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Abstract: Given the complexity of the central nervous system (CNS) and the diversity of neurological conditions, the increasing 
prevalence of neurological disorders poses a significant challenge to modern medicine. These disorders, ranging from neurodegen-
erative diseases to psychiatric conditions, not only impact individuals but also place a substantial burden on healthcare systems and 
society. A major obstacle in treating these conditions is the blood-brain barrier (BBB), which restricts the passage of therapeutic agents 
to the brain. Nanotechnology, particularly the use of nanoparticles (NPs), offers a promising solution to this challenge. NPs possess 
unique properties such as small size, large surface area, and modifiable surface characteristics, enabling them to cross the BBB and 
deliver drugs directly to the affected brain regions. This review focuses on the application of NPs in gene therapy and enzyme 
replacement therapy (ERT) for neurological disorders. Gene therapy involves altering or manipulating gene expression and can be 
enhanced by NPs designed to carry various genetic materials. Similarly, NPs can improve the efficacy of ERT for lysosomal storage 
disorders (LSDs) by facilitating enzyme delivery to the brain, overcoming issues like immunogenicity and instability. Taken together, 
this review explores the potential of NPs in revolutionizing treatment options for neurological disorders, highlighting their advantages 
and the future directions in this rapidly evolving field. 
Keywords: central nervous system, nanoparticle, gene therapy, enzyme replacement therapy, lysosomal storage disorders, 
neurological disorders

Introduction
With the steady growth of the aging population and the continuous progress of medical technology, the prevalence of neurological 
disorders has gradually increased, becoming the most common, debilitating, and underserved disease.1 There is a wide variety of 
central nervous system (CNS) diseases, including neurodegenerative diseases, autoimmune diseases, vascular diseases, tumors, 
metabolic diseases, psychiatric disorders, and others. The treatment of neurological disorders is a formidable challenge for 
contemporary medicine, largely because of the complexity of the brain and the diversity of neurological disorders that limit 
therapeutic efficacy.2 This complexity is exacerbated by unique physiologic barrier, the blood-brain barrier (BBB), which is 
a dynamic interface between blood and brain parenchyma that acts as a selective impediment to the passage of substances.

The BBB comprises continuous cerebrovascular endothelial cells and their intercellular tight junctions, intact base-
ment membranes, pericytes, and membranes surrounded by astrocyte foot plates.3 This barrier not only protects the brain 
from harmful substances in the circulation but also restricts the passage of most therapeutic drugs, thereby limiting and 
complicating treatment options for many brain disorders.4 What’s more, the BBB is actively involved in the process of 
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efflux transport, which is mediated by various efflux transporters such as multidrug resistance protein 1 (MDR1)/ 
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated proteins (MRPs). 
These transporters play a crucial role in protecting the CNS by actively pumping out potentially harmful substances or 
xenobiotics from the brain back into the bloodstream, therefore preventing their accumulation within brain tissue.5 

Therefore, there is a need to explore more effective treatments based on the enormous challenges facing neurological 
disorders.

Nanotechnology has ushered in a new era in the treatment of neurological disorders, providing innovative approaches 
to overcome long-standing challenges in drug delivery and treatment efficacy.6 Nanoparticles (NPs) have unique 
physicochemical properties such as small size and large surface area, which help them to cross the BBB and enable 
drug delivery to the lesion sites.7 In addition, surface modification of NPs, such as coating with polyethylene glycol 
(PEG) to prolong their circulatory half-life, or modification of targeting molecules on their surfaces to promote selective 
binding of NPs to receptors or transporters within the BBB for targeted delivery therapies, can minimize systemic side 
effects and improve therapeutic efficacy. Furthermore, surface modifications enhance the permeability of NPs to cross the 
BBB and biocompatibility in the body, thereby improving the efficiency of drug delivery.8 Hence, NPs have been 
extensively studied in a variety of neurological disorders and have become a promising tool in this field owing to their 
advantages. As research progresses, these nanoscale tools are expected to revolutionize neurotherapeutics.

Gene therapy aims to treat or prevent disease by altering or manipulating gene expression, and it focuses primarily on 
correcting defective genes that contribute to the development of disease. NPs can be designed to carry various forms of genetic 
material such as DNA, miRNA, siRNA, and mRNA, depending on the target disease and the desired therapeutic effect.9 This 
versatility makes them suitable for different types of gene therapy. Enzyme Replacement Therapy (ERT) is a therapeutic 
approach used primarily for lysosomal storage disorders (LSDs) that are genetic disorders often lacking specific enzymes, 
leading to the accumulation of toxic substances in the cells and causing severe neurological damage.10 However, unfavorable 
properties of the enzyme, including immunogenicity, lack of targeting, and instability, will diminish the clinical significance of 
ERT.11 NP-based enzyme delivery systems have multiple advantages, which protect the stability of drugs in vivo, promote 
drug release and enrichment across the BBB at CNS lesion sites, reduce drug immunogenicity, and achieve controlled release. 
Thus, NPs have emerged as a promising vehicle for delivering genes and enzymes to the CNS.12,13 The combination of 
nanotechnology with gene therapy and ERT marks a major leap forward in the field of CNS disease treatment. This review 
delves into the application of NPs in neurological disorders with a special focus on gene therapy and ERT, providing insights 
into future directions and potential breakthroughs in this emerging field.

Classification and Treatment of Neurological Disorders
Neurological disorders represent a diverse and complex group of diseases affecting the CNS in various ways. These 
disorders range from neurodegenerative conditions, autoimmune diseases, vascular disorders, and tumors to traumatic 
injuries, metabolic diseases, and psychiatric conditions.14 Each type of disease has its own unique pathogenesis and 
pathologic features, resulting in different symptoms and therefore requiring specific treatment approaches.15

Neurodegenerative Diseases
Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration and death of neurons. 
These diseases typically involve chronic inflammation, oxidative stress, mitochondrial dysfunction, impaired protein 
clearance, and gradual loss of neuron structure and function, leading to cognitive, motor, and sensory impairments 
depending on the area of the nervous system that is affected.16 Common neurodegenerative diseases include Alzheimer’s 
disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). For 
example, AD is associated with the buildup of β-amyloid (Aβ) plaques and tau protein tangles, leading to synaptic 
dysfunction and neuronal death. PD is characterized by the accumulation of α-synuclein (α-syn) proteins, which form 
Lewy bodies and lead to the death of dopamine-producing neurons in the substantia nigra. HD results from a genetic 
mutation leading to the accumulation of the huntingtin protein, causing neuronal death primarily in the basal ganglia. 
ALS is marked by the progressive degeneration of motor neurons, often linked to mutations in the SOD1 gene, among 
others.17
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Treatment options for neurodegenerative diseases are limited and mainly focus on symptom management. Drugs like 
cholinesterase inhibitors (for AD) or dopamine agonists (for PD) can help alleviate symptoms but do not halt disease 
progression. Physical therapy, cognitive therapy, and dietary adjustments may help improve quality of life.18,19 Recent 
advances in gene therapy have opened up promising avenues for the treatment of neurodegenerative diseases. For 
instance, adeno-associated virus (AAV) vectors were utilized to deliver complementary deoxyribonucleic acid (cDNA) 
coding for human apolipoprotein E2 (ApoE2) as a potential treatment for AD in ApoE4 homozygotes (NCT03634007). 
Similarly, PD is another area where gene therapy is making strides. AAV2-mediated delivery of the GDNF gene 
(NCT04167540) and the AXO-Lenti-PD vector for dopamine synthesis (NCT03720418) are being evaluated for their 
potential to restore dopaminergic neuron function and alleviate motor symptoms. In the case of HD, a Phase I/II trial 
(NCT04120493) is testing the safety and efficacy of AAV5-miRNA, designed to silence the mutant huntingtin gene and 
slow disease progression. In the treatment of spinal muscular atrophy (SMA), FDA-approved Zolgensma (AVXS-101) 
has provided success for SMA Type 1 (NCT03381729), which replaces the defective SMN1 gene. ASOs targeting SMN2 
gene to alter SMN2 splicing for increasing the fraction of transcripts containing exon 7 have also shown efficacy 
(NCT02386553). These clinical trials offer hope for more effective treatments in the future, though these are not yet 
widely available.

Autoimmune Diseases
Autoimmune diseases occur when the immune system mistakenly attacks healthy cells and tissues in the CNS, resulting 
in inflammation and damage. These conditions can affect the brain and nerves, leading to a variety of neurological 
symptoms. Common autoimmune neurological diseases include multiple sclerosis (MS), autoimmune encephalitis, and 
neuromyelitis optica.20 The underlying cause of autoimmune neurological diseases is often the loss of immune tolerance, 
where the body’s immune system fails to distinguish between foreign pathogens and its own cells. This leads to the 
production of antibodies and immune cells that target the nervous system.21 For instance, MS is characterized by the 
immune system attacking the myelin sheath, causing disrupted electrical signals between the brain and body. This leads 
to the formation of scar tissue (sclerosis) at sites of myelin damage, neuronal loss and brain atrophy.22

Common treatment strategies for autoimmune brain diseases primarily focus on modulating the immune response to 
prevent further neurological damage. Immunosuppressive therapies, including corticosteroids and drugs such as ritux-
imab or azathioprine, are widely used to reduce immune-mediated attacks on the CNS. Monoclonal antibodies target 
specific antigens to block pathological immune responses. Anti-inflammatory agents, such as corticosteroids, help control 
acute inflammation during disease flare-ups. Plasmapheresis is employed to remove harmful autoantibodies from the 
bloodstream, while intravenous immunoglobulin (IVIG) is used to modulate the immune system and provide passive 
immunity. These treatments aim to preserve neurological function and improve patient outcomes.23 In clinical trials for 
MS, monoclonal antibodies targeting B cells and T cells, such as the anti-CD52 monoclonal antibody alemtuzumab and 
the humanized anti-CD20 monoclonal antibody ocrelizumab, have demonstrated promising efficacy, offering hope for 
MS treatment.24

Vascular Diseases
Vascular diseases refer to disorders that affect the blood vessels (arteries, veins, and capillaries) that supply blood to the 
nervous system. These diseases can lead to serious neurological complications due to impaired blood flow, resulting in 
insufficient oxygen and nutrient supply to the brain. Stroke (ischemic and hemorrhagic) is the most common type of 
vascular disease, resulting from the interruption of blood flow to the brain, leading to brain tissue necrosis, inflammation, 
and a cascade of cell death in affected areas. This may be due to thrombosis, embolism, or hemorrhage.25

The treatment of vascular diseases differs due to different pathogenesis. For ischemic stroke, thrombolytic agents like 
tissue plasminogen activator are used to dissolve clots. Antiplatelet agents and anticoagulants are common in 
prevention.26 The treatment of hemorrhagic stroke focuses on controlling the bleeding and reducing intracranial pressure. 
Surgical interventions may include clipping or coiling of aneurysms, and decompressive craniectomy may be used to 
relieve pressure.27 Some stem cell therapies have been explored in clinical trials for enhancing functional recovery by 
modulating immune responses, providing neuroprotection, and restoring damaged neural circuits in the brain.28
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Tumors
Tumors of the nervous systems originate from the brain or metastasize from other areas. Tumorigenesis involves 
uncontrolled cell growth, often due to genetic mutations affecting growth-regulating pathways. Tumors are highly 
invasive, disrupting normal brain function. They can compress brain structures, increase intracranial pressure, and 
invade surrounding tissue. The most common primary brain tumors include gliomas (eg, glioblastoma multiforme 
(GBM), astrocytomas, oligodendrogliomas), meningiomas, medulloblastomas, and ependymomas.29 Metastatic tumors 
are more common, arising from cancers like lung, breast, or melanoma that spread to the brain.30

Treatment strategies for CNS tumors depend on the tumor type, location, size, and patient’s condition. Surgical 
resection, radiotherapy, and chemotherapy (eg, temozolomide for GBM) are standard treatment modalities.31 Novel 
therapies, including targeted therapy and immunotherapy, are under investigation.32 Clinical trials are ongoing to explore 
innovative therapies for CNS tumors, such as DC vaccination and bevacizumab combined with conventional therapy in 
GBM, may provide help to overcome the limitations of current therapies.33,34

Traumatic Injuries
Traumatic injuries to the CNS are caused by an external force, which may lead to significant neurological deficits, 
including motor, sensory, cognitive, and autonomic dysfunctions. The severity of traumatic injuries can range from mild 
to severe, with long-lasting consequences. Common pathological features of traumatic brain injury include brain edema, 
increased intracranial pressure, diffuse axonal injury, and BBB disruption. These injuries can lead to a range of cognitive, 
motor, and emotional impairments.35 Spinal cord injury is caused by trauma to the spinal cord, resulting in partial or 
complete loss of motor and sensory functions below the injury site. The damage can be the result of direct trauma, or it 
can occur due to secondary processes such as ischemia, inflammation, and free radical formation.36

The acute management of traumatic injuries focuses on reducing intracranial pressure, mitigating inflammation, 
preventing further neural damage, and stabilizing the patient. Surgical interventions are frequently required to decom-
press affected nerve tissues. Long-term rehabilitation is essential to restore neurological function. Additionally, neuro-
protective and regenerative therapies are designed to minimize secondary injury and promote neural regeneration and 
repair.37

Metabolic Diseases
Metabolic diseases of the nervous system refer to a group of inherited or acquired disorders that affect the brain and 
nervous system due to abnormalities in the metabolism of essential molecules such as proteins, lipids, and carbohydrates. 
These diseases often result from enzyme deficiencies or genetic mutations that impair the breakdown, storage, or 
production of crucial substances. Common examples include LSDs, mitochondrial disorders, and leukodystrophies. In 
LSDs, defective enzymes lead to the accumulation of toxic substances in the lysosomes, causing cell damage and 
degeneration of neural tissue.38 Mitochondrial disorders such as Leigh syndrome involve impaired energy production due 
to dysfunctional mitochondria, which disrupts the energy supply needed by neurons and results in neurodegeneration.39 

Leukodystrophies involve abnormalities in the myelin sheath that insulates nerve fibers, leading to progressive loss of 
motor function and cognition.40

The treatment of metabolic diseases affecting the nervous system is challenging, as these disorders often involve 
widespread neurological deterioration. Current therapies include ERT to compensate for the missing or defective enzyme, 
and substrate reduction therapy to reduce the accumulation of toxic substances by limiting their production.41 Recent 
advancements of clinical trials in ERT have shown promise in addressing the neurological manifestations of various 
LSDs. For example, trials investigating intrathecal administration of enzymes such as idursulfase for MPS II 
(NCT00920647, NCT02055118) and recombinant human heparan N-sulfatase for MPS IIIA (NCT01155778) aim to 
bypass the BBB and directly deliver therapeutic enzymes to the CNS, thereby potentially mitigating cognitive and 
neurological decline. Similarly, in Neuronal Ceroid Lipofuscinoses (CLN2 disease), studies on BMN 190 (cerliponase 
alfa) (NCT01907087, NCT02678689) have focused on restoring enzyme function within the CNS to slow the progres-
sion of neurodegeneration. Additionally, ongoing research in other conditions like Gaucher Disease Type 3 
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(NCT00001211) and metachromatic leukodystrophy (NCT01510028) further underscores the potential of ERT in 
alleviating neurological symptoms. These trials collectively highlight the growing focus on refining ERT approaches 
to effectively target the CNS, offering hope for improved management of these debilitating disorders.42

