth, migration 

and invasion by negatively regulating ACTG1 
levels in BC cells94

miR-145-5p-MB MCF-7 and 

MDA-MB-231

UTMD improved the therapeutic delivery of 

miR-145-5p and potentiated its inhibitory effects 
on BC cell malignancy94

UTMD targeted delivery technique, boosted the 

therapeutic potential of miR-145-5p in BC cells. 
UTMD may enable localized miRNA therapy94
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tumor effects of chemotherapy. Another significant challenge in breast cancer chemotherapy is multidrug resistance 
(MDR). The development of novel drug delivery systems using ultrasound-targeted microbubble disruption technology 
can provide precise control over chemotherapeutic drug delivery, thereby improving therapeutic efficacy and reducing 
adverse effects.79,80 Studies have shown that innovative drug carrier systems or nanosystems, such as those using 
modified graphene oxide and doxorubicin, can reverse MDR by inhibiting the drug efflux transport protein 
P-glycoprotein (P-gp).81 These advancements underscore the potential of targeted drug delivery systems and nanotech-
nology in addressing major challenges in breast cancer chemotherapy, thereby enhancing treatment outcomes and 
reducing side effects. In a recent study, researchers employed paclitaxel-loaded lipid microbubbles (PTX@RGD-MBs) 
in conjunction with ultrasound-targeted microbubble disruption (UTMD). This approach significantly enhances the 
diagnostic and therapeutic efficacy of Triple Negative Breast Cancer (TNBC) by leveraging the mechanical effects of 
ultrasound, such as the vibration and rupture of microbubbles (MB) or nanobubbles (NB). This process increases drug 
concentration and penetration at the tumor site.82 In conclusion, the combination of UTMD with a targeted drug delivery 
system facilitates the localized delivery of drugs to the tumor site through ultrasound-mediated microbubble destruction. 
This method effectively enhances drug concentration while reducing systemic toxicity, thereby avoiding the serious side 
effects typically associated with traditional chemotherapy.

UMTD in the Radiotherapy of Breast Cancer
Radiation therapy (RT) plays a pivotal role in breast cancer management, reducing local recurrence following mastect-
omy or breast-conserving surgery.95,96 The seminal study at Guy’s Hospital in 1960 established the safety and efficacy of 
post-lumpectomy RT,97 with subsequent trials confirming its benefit in reducing local recurrence.98,99 However, the 
double-edged sword of RT’s tumoricidal power and associated toxicities, such as cardiotoxicity, has driven advances in 
our understanding of breast cancer biology and RT techniques.100,101 Subsequent advances in breast cancer biology and 
radiation oncology have enabled the personalization of RT, optimizing patient selection, treatment techniques, and 
fractionation schedules.102,103 However, despite these improvements, challenges remain, including radiation-induced 
skin reactions, cardiac toxicity, and myelosuppression.104 Ultrasound molecular tomography (UTMD) offers a potential 
role in enhancing treatment efficacy by targeting tumor microvasculature and blood flow dynamics.105,106 Several studies 
have investigated the synergistic effects of radiation therapy and ultrasound-guided focused ultrasound (FUS) in 
preclinical breast cancer models. These studies employed ultrasound stimulation of microbubbles to induce vascular 
damage, thereby enhancing tumor radiosensitivity. This approach has demonstrated compromised tumor vasculature and 
improved response to radiation therapy.107,108 Furthermore, the application of ultrasound-mediated drug delivery 
(UTMD) technology offers a promising avenue for targeted therapeutic interventions. For instance, UTMD has success-
fully facilitated the delivery of microRNAs, such as miR-21-5p inhibitors, into lung cancer cells, and this approach has 
demonstrated efficacy in preclinical breast cancer models, potentially improving treatment efficacy and mitigating 
adverse effects.109 Furthermore, research has demonstrated that ultrasound facilitates the infiltration of nanomaterials 
into tumor stroma, thereby enhancing the efficacy of in vivo radiotherapy and chemotherapy, and reducing tumor 
microvascular density and cell proliferation markers.110 Emerging evidence suggests that the combination of UTMD 
and radiotherapy holds significant promise for improving treatment outcomes and prognosis in breast cancer.

UTMD in Targeted Immunotherapy for Breast Cancer
Immune checkpoint inhibitors (ICIs) represent the foremost class of therapeutics currently employed in breast cancer 
immunotherapy. These agents potentiate the immune system’s anti-tumor response by inhibiting the PD-1/PD-L1 
pathway, thereby relieving the suppression of T cells.111 A notable example is pembrolizumab (Keytruda), a PD-1 
inhibitor that has demonstrated significant efficacy, particularly in the treatment of triple-negative breast cancer 
(TNBC).112 Notably, ICIs shift the therapeutic paradigm by explicitly targeting the tumor microenvironment (TME) 
rather than the tumor cells themselves. This strategy offers a novel approach to targeted therapy, even in cases where the 
tumor cells lack conventional therapeutic targets.113,114 However, thanks to immune checkpoint blockade (ICB), 
explicitly targeting the tumor microenvironment (TME) rather than the tumor cells themselves provides a new approach 
to targeted therapy, even if the tumor cells lack actionable targets. Components of the TME can contribute to disease 
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progression by secreting and expressing factors that stimulate tumor cell proliferation and suppress anti-tumor immunity, 
or conversely, contribute to tumor control through adaptive immune mechanisms.115 The pivotal role of immunity in 
cancer underscores the necessity for immunotherapeutic agents to effectively penetrate the TME to reach tumor cells, 
engage with PD-1, and subsequently modulate the response of immune effector cells, including macrophages, natural 
killer (NK) cells, and dendritic cells, ultimately enabling effective tumor cell elimination.116–118 Recent research has 
demonstrated that ultrasound-targeted microbubble destruction (UTMD) can effectively modulate the tumor immune 
microenvironment, presenting a promising strategy for tumor immunotherapy.119,120 The synergistic action of ultrasound 
and microbubbles enhances the tumor immunosuppressive microenvironment by inducing antigen release from tumor 
cells, both mechanically and thermally. This process facilitates antigen presentation and promotes T-cell recognition and 
subsequent killing of tumor cells. Consequently, UTMD may address some of the challenges inherent in traditional 
therapeutic approaches such as immune checkpoint blockade (ICB) and chimeric antigen receptor (CAR)-T cell 
therapy.24,121 Several studies have investigated the efficacy of ultrasound-mediated drug delivery in targeting HER2- 
positive breast cancer. Elamir et al demonstrated that liposome-encapsulated anti-HER2 monoclonal antibodies, released 
via microbubble-triggered sonoporation at low frequencies, exhibited superior tumor growth inhibition compared to other 
treatment modalities. This enhanced efficacy was attributed to increased drug efficiency, reduced cytotoxicity, promotion 
of apoptosis, and stimulation of an antitumor immune response.122 These findings corroborate the work of Callmann 
et al, who also observed that ultrasound stimulation facilitated targeted drug release in HER2-positive breast cancer cells, 
resulting in improved tumor suppression and decreased systemic toxicity. Further research is needed to elucidate the 
precise mechanisms underlying these observed benefits and to optimize the parameters of ultrasound-mediated drug 
delivery for clinical translation.123 In a recent study, a novel ultrasound-responsive spherical nucleic acid (SNA) system 
was developed to target c-Myc and PD-L1 in triple-negative breast cancer (TNBC). This self-assembled, vector-free 
small interfering RNA (siRNA) system selectively inhibits c-Myc and PD-L1 in cancer cells when activated by 
ultrasound, thereby enhancing therapeutic efficacy against TNBC.124 Additionally, the combination of ultrasound- 
stimulated microbubbles and hyperthermia (USMB and HT) has shown promise in targeting breast tumor vasculature, 
with potential therapeutic benefits demonstrated in preclinical studies.125 Furthermore, ultrasound-stimulated microbub-
ble cavitation (USMC) technology has been employed to enhance drug concentration and therapeutic efficacy in breast 
cancer. For instance, a study demonstrated that USMC technology significantly increased the drug concentration and 
therapeutic efficacy of orally administered gefitinib in mice with ovarian cancer.40 Additionally, the anti-tumor effects of 
PD-1 immunotherapy can be synergistically enhanced by modifying the local tumor microenvironment. This can be 
achieved by adjusting vascular permeability and inducing T-cell infiltration, thereby improving overall therapeutic 
outcomes.126,127 This study introduces a novel therapeutic modality that combines low-intensity focused ultrasound- 
targeted microbubble disruption (LIFU-TMD) with programmed death-ligand 1 (PD-L1) blockade immunotherapy. 
LIFU-TMD has been demonstrated to induce the disruption of aberrant tumor vasculature, thereby reducing tumor 
blood perfusion and facilitating the transformation of the tumor microenvironment (TME). This transformation sensitizes 
the TME to anti-PD-L1 immunotherapy, resulting in significant inhibition of 4T1 mammary carcinoma growth in murine 
models.121 The mechanistic underpinnings of this synergistic effect include the enhancement of CD8+ T cell infiltration 
within the tumor, alleviation of the immunosuppressive TME, and the induction of systemic anti-tumor immune 
responses. These effects collectively augment the local and distal therapeutic efficacy of anti-PD-L1 antibodies. 
Additionally, ultrasound-targeted microbubble destruction (UTMD) has been found to play a pivotal role in the 
optimization of chimeric antigen receptor T-cell (CAR-T) therapies. UTMD can precisely guide CAR-T cells to specific 
tumor sites, either through ultrasound-mediated delivery or by enhancing the infiltration and activation of CAR-T cells 
within the tumor. These mechanisms collectively improve the efficacy of CAR-T therapies.128