Psychiatric Diseases
Psychiatric diseases encompass a wide range of mental health disorders that affect cognitive function, mood, behavior, 
and emotional regulation. These diseases, such as depression, schizophrenia, bipolar disorder, and anxiety disorders, are 
influenced by both genetic and environmental factors, and involve complex changes in brain structure, function, and 
neurotransmitter systems. Psychiatric disorders often involve dysregulation in neurotransmitter systems, such as dopa-
mine, serotonin, and glutamate pathways, which are critical for mood regulation, cognition, and emotional responses.43

The treatment of psychiatric diseases is complex and multifactorial, and treatment strategies are often multimodal, 
including pharmacotherapy, psychotherapy, and sometimes brain stimulation techniques.44 Psychotropic medications, 
including antidepressants, antipsychotics, and mood stabilizers, are the mainstay of treatment. Psychotherapy and 
cognitive-behavioral therapy are also essential components of management.45 Several clinical trials have been conducted 
for the treatment of psychiatric diseases. For schizophrenia, in addition to traditional targets such as 5HT and dopamine 
receptor D2R, new targets like D-amino acid oxidase and GlyT1, which are related to NMDA receptor activation, have 
emerged. These novel targets aim to enhance NMDA receptor activity by targeting mechanisms associated with its 
activation.46 In the treatment of bipolar disorder type I, endoxifen targets estrogen receptors and protein kinase C. For 
depression, zuranolone has been approved by the US FDA for postpartum depression, lumateperone has been approved 
for schizophrenia and bipolar disorder, and pimavanserin has been approved for the treatment of psychosis in PD.47,48

To summarize, the treatment of neurological disorders presents significant challenges due to the complexity of these 
diseases. Many neurological conditions, such as neurodegenerative and metabolic disorders, are associated with intricate 
pathologies involving multiple molecular pathways. This makes it difficult for single therapies to fully alleviate 
symptoms or slow disease progression. Current treatment strategies for these disorders vary widely, often focusing on 
symptom management rather than addressing root causes, particularly for progressive conditions like neurodegenerative 
diseases. Although clinical trials can offer new and promising therapeutic approaches for diseases with limited treatment 
options, current therapies still face significant limitations, particularly when it comes to crossing the BBB and effectively 
targeting the CNS. Future research must focus on enhancing the efficiency of drug delivery systems that bypass the BBB.

Mechanisms by Which Nanoparticles Penetrate the Blood-Brain Barrier
The BBB consists of endothelial cells with tight junctions, pericytes, astrocytes and basement membranes. This complex 
structure ensures the formation of a highly selective barrier that controls the entry of substances from the blood into the 
brain parenchyma.49 The tight junctions between endothelial cells limit paracellular transport, allowing only passive 
diffusion of lipophilic small molecules to pass through.50 The selectivity of this barrier poses a great challenge for drug 
delivery. Most blood-borne substances including more than 98% of small molecule drugs and all macromolecular 
therapeutics are prevented from entering the brain.51

Nanotechnology provides a library of advanced materials can serve as a powerful toolkit for targeted drug delivery. 
Intensive research in BBB anatomy and physiology has further facilitated the development of brain-targeting strategies to 
enhance BBB penetration.51 The transport pathways of drug molecules through the BBB include paracellular and 
transcellular diffusion, receptor-mediated transcytosis, cell-mediated transcytosis, carrier-mediated transport, and adsorp-
tion-mediated transcytosis (Figure 1).52 A detailed understanding of these mechanisms is critical to understanding how 
NPs can be effectively used in the treatment of neurological disorders.

Passive Diffusion
Passive diffusion is the simplest form of substance transport across the BBB without expending energy.53 This 
mechanism is driven by the concentration gradient and is highly dependent on the molecular size and lipophilicity of 
the substance, with small, nonpolar, and lipophilic molecules being able to diffuse through the endothelial cell membrane 
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of the BBB.54 The BBB permits the diffusion of certain gases (eg, oxygen and carbon dioxide); small molecules (eg, 
ethanol and nicotine); and some lipophilic substance (eg, anesthetic agents) to diffuse into brain tissue.55

Although passive diffusion is a natural transport mechanism, it has very limited applicability in drug delivery. The 
mechanism of passive diffusion is utilized to engineer enhanced drug permeation through the BBB, which can increase 
the lipophilicity and decrease the molecular weight of drug molecules.56 A study developed amphiphilic yellow-emissive 
carbon dots (Y-CDs) measuring 3 nm in diameter. The contents of primary and carboxyl groups on CDs were 6.12×10−5 

and 8.13×10−3 mmol/mg, respectively, showing the potential for loading small molecule drugs via bioconjugation. Y-CDs 
were localized in the central canal of the spinal cord of zebrafish, displaying the ability to cross the BBB, which might be 
because of passive diffusion resulting from the amphiphilic nature of Y-CDs. In addition, Y-CDs can inhibit the 
overexpression of human amyloid precursor protein and Aβ after entering the cells, indicating potential for preventing 
Aβ-related AD.57

Carrier-Mediated Transport
Carrier-mediated transport (CMT) is an important mechanism for the delivery of essential nutrients and therapeutic drugs 
to the brain. This process requires specific carrier proteins that bind to their respective substrates, transport the substrate, 
and cross the BBB. The main substances include glucose, amino acids, nucleosides, and others.58 Glucose transporters 
(especially glucose transporter protein 1, GLUT1) facilitate glucose transport across the BBB.59 Essential amino acids 
are transported to the brain via specific amino acid transporters.60 Nucleosides such as adenosine and thymidine are 
transported by nucleoside transporters.61 These substances play important roles in brain function and metabolism, and the 
specificity of CMT allows for the controlled and efficient transport of these molecules into the brain, thereby maintaining 
the delicate balance of the CNS environment.

Recent research has explored the potential of NPs to enhance drug delivery via interactions with CMT-associated 
transporters. However, it is important to clarify that NPs, due to their larger size, cannot directly traverse the BBB 
through the narrow pores of these transporters as small molecules do. Instead, when NPs are engineered to target specific 

Figure 1 Transport mechanism of the solute or substance BBB shuttle. Reproduced from Wang J, Yu Y, Zhang C, Song J, Zheng Z, Yan W. New advances in diagnosis and treatment 
of nano drug delivery systems across the blood-brain barrier. Nanocomposites. 2023/12/31 2023;9(1):116–127. Creative Commons CC BY license (http://creativecommons.org/ 
licenses/by/4.0/).52 © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
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transporters, they can bind to these transporters and form clusters, triggering a process known as receptor-mediated 
endocytosis rather than true CMT. In this process, transporters act more like receptors, facilitating the internalization of 
the NPs into the endothelial cells via endocytosis, after which the NPs are released into the brain via exocytosis.7 The 
most commonly studied CMT transporter is GLUT1, which is expressed at significantly higher levels in cerebrovascular 
endothelial cells than many other transporters and receptors. A study reported glucose-based NPs to traverse the BBB in 
the context of glycemic control.62 This nanocarrier was constructed by self-assembly of negatively charged PEG-poly(α, 
β-aspartic acid) and positively charged PEG-poly([5-aminopentyl]-α,β-aspartamide) block copolymers. The surface of 
the polymeric NPs was decorated with multiple glucose molecules with a controlled density ranging from 0, 10, and 25 to 
50%. By injecting the Gluc(6)/m formulations intravenously, the 25% Gluc(6)/m formulation showed the highest brain 
uptake in glycemic-controlled mice compared to the free-feeding group. These results suggest that glycosylated 
nanocarriers can cross the BBB via the GLUT1 transporter.

Receptor-Mediated Transcytosis
Receptor-mediated transcytosis (RMT) is a highly selective mechanism wherein a molecule (such as a protein, peptide, or 
antibody) binds to certain receptors on the surface of cerebrovascular endothelial cells, allowing it to pass through the 
BBB. Key substances that pass through the BBB via RMT include transferrin (Tf), insulin, and low-density lipoprotein 
receptors (LDLRs).63 Iron in the bloodstream binds to Tf, a transport protein, and the Tf-iron complex binds to the Tf 
receptors (TfRs) on cerebrovascular endothelial cells. The binding triggers endocytosis, a process by which the cell 
membrane wraps around the Tf-iron complex to form a vesicle that enters the cell.64 Insulin or insulin-like growth factors 
(IGFs) in the blood bind to insulin receptors on BBB endothelial cells, triggering internalization after receptor-mediated 
endocytosis.65 Low-density lipoprotein (LDL), which carries cholesterol in the blood, binds to LDLRs on BBB 
endothelial cells, then the LDL-LDLR complex is internalized and the LDL is translocated into the cell.66

RMT mechanism is frequently employed to allow for the targeted distribution of NPs to pass through the BBB. 
A study reported that a short peptide derived from Aβ1-42 modified the surface of liposomes to develop bio-inspired 
liposomes (SP-sLip) that interact with the lipid-binding domain of exchangeable apolipoproteins to form a protein 
corona. In vivo, SP-sLip could absorb plasma apolipoproteins A1, E, J (ApoA1, E, and J), thereby exposing the receptor- 
binding domains of apolipoproteins on the liposome surface for multiple receptor recognition (LRP1/ApoE, LRP2/ApoJ, 
and SR-B1/ApoA1) and then crossed the BBB enabling brain-targeted delivery.67

Adsorptive-Mediated Transcytosis
Adsorptive-mediated transcytosis (AMT) relies on electrostatic interactions between cationic molecules and anionic sites on 
the surface of the endothelial cells of the BBB.68,69 Once the cationic molecules contact with the endothelial cell surface, they 
adhere to it by adsorption.70 This process involves the invagination of the surrounding cell membrane, culminating in the 
formation of vesicles (endosomes) within the cytoplasm. The drug-containing vesicles then move across the cerebrovascular 
endothelium from the luminal side (facing the blood) to the tubular side (facing the brain tissue), which in turn fuses with the 
cell membrane and releases its contents into the brain tissue, achieving the passage of the substance across the BBB.71

NPs can be manipulated to increase the positive charge to enhance interactions with the negatively charged surface of 
the cerebrovascular endothelial cell membranes, which in turn promotes their uptake and transcytosis via AMT. The main 
strategies include surface-modified peptides and the application of positively charged nanomaterials.72,73 For example, 
cell-penetrating peptides (CPPs) such as penetratin and the Syn-B vectors are used to promote NP passage through the 
BBB.74 Additionally, using positively charged materials as components of NPs, such as liposomes or cationic polymers 
(eg, polyethyleneimine [PEI] or chitosan) can significantly increase the positive charge.75,76 A study reported dual 
functionalized liposomes (Tf-CPP liposomes) for RMT and AMT to cross the BBB by modifying their surfaces with Tf 
and CPPs, respectively. The penta peptide QLPVM enhanced transport across the BBB into GBM tissue in the brain 
in vivo and enhanced cellular penetration.73
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Cell-Mediated Transcytosis
Cell-mediated transcytosis involves the cells to carry therapeutic drugs across the BBB by utilizing the cells’ natural 
transporter mechanisms.77 For example, some immune cells such as macrophages and monocytes, take advantage of their 
natural migration into the brain to act as carriers of drugs, especially in inflammation or infection situations where the 
BBB is compromised.52 Mesenchymal stem cells (MSCs) have shown promise to cross the BBB. Their inherent ability to 
localize the site of injury and potential for genetic modification make them a versatile tool for drug delivery.78 Neural 
stem cells (NSCs) have a natural affinity for brain tissue and can migrate across the BBB.79 In addition, modified 
erythrocytes have been explored as potential carriers for drug delivery to the brain for their biocompatibility and long 
circulation time in the bloodstream.80

Cell-based carriers offer unique opportunities to improve the targeted delivery of NPs, extend their circulation time 
and facilitate the transport of NPs across challenging physiological barriers.81 It has been reported that activated effector/ 
memory CD4+ helper T cells (CD4+ TEM cells) can serve as carriers for the delivery of polymer NPs across the BBB. 
This study demonstrated that 200-nm polystyrene NPs functionalized with maleimide groups were covalently conjugated 
to CD4+ TEM cells via thiol groups on the cell surface. Using an in vitro BBB model, NP-modified CD4+ TEM cells 
effectively transported NPs across the BBB under both static and physiological flow conditions. Systemic administration 
in mice confirmed their ability to enter the brain parenchyma, highlighting the potential of this T-cell subset for targeted 
brain delivery.77

In all, the mechanisms by which NPs penetrate the BBB have been explored for NP-based therapies. While these 
mechanisms offer promising strategies to overcome the challenges posed by the BBB, each method has its limitations. 
Passive diffusion is highly restricted due to the selective nature of the BBB, allowing only small and lipophilic molecules 
to pass through. CMT and RMT, though more specific, may suffer from limited cargo capacity and inefficiency when 
delivering larger therapeutic molecules. Additionally, AMT can be non-selective, raising concerns about off-target effects 
and potential toxicity. Therefore, future research needs to focus on improving the selectivity and efficiency of these 
delivery mechanisms to improve the treatment outcomes for CNS disorders.

Nanoparticle Approaches for Central Nervous System Drug Delivery
NPs, given their small size and tunable physicochemical properties, offer a new approach to bypass the BBB and enable 
targeted and controlled drug delivery to the brain. Various types of NPs are being explored for their potential application 
in diagnostic, therapeutic, and targeted therapies of CNS disorders (Figure 2).

Types of Nanoparticles for Central Nervous System Drug Delivery
Organic Nanoparticles
Organic NPs that can penetrate the BBB and deliver drugs to the CNS are currently being investigated, mainly based on 
lipids, polymers, and biomolecules. These organic NPs can cross the BBB and increase the drug concentration in the brain 
parenchyma by surface modification to enhance surface charge, lipophilicity, biocompatibility, and brain-targeting ability.