Ultrasound technology serves dual purposes in clinical settings, with significant applications in both therapeutic and 
diagnostic modalities. In the context of breast cancer diagnostics, ultrasound is an indispensable tool for the early 
detection of malignancies, particularly in regions such as China, where its usage is more prevalent than conventional 
mammography. This preference is attributable to the fact that most Chinese women possess small and dense breast tissue, 
which can obscure the sensitivity of traditional mammographic imaging. In the diagnostic workflow for breast cancer, 
ultrasound offers several advantages over radiography, especially in dense breast tissue. Ultrasound imaging provides 
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more detailed information about the internal structure and composition of the breast, enhancing the detectability of 
lesions that may be masked by dense tissue in mammograms. This capability is crucial for early intervention and 
improved patient outcomes.129,130

While the above presentation clearly showcases the significant clinical potential of UTMD in breast cancer 
immunotherapy, several challenges remain. These include the unpredictability of UTMD’s interaction with adjuvant 
radiotherapy, chemotherapy, and other therapies; the potential for immune-related adverse reactions; and the intricacy of 
the tumor’s anti-immune mechanisms. Consequently, further research and clinical trials are essential to refine these 
therapeutic strategies and to establish the optimal use of UTMD in breast cancer treatment.

UTMD in Hormonal Therapy of Breast Cancer
HER2+ breast cancer is a highly aggressive subtype, and precise assessment of HER2 expression status is crucial for 
determining patient eligibility for targeted anti-HER2 therapy.131,132 While this treatment effectively reduces recurrence 
and mortality risks, it also presents various side effects.133 Hormone therapy for breast cancer targets hormone receptor- 
positive (ER+/PR+) subtypes.134 Moreover, microbubble-enhanced and ultrasound-guided (MB+US) drug delivery has 
demonstrated promise across various therapies, including HER2+ breast cancer, due to its tunable, noninvasive, and 
spatially targeted nature.86,135,136 Researchers have developed ultrasound imaging combined with poly (lactic acid- 
hydroxyacetic acid) nanocarriers to dynamically monitor tamoxifen resistance.137 This technology, which integrates 
hormone therapy with ultrasound to create targeted nanobubbles for ultrasound molecular imaging, offers a promising 
tool for real-time monitoring of drug resistance in the clinic. While these therapies have proven effective in clinical 
settings, challenges such as drug resistance and side effects persist.138,139 UTMD has shown potential in managing side 
effects and providing new insights into drug resistance. Consequently, there is a need to continually explore and develop 
more effective treatment options for breast cancer, particularly in the application of ultrasound nanobubbles.

UTMD in Radiofrequency Ablative Therapy for Breast Cancer
Imaging-guided Radiofrequency ablation (RFA) of breast cancer has become an important tool in modern breast 
therapy140,141(Figure 3). Among these techniques, ultrasound-guided RFA is a new minimally invasive breast surgical 
modality widely used in clinical practice. RFA generates heat locally by causing ionic oscillations through the high- 
frequency alternating current flowing around the electrodes, leading to protein denaturation and coagulative necrosis of 
tissues, as well as apoptosis and inactivation of tumor cells.142–144 As a localized radical treatment, it offers the 
advantages of easy mastery, small incisions, and good cosmetic effects.145 Currently, RFA has shown good results in 
the treatment of breast cancer. Early studies have confirmed that radiofrequency ablation can cause complete necrosis of 
ablated tumor cells in various types of breast diseases. The rate of complete tumor necrosis after ablation, as observed 
through pathological examination, ranges from 76% to 100%.146,147 Subsequent studies have shown that the 5-year 
progression-free survival rate of patients who underwent radiofrequency ablation was significantly higher than that of 
patients who underwent post-conservative radiotherapy, with 5-year survival rates ranging from 87% to 97%.148–150 

Zhang et al combined RFA with lumpectomy, applying RFA to inactivate the peritumoral invasive cavity after the 
surgical procedure. This approach resulted in improved breast appearance, reduced local recurrence rates, and decreased 
secondary surgery rates.151 The application of RFA in early breast cancer demonstrated good local control rates, safety, 
and high patient quality of life and satisfaction,152 underscoring the clinical advantages of radiofrequency ablation in 
breast cancer treatment and the potential for local treatment of breast cancer tumors. Regarding the potential for 
widespread use of radiofrequency ablation in the treatment of malignant breast tumors, the key challenges currently 
faced are primarily twofold: efficiently and thoroughly ablating the tumor to achieve complete inactivation, and non- 
invasively detecting recurrence post-procedure.153,154 In addressing these challenges, researchers have discovered that 
ultrasound, on one hand, induces rapid expansion and contraction of microbubbles within tissues, thereby generating 
localized high temperatures that augment the thermal effects of radiofrequency ablation and enhance its efficacy. On the 
other hand, the combination of ultrasound with targeted microbubbles composed of specific nanomaterials enables the 
visualization of specific tumor sites.155,156 Consequently, recent studies have demonstrated that an approach combining 
ultrasound-targeted microbubbles with radiofrequency ablation techniques can enhance the therapeutic efficacy of 