Liposome NPs, spherical vesicles made of phospholipid layers, offer advantages for targeted drug delivery in 
neurological disorders.82 Their natural phospholipid composition reduces toxicity, making them suitable for repeated 
use.82 Liposomes can encapsulate various drugs, including small molecules, proteins, and nucleic acids, enabling 
synergistic therapies.83 Additionally, positively charged liposomes enhance stability and therapeutic efficacy by inter-
acting with negatively charged biomolecules.84

Solid lipid NPs (SLN) are solid at room and body temperatures, including fatty acids, triglycerides, waxes, or other lipidic 
substances.85 SLNs can be designed to release the drug payload in a controlled manner.86 Moreover, the solid core is less 
susceptible to degradation and fusion than other lipid carriers, giving them better stability of the encapsulated drug.87

Polymeric NPs are made from biodegradable polymers such as chitosan, alginate, gelatin, as well as poly(lactic acid) 
(PLA), polyglycolic acid (PGA), and poly(lactic-co-glycolic acid) (PLGA).88–90 Polymeric NPs can encapsulate a wide 
range of therapeutic agents, including small molecules, proteins, and nucleic acids. Their biocompatible breakdown 
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products reduce long-term toxicity risks.91 These NPs can encapsulate both hydrophilic and hydrophobic drugs, 
enhancing combination therapy,91 and offer controlled drug release.92

Dendrimers are highly regular and symmetrically branched tree-like macromolecules with controlled size and 
shape.93 The interior of dendrimers can encapsulate drugs, and the branched structure provides a high surface area to 
volume ratio, allowing for greater functionalization and interaction with the surrounding environment.94 In addition, 
dendrimers have high catalytic efficiency and their high surface area to volume ratio provides a large number of active 
sites for catalysis.95

Micelles are molecular structures that form spontaneously when amphiphilic molecules reach a certain concentration 
in a liquid.96 Typical micelles are spherical in structure, with the hydrophobic tails pointing inward, and the hydrophilic 
heads pointing outward. As a result, the interior of the micelle can encapsulate hydrophobic drugs, and its hydrophilic 
portion can connect water-soluble drugs.97

Protein- and peptide-based NPs are constructed using naturally occurring biomolecules such as proteins (eg, albumin, 
gelatin, or ferritin) or peptides (short-chain amino acids) as the primary building blocks, which are typically well 
tolerated and can be broken down into non-toxic by-products.98 These NPs can encapsulate a wide range of therapeutic 
agents, and the immunogenicity of the NPs can be minimized by using endogenous proteins or peptides.99

Inorganic Nanoparticles 
Inorganic NPs have properties such as high surface area to volume ratio, optical properties, and surface modification 
functions and can be conjugated with a wide range of therapeutic drugs, targeting ligands, and imaging probes to deliver 

Figure 2 Types of NPs for drug delivery and their application in various CNS disorders. Created with BioRender.com.
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drugs to specific regions or cell types.100 These NPs include metal NPs, quantum dots, and silica NPs, among others, 
each with their own advantages in drug delivery to the brain.

Metal NPs are composed of metallic elements, typically ranging in size from 1 to 100 nm. Their small size results in 
a high surface area to volume ratio, which enhances their reactivity with other substances and provides more active sites 
for reactions.101 Commonly used metallic NPs include gold (Au), silver, and iron oxide NPs. AuNPs are known for their 
biocompatibility and ease of functionalization for targeted drug delivery and photothermal therapy.102 Silver NPs have 
antimicrobial properties and therefore have the potential to treat brain infections or brain tumors.103,104 Iron NPs are 
commonly used in magnetic applications, and magnetic iron oxide NPs can be used under magnetic guidance, such as 
magnetic resonance imaging (MRI) contrast agents and brain tumor thermotherapy.105,106

Quantum dots are NPs typically made from semiconductor materials such as silicon, cadmium selenide, cadmium 
sulphide, or indium arsenide, and typically have diameters of 2–10 nm.107 Quantum dots have unique optical properties 
that vary by size, making them valuable for brain imaging and tracking therapeutic drugs. Their ability to label proteins 
or structures enables detailed real-time bioimaging.108

Silica NPs (SiNPs) are made primarily from silicon dioxide (SiO2), and can be synthesized in a variety of shapes. 
Some SiNPs are designed with porous-like structures to enable controlled drug release and enhanced drug loading.109 

Given the chemical inertness of silica, SiNPs maintain the stability of the delivered drug and biocompatible to minimize 
immunogenicity and toxicity.110

Strategies to Manipulate Nanoparticles for Blood-Brain Barrier Crossing
Surface Modification
Surface modification of NPs is a key strategy to enhance their ability to cross the BBB for effective treatment of 
neurological disorders. This approach involves altering the surface physicochemical properties of NPs or extending the 
half-life of NPs to improve their interaction with cerebrovascular endothelial cells, thereby facilitating their entry into the 
brain.

Specific ligands attached to the surface of NPs is a widely studied approach, and these ligands can bind to the 
corresponding receptors on the BBB and mediate transcytosis.111 For example, attachment of Tf or insulin to NPs can be 
utilized to enhance the ability to cross the BBB via their respective receptors on the BBB.51 NPs can also be designed to mimic 
or incorporate substances that naturally cross the BBB, such as glucose, to improve their transport across the BBB.112

PEG is often used to modify the surface of NPs to reduce the opsonization and clearance by the mononuclear 
phagocyte system. This modification prolongs the circulation time of NPs in the bloodstream, thus increasing the chances 
of NPs crossing the BBB.113 In addition, the length of the PEG chains also affects the ability of NPs to cross the BBB, 
and this needs to be optimized to strike a balance between prolonged circulation time and effective BBB penetration.114

The surface charge of NPs significantly affects their interaction with the BBB. Positively charged NPs have been shown to 
enhance interaction with negatively charged cell membranes, but they also pose a higher risk of toxicity. Optimizing the 
surface charge of NPs to enhance BBB permeability, while minimizing adverse effects is the focus of current research.52

Size and Shape Optimization
The size and shape of NPs significantly affect their biodistribution, cellular uptake, and interaction with biological 
barriers.115,116 The size of NPs greatly affects their ability to cross the BBB. Studies have shown that NPs with diameters 
of approximately 10–100 nm are more likely to cross the BBB.117 This size range helps to evade rapid clearance 
mechanisms while allowing effective interaction with the BBB.

The shape of NPs also plays an important role in their BBB crossing. Earlier, it was thought that spherical NPs showed 
better penetration than rod- or irregular-shaped NPs.118 However, recent studies have shown that non-spherical shapes, such 
as rod or disk NPs, may enhance BBB traversal owing to their unique interactions with biological membranes.117 

Alternatively, studies have also explored the role of NP aspect ratio (ratio of width to height) on BBB permeation, and 
higher aspect ratios may contribute to more efficient crossing of the BBB.72 The surface area of NPs is another aspect that is 
affected by size and shape. NPs with a larger surface area (relative to their volume) can carry more therapeutic drugs and 
have more interaction sites with the BBB, thus potentially enhancing their ability to cross the BBB.119
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Magnetic Guidance
Magnetic NPs, usually consisting of an iron oxide core, are biocompatible and can be directed to specific brain regions 
using an external magnetic field. This approach can be targeted to minimize systemic side effects and improve 
therapeutic efficacy.120 It has been shown that the successful use of magnetic fields to guide NPs containing drugs or 
genetic materials across the BBB has shown significant therapeutic effects on neurological disorders in animal models.121

Moreover, magnetic guidance offers the advantage of real-time control over NP movement, allowing for dynamic 
adjustments during treatment to optimize therapeutic outcomes. The ability to fine-tune the localization of NPs with an 
external magnetic field could lead to highly precise treatment strategies, especially in conditions where targeting specific 
brain regions is critical, such as in localized brain tumors or focal areas of neurodegeneration.122 Recent studies have 
demonstrated the effectiveness of magnetic fields in guiding NPs across the BBB to deliver drugs, genes, or other 
therapeutic materials, resulting in significant therapeutic effects in various neurological disorder models.123,124

Endosomal Escape of Nanoparticles
After being internalized by cells, NPs are typically encapsulated within endosomes or lysosomes. One of the critical 
challenges in NP-mediated delivery of therapeutic agents is ensuring their release from endosomes or lysosomes into the 
cytosol, a process known as endosomal escape.125 Several strategies have been developed to facilitate endosomal escape. 
For instance, some cationic polymer NPs, such as PEI, absorb protons in the acidic environment of endosome, leading to 
an influx of chloride ions and water. This causes the endosome to swell and eventually rupture, releasing the cargo into 
the cytosol through the proton sponge effect.126 Additionally, NPs can be designed using materials that are stable at 
physiological pH but become destabilized in the acidic environment of the endosome. These materials undergo 
conformational changes that disrupt the endosomal membrane and release the therapeutic cargo.127 Some NPs also 
incorporate CPPs or fusogenic peptides on their surface, which interact with the endosomal membrane and promote its 
destabilization, facilitating the release of the encapsulated cargo into the cytosol.128 Moreover, certain NPs are 
engineered with redox-sensitive materials containing disulfide bonds that are cleaved in the cytosol environment.129 

Briefly, these escape mechanisms are crucial for the successful application of NP-based therapies in CNS diseases. By 
leveraging these mechanisms, the intracellular delivery and activity of therapeutic agents can be enhanced, paving the 
way for more effective treatments of neurological disorders.

In conclusion, both organic and inorganic NPs have shown potential for effectively crossing the BBB. Each class 
offers unique advantages: organic NPs are often biocompatible and biodegradable, making them ideal for safe and 
sustained drug release, while inorganic NPs, due to their stability and magnetic properties, provide opportunities for real- 
time imaging and targeted delivery. Future research must focus on overcoming these challenges by developing multi-
functional nanoparticles that can combine the biocompatibility of organic materials with the precision of inorganic 
nanostructures. Optimizing strategies to manipulate NPs for BBB crossing such as surface modification, size and shape 
optimization, and the use of magnetic or endosomal escape materials can further enhance BBB penetration for CNS 
disorders.

Nanoparticle-Based Gene Therapy for Neurological Disorders
Gene therapy is a revolutionary medical technique that involves the introduction, modification, or manipulation of genes 
within cells to treat or prevent diseases.130 This can be accomplished in a variety of ways, including replacing disease- 
causing genes with healthy copies, inactivating malfunctioning genes, or introducing new or modified genes to help treat 
a disease.131 In general, gene therapy can be categorized into gene augmentation and gene silencing approaches based on 
the nature of the effect on genetic activity.132 Gene augmentation therapy involves gene replacement or gene addition to 
enhance the expression of a specific missing/dysfunctional gene by administering the appropriate pDNA, mRNA, or 
CRISPR/Cas9. Gene silencing, on the other hand, utilizes substances such as siRNA, miRNA molecules, or antisense 
oligonucleotides (ASOs) to silence genes through RNA interference, thereby suppressing the expression of undesirable 
genes.133 Therefore, gene enhancement and gene silencing therapies have a promising future in a variety of neurological 
gene-related disorders.
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However, the brain poses unique challenges for gene therapy, and the development of effective delivery carriers is 
a significant focus of current research.134 Nowadays, NP-based delivery system are being developed as a new tool to 
improve brain drug delivery for gene therapy.135 NPs are capable of carrying various types of genetic materials, including 
DNA plasmids, RNA, CRISPR/Cas9, and other gene-editing tools. This versatility in drug delivery has led to a wide 
range of applications. Here we shall summarize successful examples of NP-mediated delivery of nucleic acids for gene 
therapy applications, mainly focusing on DNA, siRNA, mRNA, miRNA, ASOs, and CRISPR/Cas9 gene-editing tools 
(Table 1), highlighting the technical diversity in different neurological disorders.

DNA Delivery
As an essential component of cells, DNA plays a role in the growth, development, function, and reproduction in nearly 
all known organisms. When DNA is mutated, it can contribute to the development of certain diseases.206 As a result, 
gene therapy targeting DNA is widely studied. Plasmid DNA is a small, circular, double-stranded DNA molecule that is 
most commonly found in bacteria, but is also found in archaea and eukaryotes. It is capable of replicating independently 
of chromosomal DNA. Plasmid DNA is widely used as a genetic engineering tool in biotechnology and molecular 
biology, and is also used in various types of gene therapy.207 There are a number of studies that utilize NPs to deliver 
plasmid DNA into the body for neurological disorders.

Plasmid DNA delivered by NPs was widely studied in neurodegenerative diseases such as AD. Vgf is a neurotrophin- 
stimulating protein that plays a role in learning, synaptic activity, and neurogenesis, which is down-regulated in the 
brains of AD patients. A study developed liposomal NPs encapsulating pVGF, decorated with GLUT-1 targeting ligands 
and brain-targeting CPPs. The liposomal NPs showed higher vgf transfection efficiency in brain cells and BBB 
models.136 NPs targeted at silencing or knocking down the BACE1 gene, such as RVG29 modified dendrimers137 and 
dopamine modified poly-lysine NPs,138 have also been investigated to reduce Aβ production and plaque formation in the 
brain (Figure 3A and B). For PD treatment, Aly et al developed NPs for the intranasal delivery of the plasmid DNA 
targeting human glial cell line-derived neurotrophic factor (hGDNF) gene. The expressed hGDNF had neuroprotective 
properties and supported the survival of dopaminergic neurons, therefore slowing or halting PD progression.139 Huang 
et al designed nano-MgO composites functionalized with nerve growth factor (NGF) and loaded with plasmid DNA 
designed to silence the SNCA gene to reduceα-syn accumulation and improve synaptic plasticity in the hippocampus.140

NPs were also investigated in cerebral infarction and traumatic brain injuries (TBI) treatment. Shen et al developed OX26 
antibody-conjugated polyglutamic acid (PGA)-based NPs to deliver Meg3 short hairpin RNA (shRNA) plasmid, which 
promoted angiogenesis by upregulating the expression of vascular endothelial growth factor A (Vegfa) and its receptor Vegfr2, 
thereby enhancing blood vessel formation and improving recovery after stroke.141 A nano-plumber was designed to regulate 
and restore the glymphatic-lymphatic system after TBI. The NPs co-encapsulated pro-DHA and a VEGF-C plasmid, targeting 
dysregulated microglia and promoting lymphangiogenesis, thereby sustaining brain homeostasis.142

For brain tumor treatment, the herpes simplex virus thymidine kinase (HSVtk) was used as a therapeutic gene, known 
as the suicide gene therapy. HSVtk could convert ganciclovir into a toxic form, inducing tumor cell apoptosis. There 
were some studies focused on pHSVtk delivery into brain tumor cells, such as GBM cell membrane-coated PEI25k/ 
pHSVtk complexes143 and angiopep-2-modified poly(L-lysine)-grafted PEI copolymer (Figure 3C).144 Angiopep-2 was 
used to bind to the lipoprotein receptor-associated protein 1 (LRP-1) receptor on cerebrovascular endothelial cells, which 
in turn crossed the BBB and delivered plasmid targeting to GBM tissues.

In summary, plasmid DNA, as a tool for gene therapy, is widely investigated in the treatment of neurological diseases. 
NPs, through various surface modifications or administration routes, can achieve brain delivery, showing promising 
potential for application.

RNA Delivery
siRNA
siRNA, or small interfering RNA, is a double-stranded RNA molecule, usually about 20–25 nucleotides long, that plays 
a key role in the RNA interference pathway. siRNA base pairs with the complementary sequence of the RNA-induced 
silencing complex (RISC) to direct the RISC to a specific target mRNA. Once bound, the RISC cleaves the mRNA, 
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Table 1 Applications of NP-Based Gene Therapy for Neurological Disorders

Diseases NP type Targeted gene Payload Strategies to Manipulate NPs for BBB Crossing Treatment mechanism Ref

DNA AD Lipid VGF pVGF, CPPs Mannose targeted GLUT-1 receptors on the BBB, 
CPPs (RVG9R, RDP, Pen, or CGN) enhanced cellular 
penetration

Restored VGF protein levels and attenuated 
pathophysiology

[136]

Dendrimer BACE1 RVG29, plasmid encoding 
BACE1-AS shRNA, 
D-peptide

RVG29 modification targeted nicotinic acetylcholine 
receptors expressed on the BBB and brain cells

Downregulation of the BACE1 gene led to a reduction in 
Aβ production and plaque formation, D-peptide inhibited 
tau fibrils formation and reduced neurofibrillary tangles

[137]

Polymer BACE1 CRISPR-Cas9 plasmids 
targeting BACE1 gene, 
fluvastatin

RVG peptides bound to nicotinic acetylcholine 
receptors expressed on the BBB and neuronal cells

Knockout of BACE1 gene reduced Aβ production and 
fluvastatin eliminated existing Aβ plaques

[138]

PD Polymer GDNF phGDNF Intranasal administration allowed bypassing the BBB 
by olfactory and trigeminal nerve pathways

hGDNF expression provided neuroprotection to 
dopaminergic neurons, potentially slowing or halting PD 
progression

[139]

Magnesium 
oxide

SNCA Plasmid to perform RNA 
interference targeting 
SNCA gene, NGF

NGF functionalization facilitated receptor-mediated 
endocytosis

Reduced α-syn accumulation in the brain, alleviated 
dendritic damage and improved synaptic plasticity in the 
hippocampus

[140]

Cerebral 
infarction

Polymer Meg3 Meg3 shRNA plasmid, 
OX26 antibody

OX26 targeted TfR, which was overexpressed on 
brain vascular endothelial cells

Silence of Meg3 promoted angiogenesis by upregulating 
Vegfa and Vegfr2 expression, and enhanced blood vessel 
formation

[141]

Traumatic injury Calcium 
phosphate/ 
lipid

VEGF-C VEGF-C plasmid, pro-DHA, 
galactose

Galactose modification aided in targeting the 
dysregulated microglia

Modulated inflammation, protected vascular integrity, and 
sustained brain homeostasis

[142]

Tumor Cell 
membrane/ 
polymer

HSVtk pHSVtk NPs naturally recognized and bound to GBM cells due 
to the similarity of surface proteins, leveraging 
homotypic targeting

HSVtk gene inside the GBM cells converted the 
administered prodrug GCV into a toxic form and caused 
cell death

[143]

Polymer HSVtk pHSVtk, angiopep-2 Angiopep-2 facilitated NPs to interact with LRP on 
the BBB

Converted the prodrug GCV into a cytotoxic compound 
and induced tumor cell death

[144]

(Continued)
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Table 1 (Continued). 

Diseases NP type Targeted gene Payload Strategies to Manipulate NPs for BBB Crossing Treatment mechanism Ref

siRNA AD Exosome/ 
Lipid

BACE1, TREM2 BACE1 siRNA, TREM2 
plasmid, angiopep-2

Angiopep-2 facilitated NPs to interact with LRP on 
the BBB

Decreased Aβ production; shifted microglia from M1 to M2 
phenotype, enhanced the microglia’s ability to phagocytose 
Aβ plaques

[145]

Protein BACE1 BACE1 siRNA, curcumin NPs mimicked the natural transportation pathways of 
HDL and penetrated the BBB

Reduced Aβ production; curcumin inhibited NF-κB 
pathway, reduced pro-inflammatory cytokines production 
by microglia

[146]

Dendrimer BACE1 BACE1 siRNA, rapamycin Intranasal administration allowed bypassing the BBB 
by olfactory and trigeminal nerve pathways

Reduced Aβ production, activated autophagy and facilitated 
the clearance of Aβ and tau proteins from the brain

[147]

Lipid Cyclophilin D Mg2+, cyclophilin D siRNA MMP9-activatable cell-penetrating peptide was 
activated by the enzyme MMP9 overexpressed in 
damaged brain tissues of AD

Mg2+ helped to counteract calcium overload in 
mitochondria, silence of cyclophilin D prevented mPTP 
opening and protected mitochondria from damage

[148]

Ischemic stroke SPIO/ 
polymer

Pnky lncRNA siRNA and ASO targeting 
the Pnky lncRNA

NPs were taken up by NSCs and then transplanted 
into the brain

Shifted NSCs differentiation towards neurons, allowed 
replacement of damaged neurons

[149]

Polymer/ 
dendrimer

CircOGDH CircOGDH siRNA Small size and surface properties facilitated 
endocytosis into neurons

Decreased neuronal apoptosis, improved neuronal survival 
and neurological function in the ischemic penumbra area

[150]

Cerebral 
hemorrhage

Solid lipid TGF-β1 TGF-β1 siRNA, curcumin Intranasal administration facilitated olfactory and 
trigeminal nerve pathways to bypass the BBB

Reduced inflammatory response, provided anti- 
inflammatory and neuroprotective effects

[151]

Traumatic injuries Polymer Tau Tau siRNA Polysorbate 80 facilitated NPs binding to lipoprotein 
receptors

Reduced tau protein levels and mitigated the 
neurodegenerative processes

[152]
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Tumor Lipid CD47, PD-L1 CD47 siRNA, PD-L1 siRNA Amine headgroup structure facilitated NPs to cross 
the BBB; positively-charged lipids interacted with 
negatively-charged endothelial cells

Activation of T cell-dependent anti-tumor immunity [153]

Lipid/ 
polymer

PD-L1 Temozolomide, PD-L1 
siRNA

2-deoxy-D-glucose modification targeted GLUT1 in 
GBM cells

Restored T-cell mediated immune responses against tumor, 
reduced MGMT expression, and enhanced the sensitivity of 
GBM cells to TMZ

[154]

Micelle STAT3 STAT3 siRNA, TMZ High density of siRNA molecules on NP surface 
bound to scavenger receptors on endothelial cells

Reduced drug resistance and increased sensitivity to TMZ [155]

Lipid PLK1 PLK1 siRNA, E protein E protein facilitated interacting with receptors on 
endothelial cells

Inhibited tumor cell proliferation and induced apoptosis [156]

Micelle PLK1, VEGF VEGF siRNA, PLK1 siRNA, 
DP7-C peptide

Intranasal administration allowed bypassing the BBB, 
hyaluronic acid envelope bound to CD44 receptors 
on glioma cells

Reduced blood vessel formation by VEGF siRNA and 
induced apoptosis in glioma cells by PLK1 siRNA

[157]

Lipid EGFR EGFR siRNA ER membrane decoration facilitated non-degradable 
endosome-Golgi/ER pathway

Inhibited tumor growth and induced apoptosis in glioma 
cells

[158]

Mesoporous 
silica

Cofilin-1 Cofilin-1 siRNA, angiopep-2 Angiopep-2 targeted LRP1 that highly expressed on 
the BBB and tumor cells

Reduced cells’ ability to invade surrounding tissues, 
enhanced radiation-induced apoptosis sensitivity

[159]

Iron oxide MGMT MGMT siRNA, chlorotoxin Chlorotoxin had high affinity for GBM cell surface 
markers

Reduced tumor cells’ ability to repair DNA damage caused 
by TMZ

[160]

Micelle Slit2 T7 peptide, Slit2 siRNA Intranasal administration allowed bypassing the BBB 
via the olfactory bulb pathway

Inhibited tumor growth and remodeled the tumor 
microenvironment by promoting DC maturation and 
macrophage polarization

[161]

Lipid/ 
polymer

SMO SMO siRNA MB-FUS temporarily disrupted the BBB Reduced tumor growth and increased tumor cell apoptosis [162]

Lipid c-Myc c-Myc siRNA, 89WP 
peptide

Intranasal administration allowed bypassing the BBB, 
89WP peptide enhanced nasal mucosa permeability

Reduced tumor cell proliferation and increased apoptosis [163]

Polymer SHMT1 SHMT1 siRNA Hyperosmotic properties of the nanochains activated 
NFAT5 and increased endothelial permeability

Disrupted DNA synthesis and induced apoptosis in the 
tumor cells

[164]

Tumor metastasis Mesoporous 
silica

HER2 HER2 siRNA, docetaxel, 
trastuzumab

MB-FUS technique transiently disrupted the BBB Reduced the growth signal in the cancer cells; docetaxel 
induced cell death through cytotoxic effects

[165]

(Continued)
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Table 1 (Continued). 

Diseases NP type Targeted gene Payload Strategies to Manipulate NPs for BBB Crossing Treatment mechanism Ref

mRNA AD Polymer Neprilysin NEP mRNA Intracerebroventricular injection facilitated NPs 
bypassing the BBB

Degraded Aβ peptides, reduced Aβ accumulation and 
slowed AD progression

[166]

Olfactory 
dysfunction

Polymer BDNF BDNF mRNA Intranasally administered NPs bypassed the BBB 
through the olfactory epithelium

Aided olfactory epithelium recovery, improved olfactory 
function, supported the repair and regeneration of 
damaged neurons

[167]

Ischemic stroke Lipid IL-10 IL-10 mRNA, mannose Leaky nature of the barrier in ischemic regions 
facilitated NPs crossing the BBB

Enhanced anti-inflammatory effects, restored BBB integrity, 
and reduced neuronal apoptosis

[168]

Polymer HO1 HO1 siRNA Stereotaxic injection was utilized to bypass the BBB HO1 enzyme degraded heme into biliverdin, iron, and 
carbon monoxide to reduce inflammation, oxidative stress, 
and cell death

[169]

Inflammation Lipid Thrombomodulin Thrombomodulin mRNA VCAM-1 facilitated binding with the inflamed brain 
endothelium

Reduced vascular permeability, inflammation, and brain 
edema, enhanced the integrity of the BBB and protected 
the brain from damage

[170]

Tumor Lipid/ 
polymer

TRAIL TRAIL mRNA NPs were injected into the brain TRAIL bound to death receptors of tumor cells, inducing 
apoptosis through caspase cascade

[171]

Polymer/cell 
membrane

PTEN ApoE peptide, PTEN mRNA ApoE functionalization enhanced NPs to interact with 
LDL receptors in the brain

Restored tumor-suppressing functions of PTEN protein by 
inhibiting the PI3K-AKT pathway, reduced tumor growth 
and increased apoptosis of cancer cells

[172]

Calcium 
carbonate/ 
cell 
membrane

IL-12 IL-12 mRNA, cRGD peptide cRGD peptide bound to integrins overexpressed in 
GBM vasculature

Released CO2 in the acidic environment, inducing 
necroptosis with ultrasound and triggering an anti-tumor 
immune response

[173]
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miRNA PD Polymer miR-124 miR-124, RVG29 RVG29 peptide interacted with nicotinic acetylcholine 
receptors on endothelial cells

Suppressed MEKK3/NF-κB signaling pathways and reduced 
pro-inflammatory cytokines (TNF-α, IL-6, and iNOS) 
expression

[174]

AD Nucleic acid/ 
peptide

miR-124 miR-124, Rutin, RVG29 
peptide

RVG29 peptide targeted the α7 nicotinic acetylcholine 
receptor on BBB and neurons

Downregulated BACE1 and APP expression, reduced Aβ 
production; Rutin had anti-oxidative and anti-inflammatory 
effects

[175]

Polymer/ 
peptide/lipid

miR-132 miR-132 mimics Intranasal administration facilitated the NPs bypassing 
the BBB

Regulated multiple mRNA targets and signaling pathways 
related to inflammation, neuronal health, and apoptosis

[176]

Ischemic injury Calcium/ 
metal

miR-124 miR-124 Stereotaxically injection facilitated therapeutics to 
bypass the BBB

Promoted the differentiation of NSCs into mature neurons [177]

Polymer miR-21 miR-21 Increased vascular permeability and EPR effect made 
NPs accumulate in the ischemic region

Promoted the expression of proteins like AKT, HIF-1α, and 
VEGF related to angiogenesis and neuroprotection

[178]

MS Polymer miR-219 miR-219a-5P Glutathione was used as a targeting ligand to exploit 
the glutathione transport mechanisms across the BBB

Enhanced differentiation of oligodendrocyte precursor cells 
into oligodendrocytes, promoted remyelination of neurons, 
reduced inflammation and restored function

[179]

Tumor Polymer miR-21, miR-124 Angiopep-2 peptide, anti- 
miR-21, miR-124

Angiopep-2 facilitated binding to the LRP-1 receptors 
on cerebrovascular endothelial cells

Reduced tumor cell proliferation and migration, decreased 
angiogenesis, regulated the mutant RAS/PI3K/PTEN/AKT 
signaling pathway

[180]

Polymer miR-21 Anti-miR-21 
oligonucleotides, spermine, 
bradykinin B1 receptor 
ligands

Bradykinin B1 receptor ligands functionalization 
increased the permeability to cross the BBB

Upregulated tumor suppressor proteins like PTEN and 
PDCD4, promoted apoptosis, and reduced tumor 
angiogenesis by decreasing the expression of HIF-1α and 
VEGF

[181]

Lipid/ 
polymer

miR-21 Anti-miR-21, angiopep-2 and 
TAT peptides

Angiopep-2 and TAT modifications enhanced targeting 
and penetration across the BBB

Triggered apoptosis through the activation of p53 and 
caspase-3 pathways, leading to tumor cell death and 
reduced tumor growth

[182]

Gold/Lipid miR-92b Oligonucleotide miRNA 
inhibitors, ApoE, RVG

ApoE and RVG peptides facilitated the NPs to cross 
the BBB

Reduced tumor cell proliferation and promoted apoptosis [183]

Lipid MGMT miR-603 EPR effect and interactions with the BBB made NPs 
accumulated in the tumor

Suppressed MGMT expression, reduced tumor resistance 
to TMZ, enhanced chemotherapy efficacy and promoted 
tumor cell death

[184]

(Continued)
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Table 1 (Continued). 