International Journal of Nanomedicine 2025:20                                                                                   https://doi.org/10.2147/IJN.S504363                                                                                                                                                                                                                                                                                                                                                                                                   1435

Wu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



ablation.157–159 It has been shown that the combined use of low-frequency ultrasound and microbubbles amplifies the 
inhibitory effect of radiofrequency ablation on pancreatic cancer cells, reducing cell migration and proliferation.160 

Furthermore, in a study on breast cancer ablation therapy, ultrasound-guided cryoablation combined with endocrine 
therapy in ER-positive, HER2-negative locally advanced breast cancer was found to be effective in improving ablation 
efficiency and promoting tumor cell apoptosis using this combined treatment method.161 This further confirms that the 
combined effect of ultrasound microbubbles plays a positive role in enhancing ablation efficiency, thereby promoting 
tumor cell apoptosis and inactivation in ablation therapy. The underlying mechanism may be that microbubbles, under 
ultrasound irradiation, act as bioaugmentation agents, enhancing the efficiency of thermal ablation therapy by altering the 
acoustic impedance difference and thus increasing ultrasound energy deposition in the tissue environment.162 Moreover, 
in another study, researchers discovered that perfluorocarbon (PFC) nanoparticles, when subjected to focused ultrasound 
(FUS), transform into microbubbles during tumor thermal ablation. This transformation alters the acoustic environment 
of the tissues and enhances ultrasound energy deposition, thereby achieving synergistic FUS-assisted ablation therapy for 
tumors.84,163,164

In a comparative trial, the study demonstrated that the strategy of combining ultrasound with microbubbles 
significantly improved the accuracy and efficacy of ablation, particularly in the treatment of breast cancer tumors, and 
showed great potential for use in breast cancer treatment. However, several issues require further investigation and 
optimization: Microbubble stability and safety: The materials and types of microbubbles used in the study need to be 
optimized to ensure in vivo stability and safety, and to minimize potential side effects. Equipment and parameter 
optimization: The equipment and parameter settings used for the ultrasound-microbubble combination need to be further 
optimized to achieve the best treatment outcomes. This includes optimizing the ultrasound frequency and power, as well 
as the microbubble concentration and size. Clinical validation: Although numerous studies are currently in the animal 
experimentation and theoretical research stages, large-scale clinical trial data are scarce. Consequently, further clinical 

Figure 3 Influence of complete radiofrequency ablation on prognosis of breast cancer.
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validation is required to evaluate the actual efficacy and safety of this approach in treating various tumor types and 
stages. The aforementioned review indicates that the application of ultrasound combined with microbubbles in radio-
frequency ablation holds promise; however, it still necessitates continued exploration and optimization to play a more 
significant role in clinical practice.

Conclusion and Prospect
Ultrasound-targeted microbubble destruction (UTMD) has emerged as a potent, non-invasive adjuvant therapy for breast 
cancer treatment, demonstrating significant efficacy in enhancing the immune microenvironment and augmenting the 
effectiveness of radiotherapy, immunotherapy, and ablative therapies. This novel approach challenges the traditional 
paradigm, which has primarily focused on the direct cytotoxic effects of therapeutic agents on tumor cells. Despite the 
development of diverse therapeutic modalities, the lack of optimal delivery vehicles and strategies to improve the tumor 
microenvironment has hindered the full potential of these treatments. UTMD addresses this gap by enhancing therapeutic 
outcomes. To fully exploit the therapeutic potential of UTMD in breast cancer adjuvant treatment, several key areas of 
challenges and future research directions are identified. Optimizing ultrasound parameters, such as frequency and 
intensity, to maximize drug efficacy, and enhancing the biocompatibility and in vivo stability of microbubbles or 
nanocarriers to minimize side effects on normal tissues are crucial. Moreover, while preclinical studies and theoretical 
research have shown promise, there is a dearth of large-scale clinical trial data. More clinical validation is necessary to 
assess the efficacy and safety of UTMD across different types and stages of breast cancer. As the application of UTMD in 
breast cancer treatment continues to evolve, it is expected to play a pivotal role in the future of oncology. The academic 
community must rigorously investigate and refine the parameters and safety profiles of UTMD to ensure its maximum 
clinical benefit. By addressing these challenges, UTMD can become a cornerstone in the multidisciplinary approach to 
breast cancer treatment.
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