Diseases NP type Targeted gene Payload Strategies to Manipulate NPs for BBB Crossing Treatment mechanism Ref

ASO AD Nucleic acid miRNA-34a ASOs targeting miRNA-34a, 
triphenylphosphine, 
cholesterol

Cholesterol modification allowed the NPs to cross 
the BBB

Reduced apoptosis and promoted neuron cell recovery by 
modulating the apoptosis pathway

[185]

Lipid Tau ASOs targeting tau mRNA Inherent ability of certain neurotransmitters facilitated 
NPs to cross the BBB

Reduced the accumulation of tau protein [186]

Polymer BACE1 ASOs targeting BACE1 
mRNA, miRNA-186

D-peptide facilitated NPs to interact with LRP-1 
receptor

Reduced BACE1 expression and production of Aβpeptides [187]

PD Protein/cell 
membrane

PTBP1 ASOs targeting PTBP1, Apt 
19S

NSC membrane coating on the NPs facilitated BBB 
penetration

Reduced neuronal apoptosis and promoted the conversion 
of astrocytes to neurons

[188]

HD Cyclodextrin mHTT ASOs targeting mHTT RVG bound to acetylcholine receptors on neuronal 
cells

Degraded and reduced mHTT protein levels, mitigated the 
neurodegenerative effects

[189]

Lipid/protein mHTT ASOs targeting mHTT, 
apoA-I

ApoA-I components facilitated NPs to cross the BBB Degraded and reduced mHTT protein levels, mitigated the 
neurodegenerative effects

[190]

Ischemic stroke Nucleic acid Caspase-3 Caspase-3 ASOs TfR aptamers were utilized to target and penetrate 
the BBB

Knocked down the caspase-3 gene, reduced apoptosis in 
neurons, and provided neuroprotection

[191]

SMA Peptide SMN2 ASOs targeting SMN2 gene 
splicing

CPPs enhanced BBB penetration Corrected SMN2 gene splicing, increased full-length SMN 
protein production

[192]

Tumor Micelle miR-21 miR-21 ASO, T7 peptides Intranasal administration facilitated bypassing the BBB Upregulated pro-apoptotic genes such as PTEN and 
PDCD4, reduced tumor size

[193]

Polymer miR-21 miR-21 ASO, bradykinin B1 
receptor agonist

Bradykinin B1 receptor agonist facilitated NPs to 
cross the BBB

Upregulated PTEN and PDCD4 expression, suppressed 
tumor growth and angiogenesis by decreasing HIF-1α and 
VEGF expression

[181]

Nucleic acid PLK1 ASOs targeting PLK1 gene Protein corona of NPs facilitated interacting with 
receptors on BBB

Reduced PLK1 expression and inhibited tumor growth [194]

Neuropsychiatric 
disorders

Lipid L-PGDS ASOs targeting L-PGDS 
mRNA

Intracerebroventricular injection facilitated NPs to 
bypass the BBB, mannosylated lipids bound to the 
mannose receptors on border-associated 
macrophages

Reduced pro-inflammatory mediators’ production and 
modulated neuroinflammation

[195]
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CRISPR/ 
Cas9

AD/PD Silica App, Th Cas9 mRNA and sgRNA 
targeting the App and Th 
genes, glucose, RVG 
peptides

Glucose and RVG peptides facilitated NPs targeting 
GLUT1 and nicotinic acetylcholine receptor 
respectively

Intracellular GSH triggered the release of Cas9 mRNA and 
sgRNA, enabled genome editing within the brain cells, 
leading to the App or Th gene knockdown effects

[196]

AD Cerium 
dioxide/Fe/ 
polymer

Nrf2 CRISPR activation system 
plasmid designed to activate 
Nrf2 gene, KLVFFAED 
peptide

KLVFFAED modification facilitated NPs to cross the 
BBB

Activation of Nrf2 gene promoted antioxidant proteins 
expression and restored redox homeostasis, alleviated 
oxidative stress by mimicking natural antioxidant enzymes

[197]

SPIO BACE1 CRISPR-Cas9 plasmids, 
fluvastatin

RVG peptides on the NPs facilitated crossing the BBB Fluvastatin eliminated the existing Aβ, and CRISPR-Cas9 
plasmids knocked out the BACE1 gene and inhibited Aβ 
production

[138]

Peptide BACE1 Cas9-sgRNA RNPs targeting 
BACE1 gene, R7L10 peptide

Direct intracerebral injection facilitated NPs to bypass 
the BBB

Edited BACE1 gene in neurons, reduced Aβ production and 
plaque formation, and alleviated cognitive deficits in AD 
mouse models

[198]

Peptide Adam10 Cas9 activators and sgRNAs 
targeting the Adam10 gene

Direct intracerebral injection facilitated NPs to bypass 
the BBB

Upregulated Adam10, enhanced α-secretase activity, 
reduced Aβ formation and improved cognitive function 
in AD mouse model

[199]

FXS Gold/ 
polymer

mGluR5 Cas9 and Cpf1 RNPs Stereotaxic injection directly into the brain facilitated 
NPs to bypass the BBB

Edited mGluR5 gene in neurons, astrocytes, and microglia, 
reduced exaggerated mGluR5 signaling, resulted in the 
rescue of repetitive behaviors in FXS

[200]

MPS Lipid IDUA mRNA encoding adenine 
base editors and single guide 
RNA

Intracerebroventricular injection facilitated the NPs to 
bypass the BBB

Corrected IDUA gene specific point mutation, restored 
normal function of IDUA enzyme, reduced GAGs 
accumulation in the brain, and alleviated disease symptoms

[201]

Tumor Polymer PLK1 Cas9 protein and sgRNA 
targeting PLK1, angiopep-2

Angiopep-2 targeted the LRP-1 receptor and 
facilitated BBB penetration

Knocked out the PLK1 gene, inhibited tumor growth and 
induced apoptosis

[202]

Polymer PLK1 Cas9/gRNA RNPs targeting 
PLK1, angiopep-2

Angiopep-2 targeted the LRP-1 receptor and 
facilitated BBB penetration

Knocked out the PLK1 gene, inhibited tumor growth and 
induced apoptosis

[203]

Polymer EGFR, PLK1 Cas12a protein and crRNA 
targeted EGFR and PLK1 
genes, ApoE

ApoE peptide facilitated NPs interacting with 
receptors on the brain endothelial cells

Knocked out EGFR and PLK1 genes, inhibited tumor 
growth, and enhanced apoptosis

[204]

Polymer CXCR4 CRISPR-Cas9 RNPs Intracranial injection facilitated bypassing the BBB Knocked out CXCR4 gene and inhibited tumor growth [205]

Abbreviations: BBB, blood-brain barrier; AD, Alzheimer’s disease; Aβ, amyloid-β; PD, Parkinson’s disease; VGF, vascular growth factor; CPP, cell-penetrating peptide; GLUT-1, glucose transporter protein 1; BDNF, brain-derived 
neurotrophic factor; hGDNF, human glial cell line-derived neurotrophic factor; ShRNA, short hairpin RNA; NGF, nerve growth factor; HSVtk, herpes simplex virus thymidine kinase; GBM, glioblastoma multiforme; GCV, ganciclovir; TfR, 
transferrin receptor; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; LDL, low-density lipoprotein; LRP, low-density lipoprotein receptor-related protein; MMP9, matrix metalloproteinase 9; SPIO, superparamagnetic iron 
oxide; mPTP, mitochondrial permeability transition pore; α-syn, α-synuclein; NSCs, neural stem cells; PD-L1, programmed cell death-ligand 1; TMZ, temozolomide; EGFR, epidermal growth factor receptor; NRP-1, neuropilin-1; PLK1, 
Polo-like kinase 1; HD, Huntington’s disease; VEGF, vascular endothelial growth factor; ER, endoplasmic reticulum; MGMT, O6-methylguanine-DNA methyltransferase; SMO, smoothened; MB-FUS, microbubble-enhanced focused 
ultrasound; HIF-1α, hypoxia inducible factor-1α; HER2, human epidermal growth factor receptor-2; Tf, transferrin; TBI, traumatic brain injuries; TNF-α, tumor necrosis factor-α; IL-10, interleukin 10, VCAM-1, vascular cell adhesion 
molecule-1; EPR, enhanced permeability and retention; ASO, antisense oligonucleotides; mHTT, mutant huntingtin; apoA-1, apolipoprotein A-I; SMA, spinal muscular atrophy; ALS, amyotrophic lateral sclerosis; MS, multiple sclerosis; 
App, amyloid precursor protein; Th, tyrosine hydroxylase; sgRNA, single guide RNA; RNPs, ribonucleoproteins; MPS, Mucopolysaccharidoses; FXS, Fragile X syndrome; IDUA, α-L-iduronidase; CXCR4, chemokine (C-X-C motif) 
receptor 4.
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causing its degradation and preventing it from being used as a template for protein synthesis, thus preventing the 
expression of the protein encoded by the gene.208 Because of their specific targeting and gene silencing properties, 
siRNAs have potential therapeutic applications in a variety of diseases, especially those caused by gene overexpression 
or mutations.209 The application of NPs for their in vivo delivery for the treatment of neurological disorders has also been 
widely investigated.

In treating neurodegenerative diseases such as AD, some studies developed NPs to deliver BACE1 siRNA to reduce 
Aβ production and slowed disease progression, such as angiopep-2 peptides modified exosome-liposome hybrid 
nanovesicles loaded with BACE1 siRNA and TREM2 plasmid,145 phosphatidic acid-functionalized high-density 

Figure 3 DNA delivery by NPs of gene therapy for neurological disorders. (A) Two modes of drug loading using brain-targeted DGLs vector. The therapeutic peptide was 
covalently linked to DGLs, while therapeutic plasmid was encapsulated by DGLs through electrostatic interactions. Reproduced with permission from Liu Y, An S, Li J et al. 
Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials. Feb 2016;80:33–45.137 Copyright © 2015 
Elsevier Ltd. All rights reserved. (B) Preparation of CRISPR/Cas9 plasmids-loaded nano-biohybrid complexes. Reproduced with permission from Shen J, Lu Z, Wang J et al. 
Traceable Nano-Biohybrid Complexes by One-Step Synthesis as CRISPR-Chem Vectors for Neurodegenerative Diseases Synergistic Treatment. Advanced materials (Deerfield 
Beach, Fla). Jul 2021;33(27):e2101993.138 Copyright 2021, Wiley-VCH. (C) Schematic illustration for the synthesis of polymer and the formation of polymer/DNA NPs. 
Reproduced with permission from Gao S, Tian H, Xing Z et al. A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting 
treatment. Journal of Controlled Release. 2016/12/10/ 2016;243:357–369.144 Copyright 2016, Elsevier.

https://doi.org/10.2147/IJN.S457393                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 1462

Liu et al                                                                                                                                                                              

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



lipoprotein (pHDL) nanoscavengers loaded with curcumin and BACE1 siRNA (Figure 4A),146 and dendrigraft poly- 
l-lysine (DGL)-based NPs co-loaded with BACE1 siRNA and rapamycin.147 In addition, Zhang et al designed magne-
sium (Mg²⁺) and cyclophilin D (CypD) siRNA-loaded lipid nanocarriers to halt mitochondrial dysfunction in AD. Mg²⁺ 
helped to counteract calcium overload in mitochondria. As CypD regulated the mitochondrial permeability transition 
pore (mPTP), the siRNA downregulated CypD, preventing the opening of mPTP and thereby protecting mitochondria 
from damage.148

For ischemic stroke treatment, Lin et al designed superparamagnetic iron oxide NPs (SPIO)-loaded micelles based on 
the polymer PAsp(DMA)-Lys-(CA)2 (PALC). The NPs were loaded with siRNA and ASOs targeting the Pnky lncRNA 

Figure 4 siRNA delivery by NPs of gene therapy for neurological disorders. (A) Schematic illustration of pHDL/Cur-siBACE1 preparation. Reproduced with permission 
from Zhang H, Jiang W, Zhao Y et al. Lipoprotein-Inspired Nanoscavenger for the Three-Pronged Modulation of Microglia-Derived Neuroinflammation in Alzheimer’s 
Disease Therapy. Nano letters. Mar 23 2022;22(6):2450–2460.146 Copyright 2022, American Chemical Society. (B) Schematic for the preparation of siRNA-loaded PLGA NPs 
by a modified nanoprecipitation method. DSPE-PEG was used to impart stealth character. In addition, polysorbate 80 (PS 80), poloxamer 188 (F-68), DSPE-PEG-GSH, or 
DSPE-PEG-transferrin (Tf) was used to augment BBB penetration. Reproduced with permission from Li W, Qiu J, Li XL et al. BBB pathophysiology-independent delivery of 
siRNA in traumatic brain injury. Science advances. Jan 2021;7(1).152 Copyright 2021, The Authors, CC BY-NC 4.0. (C) Illustration of formulating bioreducible BAMPA-O16B 
/siRNA lipoplex. Reproduced with permission from Liu S, Liu J, Li H et al. An optimized ionizable cationic lipid for brain tumor-targeted siRNA delivery and glioblastoma 
immunotherapy. Biomaterials. Aug 2022;287:121645. doi:10.1016/j.biomaterials.2022.121645.153 Copyright 2022, Elsevier. (D) Schematic of nanoconstruct synthesis. 
Reproduced with permission from Ngamcherdtrakul W, Bejan DS, Cruz-Muñoz W et al. Targeted Nanoparticle for Co-delivery of HER2 siRNA and a Taxane to Mirror 
the Standard Treatment of HER2+ Breast Cancer: Efficacy in Breast Tumor and Brain Metastasis. Small (Weinheim an der Bergstrasse, Germany). Mar 2022;18(11):e2107550.165 

Copyright 2022, John Wiley and Sons.
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to promote the differentiation of NSCs into neurons, allowing for the replacement of lost or damaged neurons in the 
brain.149 PLGA-PAMAM NPs loaded with CircOGDH siRNA were developed to target the ischemic penumbra in stroke. 
The silence the CircOGDH gene reduced neuronal apoptosis and improved neurological outcomes in a mouse model of 
focal brain ischemia.150 Solid lipid NPs loaded with TGF-β1 siRNA and curcumin were developed for treating cerebral 
injury after intracerebral hemorrhage to reduce inflammation and provide additional neuroprotective effects.151 

Additionally, PLGA-based NPs to deliver siRNA targeting the tau gene were engineered to treat TBI. The NPs reduced 
tau protein levels and mitigated the neurodegenerative processes associated with TBI (Figure 4B).152

For tumor treatment, there are studies focus on silencing the expression of immune checkpoints, programmed cell 
death-ligand 1 (PD-L1). The delivery of siRNA to tumor tissue can induce a reduction in PD-L1 expression by tumor 
cells, which in turn triggers a T cell-dependent anti-tumor immune response. This strategy has been developed with some 
NPs, such as ionizable cationic lipid NPs co-delivering CD47 siRNA (Figure 4C)153 and 2-deoxy-D-glucose modified 
lipid polymer NPs co-delivering temozolomide (TMZ).154 STAT3 (signal transducer and activator of transcription 3) 
gene is related to tumor cell proliferation and angiogenesis. A cation-free siRNA micelle platform was developed to 
deliver STAT3 siRNA to reduce drug resistance and increase sensitivity to TMZ.155 What’s more, the Polo-like kinase 1 
(PLK1) gene is associated with cell proliferation and survival in GBM cells. NPs have been investigated to silence this 
gene via siRNA to cause tumor cell apoptosis, such as a virus-mimicking NP with envelope protein of Japanese 
encephalitis virus embedded into the lipid membranes156 and hyaluronan-enveloped nanomicelles for enhanced nose-to- 
brain delivery.157 In addition, Epidermal growth factor receptor (EGFR), associated with tumor growth, is targeted for 
treatment using EGFR siRNA delivered via endoplasmic reticulum (ER) membrane-decorated hybrid nanoplexes.158

Various target genes have also been investigated for CNS tumor treatment. Tang et al developed selenium-engineered 
mesoporous silica nanocapsules for cofilin-1 siRNA delivery, enhancing radiation-induced apoptosis in radiotherapy- 
resistant GBM.159 Wang et al designed iron oxide NPs coated with a chitosan-PEG-PEI co-polymer and conjugated with 
chlorotoxin to deliver O6-methylguanine-DNA methyltransferase (MGMT)-targeting siRNA, increasing TMZ sensitivity 
by impairing DNA repair.160 A cholesterol-modified T7 peptide-based nanomicelle system delivered Slit2 siRNA 
intranasally, inhibiting glioma growth and remodeling the tumor microenvironment.161 Cationic lipid-polymer hybrid 
NPs, combined with microbubble-enhanced focused ultrasound, delivered siRNA targeting the smoothened (SMO) gene, 
inducing tumor cell apoptosis.162 Core-shell lipoplexes modified with 89WP peptide effectively delivered c-Myc siRNA 
for GBM treatment.163 Hyperosmotic nanochains loaded with SHMT1 siRNA displayed BBB crossing ability via an 
osmotic pressure-driven mechanism, activating nuclear factor of activated T cells-5 (NFAT5) and inhibiting DNA 
synthesis in tumor cells.164 Furthermore, in brain metastasis from breast cancer, mesoporous silica NPs co-delivering 
human epidermal growth factor receptor-2 (HER2) siRNA and docetaxel showed therapeutic efficacy in HER2-positive 
breast cancer treatment (Figure 4D).165

In brief, NPs enable the efficient delivery of siRNA across the BBB, facilitating targeted gene silencing within the 
brain. siRNA-loaded NP therapies show significant potential in reducing pathogenic gene expression, slowing disease 
progression, and improving outcomes in conditions such as neurodegenerative diseases, ischemic stroke, TBI, and 
tumors.

mRNA
mRNA, or messenger RNA, is a type of RNA that is synthesized during the process of transcription, in which a piece of 
DNA is used as a template to create a complementary RNA strand. mRNAs play a crucial role in translating genetic 
information from DNA to proteins and have recently received much attention in the medical field,84 particularly in the 
development of mRNA vaccines, such as those against COVID-19. The use of mRNAs as genetic material for the 
treatment of neurological disorders has also been studied. However, systemic delivery of naked mRNA is difficult to 
realize, as it cannot penetrate cell membranes given its large size and negative charge, and is easily degraded in blood 
circulation.

The application of NPs for mRNA delivery shows promises in treating neurodegenerative and functional diseases. 
Polyplex nanomicelles loaded with neprilysin mRNA were shown to degrade Aβ peptides, potentially slowing AD 
progression and mitigating its symptoms.166 This research group also utilized this nanocarrier to deliver brain-derived 
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neurotrophic factor (BDNF) mRNA to treat olfactory dysfunction. BDNF protein aided in the recovery of the olfactory 
epithelium and supported the repair and regeneration of damaged neurons, leading to enhanced neurological recovery 
from sensory nerve disorders.167

For stroke treatment, lipid NPs targeting M2 microglia and loaded with interleukin 10 (IL-10) mRNA promoted anti- 
inflammatory responses and restored BBB integrity. The mannose moiety was incorporated to target the CD206 receptor 
on M2 microglia (Figure 5A).168 Similarly, DA-PEI2k (deoxycholic acid-conjugated polyethylenimine) polymeric NPs 
loaded with HO1 mRNA demonstrated anti-inflammatory and antioxidant effects by degrading heme into biliverdin, iron, 
and carbon monoxide.169 Vascular cell adhesion molecule-1 (VCAM-1)-targeted lipid NPs were also designed to deliver 
thrombomodulin mRNA to inflamed cerebral vasculature, therefore reducing brain edema and stabilizing the BBB.170

For tumor treatment, mRNA encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) using 
TransIT-mRNA delivered via intracranial injection induced apoptosis in tumor cells by activating death receptors and 
the caspase cascade, thereby reducing tumor size.171 ApoE functionalized red blood cell membrane-camouflaged 
biomimetic NPs were designed to deliver PTEN mRNA to GBM cells, restoring its tumor-suppressing functions by 
inhibiting the PI3K-AKT pathway and increasing apoptosis (Figure 5B).172 Additionally, cRGD-modified cancer cell 
membrane-coated calcium carbonate NPs were used to deliver interleukin-12 (IL-12) mRNA, releasing CO2 in acidic 
environments to induce necroptosis and trigger an anti-tumor immune response (Figure 5C).173

Based upon the studies, although mRNA plays a crucial role in protein synthesis, its direct application is limited by its 
large size, negative charge, and biodegradability. NPs have been used to deliver mRNA for the treatment of related 
neurological diseases, such as degrading Aβ peptides in AD, promoting neuroprotective and anti-inflammatory responses 

Figure 5 mRNA delivery by NPs of gene therapy for neurological disorders. (A) Schematic of targeted mIL-10-encapsulated LNPs. Reproduced with permission from Gao 
M, Li Y, Ho W et al. Targeted mRNA Nanoparticles Ameliorate Blood–Brain Barrier Disruption Postischemic Stroke by Modulating Microglia Polarization. ACS nano. 2024/01/ 
30 2024;18(4):3260–3275.168 Copyright 2024, American Chemical Society. (B) Synthesis of the ABNPs@mRNA biomimetic NPs. Polyethylenimine (PEI) complex mRNA 
forms the inner core, which was then coated with citraconic anhydride-grafted poly-L-lysine, functionalized with ApoE peptide-decorated red blood cell membrane to obtain 
the ABNPs@mRNA biomimetic NPs. Reproduced with permission from Liu Y, Zhang D, An Y et al. Non-invasive PTEN mRNA brain delivery effectively mitigates growth of 
orthotopic glioblastoma. Nano Today. 2023/04/01/ 2023;49:101,790.172 Copyright 2023 Elsevier. (C) Illustration for the preparation process of IL-12 mRNA@cRGD-CM- 
CaCO3 NPs. Reproduced with permission from Zhao P, Tian Y, Lu Y et al. Biomimetic calcium carbonate nanoparticles delivered IL-12 mRNA for targeted glioblastoma 
sono-immunotherapy by ultrasound-induced necroptosis. Journal of nanobiotechnology. Dec 10 2022;20(1):525.173 Copyright 2022, The Authors. Creative Commons 
Attribution 4.0 International License.
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in stroke, and inducing tumor cell apoptosis in GBM. By effectively expressing genes in target cells, NPs have become 
a promising mRNA delivery solution.

miRNA
miRNAs, or microRNAs, are small non-coding RNA molecules that direct the RISC to bind to a target mRNA by 
binding to a complementary sequence on the target mRNA molecule. This binding can lead to degradation of the target 
mRNA or inhibit its translation into proteins.210 miRNAs are involved in various cellular processes, including apoptosis 
(programmed cell death), proliferation, and metabolism, ensuring that genes are expressed at the right level and the right 
time. In addition, miRNAs are key regulators of developmental timing and cell differentiation. They can turn off silenced 
genes that are required for cells to move from one developmental stage to another or to maintain the characteristics of 
a particular cell type. Thus, by regulating miRNAs, it is possible to modulate gene expression at the post-transcriptional 
level and thus treat related diseases.211

Applying NP delivery of miRNAs to treat neurological disorders is an effective approach in preclinical studies. miR- 
124 plays a variety of roles including regulation of neurogenesis, maintenance of neuronal identity, and neuroprotection, 
and its therapeutic effects have been explored in a variety of diseases. For neurodegenerative diseases like PD, RVG29- 
linked PLGA NPs were developed to deliver miR-124, downregulating the MEKK3/NF-κB pathway and reducing pro- 
inflammatory cytokines like tumor necrosis factor-α (TNF-α), IL-6, and iNOS, enhancing neuroprotection in a PD 
model.174 For AD treatment, DNA nanoflowers co-delivering miR-124 and rutin resulted in downregulation of BACE1 
and amyloid precursor protein (App), reduction of Aβ generation, combined with the anti-oxidative and anti- 
inflammatory effects.175 Enveloped RNA-cell permeating peptide nanocomplexes delivering miR-132 mimics amelio-
rated neurodegenerative processes by regulating multiple mRNA targets and signaling pathways related to inflammation, 
neuronal health, and apoptosis, as well as reducing Aβ accumulation.176

For treating ischemic brain injury, miR-124 was targeted using calcium-based metal-organic framework NPs to 
promote the differentiation of NSCs into mature neurons (Figure 6A).177 Polymeric nanocapsules delivering miR-21 
enhanced AKT, hypoxia inducible factor-1α (HIF-1α), and VEGF expression, reducing infarct size and improving 
outcomes in a rat ischemia model.178 For multiple sclerosis (MS) therapy, a polymeric NP was synthesized using 
conjugated chitosan, tragacanthic acid, and glutathione (GSH) to ameliorate the pathological progress of chronic 
demyelination by delivering miR-219. The NPs led to miR-219 overexpression, downregulation of ApoE, upregulation 
of crystallin αB, reduction of inflammation in the brain, and enhanced neuronal regeneration.179

For managing brain tumors, miR-21, an oncogene overexpressed in GBM related to tumor growth and angiogenesis, 
has been targeted using NPs to inhibit its expression. Studies have explored delivering anti-miR-21 via angiopep-2 
peptide-modified polymeric NPs co-delivering miR-124 (Figure 6B),180 spermine-modified acetalated dextran NPs 
(Figure 6C),181 as well as angiopep-2 and TAT peptides-modified lipid polymer micelles,182 all showing therapeutic 
efficacy in GBM. Other miRNAs have also been explored as targets for CNS tumor gene therapy. Gold-liposome NPs 
loaded with miR-92b inhibitors reduced tumor cell proliferation and promoted apoptosis.183 Lipid self-assembling NPs 
delivering miR-603 inhibited MGMT expression, reducing the tumor’s resistance to temozolomide (TMZ) and enhancing 
chemotherapeutic efficacy.184

In brief, miRNAs modulate gene expression at the post-transcriptional level, making them valuable targets for disease 
intervention. NPs for miRNA delivery have shown promise in preclinical studies, particularly for neurodegenerative 
diseases, ischemic brain injury, MS, and tumors. These strategies demonstrate the potential of miRNA-loaded NPs to 
enhance therapeutic outcomes by targeting specific genes involved in disease progression and tumor growth.

Antisense Oligonucleotides Delivery
ASOs are synthetic short strands of DNA or RNA designed to bind specifically to mRNA produced by a particular gene, 
which then recruit the enzyme RNase H to degrade the RNA strand in the RNA-DNA double strand. This leads to 
a reduction in the production of genetically encoded proteins.212 Therefore, ASO can serve as a gene therapy strategy; 
however, due to its negative charge and susceptibility to degradation by nucleases in vivo, the development of efficient 
delivery systems is necessary to enhance its therapeutic efficacy.
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There are current studies utilizing NPs to improve ASO delivery. For AD treatment, Li et al reported tetrahedral DNA 
framework-based NPs with triphenylphosphine for mitochondrial targeting, cholesterol for CNS penetration, and ASOs 
to silence miRNA-34a, restoring mitochondrial function and reducing apoptosis (Figure 7A).185 Ma et al designed 
neurotransmitter-derived lipid NPs loaded with ASOs targeting tau mRNA to reduce the accumulation of tau protein and 
mitigate neurodegeneration (Figure 7B).186 Israel et al developed D-peptide functionalized polymalic acid-based NPs 
delivering ASOs targeting BACE1 gene, reducing Aβ production, by decreasing BACE1 expression.187 For PD treat-
ment, Sun et al reported ZAAM, a NSC membrane-coated and Apt 19S-conjugated penetrable NP, loaded with ASOs that 
transiently suppressed the RNA-binding protein PTBP1, thereby reducing neuronal apoptosis and promoting the con-
version of astrocytes to neurons (Figure 7C).188 A kind of cyclodextrin-based NP was developed to deliver ASOs 
targeting the mutant huntingtin (mHTT) gene associated with HD. The RVG-targeted NPs reduced mHTT expression in 
neuronal cells and HD patient-derived fibroblasts, offering a strategy for treating HD.189 Another research team also 
reported apolipoprotein A-I nanodisks to deliver ASOs targeting mHTT.190

ASOs have been explored for treating ischemic stroke and SMA. A spherical nucleic acid nanostructure co-encoded 
with caspase-3 ASOs and TfR aptamers was developed to reduce neuronal apoptosis, providing neuroprotection and 
mitigating the damage caused by ischemic stroke (Figure 7D).191 SMA is a genetic disorder characterized by the 
progressive loss of motor neurons in the spinal cord, leading to muscle weakness and atrophy. This condition is primarily 

Figure 6 miRNA delivery by NPs of gene therapy for neurological disorders. (A) Diagram of the effective loading of miR-124 onto the surface of Ca-MOF by hydrogen 
bonds between the −NH2 group and −OH group and the rapid cleavage of the hydrogen bonds upon exposure to an acidic pH. Reproduced with permission from Yang H, 
Han M, Li J et al. Delivery of miRNAs through Metal-Organic Framework Nanoparticles for Assisting Neural Stem Cell Therapy for Ischemic Stroke. ACS nano. Sep 27 
2022;16(9):14,503–14,516.177 Copyright 2022, American Chemical Society. (B) Scheme of polymeric miRNA nanomedicine construction. Reproduced with permission from 
Liu Y, Zheng M, Jiao M et al. Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy. Biomaterials. 
Sep 2021;276:121036. doi:10.1016/j.biomaterials.2021.121036.180 Copyright 2021 Elsevier. (C) Schematic of the synthesis of B1L@SpAcDex-ATMO-21 NPs. Reproduced 
with permission from Zheng T, Wang W, Mohammadniaei M et al. Anti-MicroRNA-21 Oligonucleotide Loaded Spermine-Modified Acetalated Dextran Nanoparticles for B1 
Receptor-Targeted Gene Therapy and Antiangiogenesis Therapy. Advanced science (Weinheim, Baden-Wurttemberg, Germany). Feb 2022;9(5):e2103812.181 © 2021 The Authors. 
Advanced Science published by Wiley-VCH GmbH. Creative Commons CC BY license.
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caused by mutations in the survival motor neuron (SMN) gene. CPP-conjugated ASOs targeting SMN2 corrected 
splicing, increasing full-length SMN protein production for treating this disease.192

ASOs have also been explored for tumor treatment, particularly to silence miR-21 in GBM. Cholesterol-conjugated 
ASO co-micelles193 and spermine-modified acetalated dextran NPs181 were used to load miR-21 ASOs, promoting 
apoptosis by upregulating expression of pro-apoptotic genes such as PTEN and PDCD4, thus reducing tumor growth. 
Protein corona-assisted DNA cubes delivered PLK1-targeting ASOs to inhibit GBM growth. The DNA cubes were 
synthesized through self-assembly of oligonucleotides, and protein corona formed on their surface in biological 
environment and facilitated their transport across the BBB to silence PLK1 expression.194

In neuropsychiatric disorders such as depression and schizophrenia, border-associated macrophages (BAMs) con-
tribute to the pathophysiology by promoting neuroinflammation. Calero et al designed lipid NPs functionalized with 
mannosylated lipids to specifically target the mannose receptors on BAMs. By loading with ASOs target the L-PGDS, an 
enzyme involved in the production of prostaglandin D2, the NPs silenced the L-PGDS gene, reducing the production of 
pro-inflammatory mediators and thus modulating neuroinflammation.195

In summary, NP-based delivery systems have shown promising advancements in enhancing the targeting and efficacy 
of ASOs, particularly in the treatment of neurodegenerative diseases, ischemic stroke, SMA, as well as GBM and 
neuropsychiatric disorders. These studies suggest that ASO-loaded NPs have the potential to cross the BBB and modulate 
gene expression to achieve therapeutic effects.

Figure 7 ASO delivery by NPs of gene therapy for neurological disorders. (A) Schematic Legend of the composition process of tetrahedral DNA framework-based NPs. 
Reproduced with permission from Li W, Peng X, Mei X, Dong M, Li Y, Dong H. Multifunctional DNA Tetrahedron for Alzheimer’s Disease Mitochondria-Targeted Therapy by 
MicroRNA Regulation. ACS applied materials and interfaces. May 17 2023;15(19):22,977–22,984.185 Copyright 2023, American Chemical Society (B) Schematic illustration of 
formulating NT-lipidoid–doped LNPs. Reproduced with permission from Ma F, Yang L, Sun Z et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain 
delivery through intravenous injection. Science advances. Jul 2020;6(30):eabb4429.186 Copyright 2020 The Authors. Creative Commons Attribution-NonCommercial license. 
(C) Design of the ASO-loaded, aptamer Apt 19S-conjugated, NSC membrane-coated NPs. Reproduced with permission from Sun Y, Kong J, Ge X, Mao M, Yu H, Wang Y. An 
Antisense Oligonucleotide-Loaded Blood-Brain Barrier Penetrable Nanoparticle Mediating Recruitment of Endogenous Neural Stem Cells for the Treatment of Parkinson’s 
Disease. ACS nano. Mar 14 2023;17(5):4414–4432.188 Copyright 2023, American Chemical Society (D) Synthesis scheme of spherical nucleic acid nanostructure based self- 
assembly. Reproduced with permission from Yu W, Xuan C, Liu B et al. Carrier-free programmed spherical nucleic acid for effective ischemic stroke therapy via self-delivery 
antisense oligonucleotide. Nano Research. 2023/01/01 2023;16(1):735–745.191 Copyright 2022, Tsinghua University Press.
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CRISPR/Cas9 Gene-Editing Tools Delivery
CRISPR/Cas9 is a revolutionary technology that combines Cas9 nuclease with single-guide RNA (sgRNA) and cuts the 
target DNA for gene editing. It presents significant advantages over conventional therapies, including ease of use, 
straightforward design, and the ability to perform multiplexed gene editing, enabling simultaneous modification of 
multiple genes. Consequently, it has emerged as a highly suitable tool for a wide range of genome editing applications, 
particularly in gene therapy research.213 However, two components, namely Cas9 endonuclease and sgRNA, need to be 
introduced into the target cell.214 Co-delivering two RNAs with significantly different sizes such as Cas9 mRNA (4.5 kb) 
and sgRNA (0.1 kb) into the brain remains challenging. Therefore, noninvasive delivery of NP-encapsulated CRISPR/ 
Cas9 complexes is urgently needed to promote gene therapy for neurological disorders.

For neurodegenerative diseases like AD and PD treatment, Wang et al designed GSH-responsive silica nanocapsules 
to deliver Cas9 mRNA and sgRNA targeting App and tyrosine hydroxylase (Th) genes, achieving 6.1% and 3.9% editing 
rates in wild-type mice, respectively.196 Yang et al designed nanozyme-boosted metal-organic framework NPs synthe-
sized by encapsulating cerium dioxide nanozymes within MIL-100 (Fe) and modified with PEI and KLVFFAED peptide. 
The NPs were loaded with a CRISPR activation system plasmid designed to activate the Nrf2 gene, therefore promoting 
the expression of antioxidant proteins and restoring redox homeostasis (Figure 8A).197 Shen et al used superparamagnetic 
iron oxide NPs functionalized with fluvastatin and RVG peptides to deliver CRISPR-Cas9 plasmids, knocking out 

Figure 8 CRISPR/Cas9 delivery by NPs of gene therapy for neurological disorders. (A) Process of preparation of the nanozyme-boosted MOF-CRISPR platform. 
Reproduced with permission from Yang J, Qin G, Liu Z et al. A Nanozyme-Boosted MOF-CRISPR Platform for Treatment of Alzheimer’s Disease. Nano letters. Aug 14 
2024;24(32):9906–9915.197 Copyright 2024, American Chemical Society. (B) Schematic of CRISPR–Gold synthesis. DNA oligonucleotide-conjugated GNPs bind to Cas9 or 
Cpf1 RNPs, and subsequent PAsp(DET) polymer encapsulation generates CRISPR–Gold. Reproduced with permission from Lee B, Lee K, Panda S et al. Nanoparticle delivery 
of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nature biomedical engineering. Jul 2018;2(7):497–507.200 

Copyright 2018, The Authors. (C) In situ free-radical polymerization was used to synthesize disulfide–cross-linked nanocapsules containing Cas9/sgRNA and functionalized 
with angiopep-2 targeting ligand. Reproduced with permission from Zou Y, Sun X, Yang Q et al. Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for 
effective and safe glioblastoma gene therapy. Science advances. Apr 22 2022;8(16):eabm8011.202 Copyright 2022 The Authors, CC BY-NC 4.0.
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BACE1 gene in neurons, reducing Aβ production.138 Park et al also targeted BACE1 with CRISPR-Cas9 ribonucleo-
proteins (RNPs) using amphiphilic peptide (R7L10), lowering Aβ plaque formation and alleviating cognitive deficits 
in AD mouse models.198 They also developed nanocomplexes by mixing the R7L10 amphiphilic peptides with Cas9 
activator targeting Adam10 gene, which was involved in non-amyloidogenic processing of APP, thus reducing Aβ 
plaques. The Cas9 activator nanocomplexes upregulated Adam10, enhancing α-secretase activity, which led to reduced 
Aβ plaque formation and improved cognitive function in AD models.199

Fragile X syndrome (FXS) is a genetic disorder and caused by a mutation in the FMR1 gene on the X chromosome, 
which leads to a deficiency or absence of the FMRP protein, important for normal neural development and synaptic 
function. Lee et al used CRISPR-Gold nanovehicles to deliver Cas9 and Cpf1 RNPs for mGluR5 gene editing in neurons, 
astrocytes, and microglia, rescuing FXS-related behaviors in mouse models (Figure 8B).200 Mucopolysaccharidosis type 
I (MPS-I) is a lysosomal storage disorder caused by mutations in the α-L-iduronidase (IDUA) gene, leading to 
a deficiency of the enzyme IDUA, which results in the accumulation of glycosaminoglycans (GAGs), causing severe 
multi-system damage, particularly affecting the nervous system. A study reported ionizable lipid NPs loaded with mRNA 
encoding adenine base editors and sgRNA targeting IDUA mutations, corrected the W392X mutation in the IDUA gene, 
reducing GAG accumulation and alleviating disease symptoms.201

For tumor treatment, CRISPR-Cas9 can also be employed by targeting oncogenic viruses and promoting the 
expression of tumor suppressor genes. One research group designed angiopep-2-modified disulfide–cross-linked poly-
meric shell (Figure 8C)202 and angiopep-2-decorated guanidinium and fluorine functionalized polymeric NP203 to deliver 
Cas9/gRNA RNPs, knocking out PLK1 gene in GBM cells. They also developed Cas12a RNP nanocapsules for dual 
gene editing of EGFR and PLK1, inhibiting tumor growth and improving survival in mouse models.204 Rui et al 
highlighted carboxylated branched PBAE NPs for CRISPR-Cas9 editing to knockout the CXCR4 gene, disrupting tumor 
growth, metastasis, and resistance to therapy.205

Overall, CRISPR/Cas9 is a powerful tool capable of multiplex gene editing, and the applications include editing 
genes implicated in neurodegenerative diseases, as well as genetic disorders like fragile X syndrome and MPS-IH. In 
tumor therapy, CRISPR/Cas9 has shown potential in knocking out oncogenes and enhancing tumor suppressor genes, 
offering a promising strategy for cancer gene therapy.

In short, gene therapy involves the use of various gene-editing and regulatory tools, including DNA, siRNA, mRNA, 
miRNA, ASOs, and CRISPR/Cas9, all of which hold significant promise for treating CNS diseases. However, despite the 
potential of these approaches, there are significant barriers to their clinical application. NPs provide a valuable solution to 
these challenges, as they can protect genetic material from degradation and facilitate its delivery across the BBB. The 
main challenges include the efficient delivery of large genetic materials across the BBB, the potential for off-target 
effects, and the need for long-term safety data. Future directions will likely focus on optimizing the balance between 
therapeutic efficacy and safety, particularly for long-term or chronic treatments. Overcoming these barriers is essential to 
fully realize the potential of NP-based gene therapy in treating complex neurological disorders.

Nanoparticle-Based Enzyme Replacement Therapy for Neurological Disorders
Enzyme deficiency disorders are a diverse group of diseases caused by deficiency or malfunction of specific enzymes, 
which may lead to the accumulation of toxic substances or disruption of key metabolic pathways, thus ultimately 
resulting in systemic damage and dysfunction.215 Enzyme deficiency disorders can be categorized based on the type of 
enzyme affected and the metabolic pathway involved.216 Among them, LSDs are the most widely studied enzyme 
deficiency disorders and can be broadly categorized as lipid storage disorders, mucopolysaccharidoses, glycoprotein 
storage disorders, and mucolipidoses, based on the nature of the main storage substance involved.217 Certain LSDs affect 
the CNS, disrupting normal metabolic pathways and leading to the accumulation of toxic substances in the brain, which 
can damage nerve cells and impair brain function. Table 2 summarizes the main types of LSDs that invade the CNS 
according to the accumulated general substrate.

ERT has emerged as a promising therapy for these LSDs, which aims to correct these deficiencies through the 
administration of recombinant enzymes.218 To date, a dozen enzymes have been approved by the FDA/EMA to treat 
LSDs and metabolic diseases. However, as the BBB prevents macromolecules including enzymes from entering the 
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brain, how to deliver therapeutic enzymes across the BBB remains a major challenge.219 NP-based delivery systems 
provide a novel and effective method to facilitate enzyme delivery to the brain and overcome the limitations of 
conventional ERT. The design of NPs for enzyme delivery is critical. The NPs typically need to be small enough to 
pass through the BBB, yet large enough to encapsulate the desired enzyme.220 Surface modifications such as the 
decoration of targeted ligands or the use of biocompatible coatings can further enhance their ability to reach target 
cells in the brain.8 Here we summarize examples of NP-mediated delivery of enzymes for ERT applications by focusing 
on lipid storage disorders (gangliosidoses, sphingolipidoses, leukodystrophies, neuronal ceroid lipofuscinoses (NCLs)), 
MPSs, and glycoprotein storage disorders (Table 3), highlighting the potential of NP-based systems to overcome 
challenges associated with ERT.

Table 2 Classification of LSDs Affect the CNS

Group of LSD 
(Accumulated 
Substrate)

Disease Defects Inheritance

Gangliosidoses 

(Gangliosides)

GM1 gangliosidosis β-galactosidase (βgal) AR

Tay-Sachs disease Hexosaminidase A AR

Sandhoff disease β-hexosaminidase AR

Sphingolipidoses 
(Sphingolipids)

Gaucher disease β-glucocerebrosidase AR

Niemann-Pick disease Acid sphingomyelinase (ASM) AR

Leukodystrophies Metachromatic 

Leukodystrophy

Arylsulfatase A AR

Krabbe disease Galactosylceramidase (GALC) AR

Adrenoleukodystrophy ABCD1 gene mutation XLR

Alexander disease GFAP gene mutation AD/de novo 

mutation

Neuronal Ceroid 

Lipofuscinoses (Lipofuscin)

CLN1 disease Palmitoyl-protein thioesterase-1 (PPT1) AR

CLN2 disease Tripeptidyl peptidase 1 AR

CLN3 disease CLN3 gene mutation AR

CLN4 disease CLN6/8 gene mutation AD

Mucopolysaccharidoses 

(Glycosaminoglycans)

MPS I α-L-iduronidase AR

MPS II Iduronate-2-sulfatase (IDS) XLR

MPS III Heparan N-sulfatase/α-N-acetylglucosaminidase/ Heparan-α-glucosaminide 

acetyltransferase/N-acetylglucosamine 6-sulfatase

AR

MPS VII β-glucuronidase AR

Glycoproteinoses 

(Glycoproteins)

Aspartylglucosaminuria Aspartylglucosaminidase AR

Fucosidosis α-L-fucosidase AR

Mannosidosis α-mannosidase AR

Sialidosis α-N-acetylneuraminidase AR

Schindler disease α-N-acetylgalactosaminidase AR

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; XLR, X-linked recessive.
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Table 3 Applications of NP-Based ERT for LSDs Affected Nervous System

Category Diseases NP 
Type

Therapeutic 
Enzyme

Payload Strategies to 
Manipulate 
NPs for BBB 
Crossing

Treatment 
Mechanism

Ref

Gangliosidoses GM1 
gangliosidosis

Polymer β-gal β-gal Not involved Delivered β-gal 
directly to 

lysosomes in 

affected cells, 
restored normal 

autophagy and 

reduced the buildup 
of storage products 

in cells

[221]

Polymer β-gal β-gal ApoE 

functionalization 

facilitated NPs to 
cross the BBB

Restored enzymatic 

activity and reduced 

GM1 gangliosides 
accumulation

[222]

Sphingolipidoses Gaucher 

disease

Lipid GCase rGCase Intranasal 

administration 

facilitated the 
NPs through the 

olfactory 

epithelium 
directly into the 

brain

Delivered rGCase to 

microglia cells, 

where the enzyme 
was internalized and 

localized to 

lysosomes, restoring 
deficient enzymatic 

activity and reducing 

substrate 
accumulation

[223]

Niemann- 
Pick disease

Polymer ASM anti-TfR, anti- 
GM1, anti-ICAM-1

The NPs crossed 
the BBB by 

exploiting 

transcytosis 
pathways 

(clathrin- 

mediated, 
caveolar, and 

CAM-mediated 

transcytosis)

Not involved [224]

Polymer ASM ASM, antibodies 

targeting ICAM-1, 
PECAM-1, and 

VCAM-1

Targeted multiple 

CAMs to enhance 
brain delivery

Delivered ASM to 

affected organs by 
targeting multiple 

CAMs and improved 

binding and 
endocytosis

[225]

Polymer ASM ASM Anti-ICAM-1 
decoration 

facilitated NPs to 

cross the BBB

Restored the 
deficient enzyme 

activity and reduced 

the accumulation of 
sphingomyelin

[226]

(Continued)
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Lipid Storage Disorders
Gangliosidoses
Gangliosidoses are a group of inherited metabolic disorders characterized by the accumulation of gangliosides in cells of 
the nervous system.231 The two most common types of gangliosidoses are GM1 gangliosidosis and GM2 
gangliosidosis.232 GM1 gangliosidosis is an autosomal recessive disorder due to β-galactosidase (β-gal) deficiency, 
which causes GM1 gangliosides to accumulate in lysosomes, particularly in the brain. One of the pathologic features of 
GM1 gangliosidosis is impaired autophagy, ie, decreased fusion of autophagosomes and lysosomes to degrade cellular 
waste products.233 In addition, GM2 gangliosidosis is characterized by the accumulation of GM2 gangliosides in neurons 

Table 3 (Continued). 

Category Diseases NP 
Type

Therapeutic 
Enzyme

Payload Strategies to 
Manipulate 
NPs for BBB 
Crossing

Treatment 
Mechanism

Ref

Leukodystrophies Krabbe 

disease

Polymer GALC Angiopep-2, g7, or 

Tf2 peptide, 
GALC

Angiopep-2, g7, 

or Tf2 peptide 
facilitated NPs to 

cross the BBB

Restored enzymatic 

activity in lysosomes

[227]

Neuronal Ceroid 

Lipofuscinoses

CLN1 

disease

Peptide PPT1 PPT1 Tf2 peptide 

functionalization 

facilitated NPs to 
cross the BBB via 

transferrin 

receptor- 
mediated 

endocytosis

Restored enzyme 

activity and reduced 

the levels of 
accumulated 

substrates like 

palmitoylated 
proteins

[228]

Mucopolysaccharidoses MPS I Metal/ 

polymer/ 

lipid

IDUA Laronidase Not involved Delivered laronidase 

to lysosomes within 

cells, restored 
enzymatic activity 

and reduced the 

accumulation of 
GAGs

[229]

MPS II Polymer IDS IDS, g7 peptide G7 peptide 
facilitated 

receptor- 

mediated 
transcytosis of 

the BBB

Reduced GAGs 
accumulation and 

addressed the 

enzyme deficiency

[230]

MPS IX Polymer HAse HAse Anti-ICAM-1 

facilitated NPs to 

cross the BBB

Restored the 

deficient enzyme 

activity and reduced 
the accumulation of 

GAGs

[226]

Abbreviations: β-gal, β-galactosidase; ApoE, apolipoprotein E; GCase, glucocerebrosidase; rGCase, recombinant glucocerebrosidase; ASM, acid sphingomyelinase; TfR, 
transferrin receptor; GM1; ICAM-1, intercellular cell adhesion molecule-1; PECAM-1, platelet-endothelial cell adhesion molecule-1; VCAM-1, vascular cell adhesion 
molecule-1; GALC, galactosylceramidase; PPT1, palmitoyl-protein thioesterase-1; IDUA, α-L-iduronidase; IDS, iduronate 2-sulfatase; GAGs, glycosaminoglycans; HAse, 
hyaluronidase.
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owing to the lack of specific enzymes needed to break down these complex molecules, which will lead to progressive cell 
damage and death. GM2 gangliosidosis includes several genetically distinct disorders, the best known of which are Tay- 
Sachs disease and Sandhoff disease.234 Tay-Sachs disease is caused by a deficiency in the enzyme hexosaminidase A; it 
is most common in certain populations such as Ashkenazi Jews, and typically presents in infancy with symptoms such as 
muscle weakness, deterioration of motor skills, and severe nerve damage.235 Sandhoff disease is similar to Tay-Sachs 
disease, but results from the deficiency of both β-hexosaminidase A and B enzymes. It affects a broader range of body 
tissues and exhibits symptoms similar to those of Tay-Sachs disease, including developmental delays, motor weakness, 
and neurologic deterioration.236

ERT can be effective in treating systemic deficiencies, but it is limited by immunogenicity and the shortened half-life 
of intravenous enzymes. NPs have been explored as efficient carriers for systemic enzyme delivery. Paruchuri et al 
reported a hyaluronic acid-b-polylactic acid (HA-PLA) polymer delivery system that enabled enzyme-responsive and 
sustained delivery of β-gal to promote the self-repair process of cellular autophagy.221 In the presence of model cognate 
enzymes, HA-PLA polymer vesicles had a higher release rate owing to enzymatic degradation (Figure 9A). Autophagy 
was reduced in the GM1 gangliosidosis (GM1SV3) cell model, but enhanced in GM1SV3 cells treated with polymeric 
NPs loaded with β-gal compared to healthy cells. After 24 h of treatment with NPs, the fusion of lysosomes and 
autophagosomes in GM1SV3 cells was restored to the normal level of healthy cells (Figure 9B). Another research group 
utilized polyethylene glycol-b-poly(lactic acid) (PEGPLA) polymersomes as vehicles for β-gal delivery to restore 
enzymatic activity and reduce the accumulation of GM1 gangliosides. Limited release of PEGPLA polymersomes was 
observed at physiological pH (7.4), while the release was significantly increased in lysosomes at acidic pH (4.8) 
(Figure 9C).222 The research indicated NPs were promising delivery system for enzymatic treatments to the brain in 
gangliosidoses. Therefore, NPs show promise as delivery systems for ERT in treating gangliosidoses, restoring autopha-
gic function and reducing ganglioside accumulation in the brain.

Sphingolipidoses
Sphingolipidoses refer to a group of inherited metabolic disorders caused by genetic mutations that result in the 
deficiency or malfunction of specific enzymes required for sphingolipid metabolism, characterized by the accumulation 
of sphingolipids in a variety of tissues, including the CNS.237 Sphingolipids play a key role in cell membrane structure 
and cell signaling. The accumulation of sphingolipids leads to cellular dysfunction and ultimately to a variety of clinical 
conditions.237 Sphingolipid disorders include several subtypes, such as Gaucher disease and Niemann-Pick disease. 
Gaucher disease is caused by a deficiency of the enzyme glucocerebrosidase (GCase), leading to the accumulation of 
intracellular glucocerebroside.238 Niemann-Pick disease is a group of inherited metabolic disorders in which mutations in 
specific genes lead to the deficiency of acid sphingomyelinase (ASM). This will cause the accumulation of sphingolipids 
and cholesterol in various cellular lysosomes in the body, resulting in a range of symptoms that severely affect the health 
and function of patients.239

Combining nanotechnology delivery systems with ERT therapy is a promising treatment modality. LNPs delivering 
recombinant GCase (rGCase) were developed for Gaucher disease, bypassing the BBB via intranasal administration and 
restoring enzymatic activity in microglia, reducing substrate accumulation.223 Furthermore, Solomon et al investigated 
how transcytosis pathways at the BBB were altered in Niemann-Pick disease, and how these alterations affected the 
effectiveness of nanocarrier-based therapeutics in crossing the BBB. They synthesized polystyrene NPs targeting TfR, 
ganglioside GM1, or intercellular adhesion molecule-1 (ICAM-1), revealing disease-specific pathway modifications that 
impact brain delivery (Figure 10A).224 They also utilized these polystyrene NPs functionalized with antibodies targeting 
CAMs like ICAM-1, PECAM-1, and VCAM-1, with triple-targeted NPs showing the best brain targeting.225 

Muntimadugu et al described ICAM-1-modified PLGA NPs encapsulating ASM enzymes to restore the deficient enzyme 
activity, thereby reducing the accumulation of sphingomyelin in Niemann-Pick disease. They found NPs were trans-
ported to lysosomes and released active enzymes under lysosomal conditions, and targeted peripheral organs and the 
brain in vivo. Compared with the free enzyme, the encapsulated PLGA NPs enhanced the delivery of the enzyme to the 
organs, especially the brain tissue (Figure 10B-D), and were superior to the coated PLGA NPs, providing guidance for 
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Figure 9 NP-based ERT for gangliosidoses. (A) Release of encapsulated fluorescein isothiocyanate-dextran from hyaluronic acid-polylactic acid (HA-PLA) polymersomes 
when incubated with hyaluronidase (●), citrate phosphate buffer (pH 4.8) (♦), and β-galactosidase (β-gal) (▲) (n = 4, * = p < 0.05, ** = p < 0.01). (B) Co-localization (%) in 
untreated healthy (NSV3) and diseased (GM1SV3) cells, GM1SV3 cells treated with free β-gal (6 h treatment), β-gal-loaded HA-PLA polymersomes for 6, 12, and 24 h. Star 
(*) indicate a significant difference compared to NSV3 cells and diamond ( ) indicates a significant difference in colocalization compared to GM1SV3 cells (n = 3, * = p < 
0.05, ** = p < 0.025). Reproduced from Paruchuri BC, Smith S, Larsen J. Enzyme-responsive polymersomes ameliorate autophagic failure in a cellular model of GM1 
gangliosidosis. Original Research. Frontiers in Chemical Engineering. 2022;4. Creative Commons Attribution License (CC BY).221 Copyright 2022, Paruchuri et al, published by 
Frontiers Media. (C) Release curves demonstrating in vitro release of AF488 β-gal from poly(ethylene glycol)-b-poly(lactic acid) polymersomes under pH 4.8 and pH 7.4 
conditions (n = 3). (* = p < 0.05, ** = p < 0.025). Reproduced with permission from Kelly JM, Gross AL, Martin DR, Byrne ME. Polyethylene glycol-b-poly(lactic acid) 
polymersomes as vehicles for enzyme replacement therapy. Nanomedicine (London, England). Dec 2017;12(23):2591–2606.222 Copyright 2017 Taylor & Francis.
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future applications.226 Based on the studies, NPs are investigated to treat sphingolipidoses by effectively crossing the 
BBB and restoring enzymatic function in the neurological disorders.

Leukodystrophies
Leukodystrophies are a group of rare genetic disorders that primarily affect the white matter of the CNS.240 White matter consists 
of nerve fibers covered by myelin, which insulates and protects the nerve fibers and facilitates the rapid transmission of nerve 
signals. In leukodystrophies, there is a defect in the production or maintenance of myelin, leading to progressive deterioration of 
myelin.241 The symptoms depend on the specific type of leukodystrophy and the extent of myelin damage, such as problems with 
movement, balance, speech, vision, hearing, and cognitive development. In severe cases, there may be grave physical and 
intellectual disabilities.240 There are several types of leukodystrophies such as metachromatic leukodystrophy, Krabbe disease, 
adrenoleukodystrophy, and Alexander disease. Each has its own specific genetic cause and clinical manifestations.242 Krabbe 
disease is a fatal pediatric neurodegenerative LSD caused by insufficient activity of the enzyme galactosylceramidase (GALC), 
which degrades galactosylceramide (a major component of myelin sheaths) and other terminal β-galactose–containing sphingo-
lipids. GALC dysfunction results in elevated levels of cytotoxic D-galactosylsphingosine in neural tissues, which leads to 
extensive degeneration of oligodendrocytes and Schwann cells, followed by destructive demyelination.243

An enzyme delivery system was reported based on the encapsulation of cross-linked enzyme aggregates (CLEAs) into 
PLGA NPs with brain-targeting peptide functionality, which was capable of encapsulating GALCs and preserving the 
enzyme activity to treat Krabbe disease.227 These NPs were functionalized using targeted peptides angiopep-2, g7, or Tf- 
binding peptide to allow the NPs to pass through the BBB (Figure 11A). The result demonstrated restoration of enzyme 
activity in different organs of the CNS and peripheral nervous system as well as in typical accumulation zones after 
intraperitoneal injection of GALC CLEA NPs in Twitcher mice, which showed a return of enzyme activity in the brain to 

Figure 10 NP-based ERT for sphingolipidoses. (A) Nanocarriers (NCs) targeted to the transferrin receptor (TfR), ganglioside GM1 or ICAM-1, associated to the clathrin, 
caveolar or cell adhesion molecule (CAM) routes, respectively. Reproduced with permission from Solomon M, Loeck M, Silva-Abreu M et al. Altered blood-brain barrier 
transport of nanotherapeutics in lysosomal storage diseases. Journal of controlled release: official journal of the Controlled Release Society. Sep 2022;349:1031–1044.224 Copyright 
2022 Elsevier. (B-D) In vivo biodistribution of ASM encapsulated vs coated anti-ICAM PLGA NP formulations. (B) Enzyme presence in blood was analyzed at the indicated 
times using a gamma counter and expressed as the percentage of the injected dose (% ID). (C) Enzyme biodistribution in the indicated organs was assessed 30 min after 
injection and expressed as the tissue-to-blood localization ratio. (D) The specificity index was calculated as the localization ratio of respective NP formulation over the 
localization ratio of the free enzyme. Data are the mean ± SEM and statistics were assessed by Student’s t-test (p < 0.05). * Compares each NP formulation vs free 125I-ASM 
at respective times and locations; # Compares NP encapsulated vs coated enzyme for respective times and locations. Reproduced with permission from Muntimadugu E, 
Silva-Abreu M, Vives G et al. Comparison between Nanoparticle Encapsulation and Surface Loading for Lysosomal Enzyme Replacement Therapy. International journal of 
molecular sciences. Apr 6 2022;23(7).226 Copyright 2022 The authors. Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/.
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the level seen in unaffected mice (Figure 11B-G). This approach offers a promising therapeutic strategy for treating CNS 
involvement in LSDs like Krabbe disease.

Neuronal Ceroid Lipofuscinoses
NCLs are a group of inherited, progressive neurodegenerative disorders primarily affecting children and characterized by the 
accumulation of lipofuscin, a pigment composed of fats and proteins, in body tissues, particularly in neurons, leading to 
neurodegeneration and related symptoms. NCLs are caused by gene mutations and inherited in an autosomal recessive 
pattern.244 Each type of NCL is associated with a different gene mutation that affects specific enzymes or proteins involved in 
cellular function. There are several types of NCLs, each of which can be categorized according to age of onset as infantile NCL 
(INCL or CLN1 disease), late infantile NCL (LINCL or CLN2 disease), juvenile NCL (JNCL or CLN3 disease), and adult NCL 
(Kufs disease or CLN4 disease).245 In all types of NCL, the CNS is significantly affected, resulting in varying degrees of 
neurodegeneration and associated symptoms. The progression and severity of symptoms may vary depending on specific disease 
and individual factors.246

INCL, also known as CLN1 disease or Santavuori-Haltia disease, is caused by a mutation in the CLN1 gene that 
results in a deficiency of the lysosomal enzyme palmitoyl-protein thioesterase-1 (PPT1), which leads to an abnormal 
accumulation of lipofuscin in the lysosomes of cells, including the brain.247 There is currently no cure for INCL, and 
treatment is primarily supportive, focusing on controlling symptoms and improving the quality of life. ERT is one of the 
most promising treatments. One study introduces peptide-based stealth liposomes that inhibited serum protein adsorption 
and used Tf-driven internalization on the BBB to deliver PPT1 (Figure 12A).228 These enzyme-loaded NPs were able to 

Figure 11 NP-based ERT for leukodystrophies. (A) Graphical summary of the experiment. Peptide-modified PLGA was produced by covalent linking of each peptide to 
a previously activated form of PLGA. GALC CLEAs were obtained by precipitation of GALC in acetone in the presence of glutaraldehyde, resulting in Schiff’s base formation 
between enzyme molecules. Last, targeted GALC CLEA NPs were obtained by nanoprecipitation. (B) Legend. Untreated: WT (WT-UT), heterozygous (HET-UT), and TWI 
(TWI-UT). Targeted GALC CLEA ATTO 633 NPs (TWI Targ-NPs): TWI-GALC Ang2 NPs (lot a and lot b), TWI-GALC g7 NPs (lot a and lot b), and TWI-GALC Tf2 NPs 
(lot a and lot b). Control treatments (TWI Controls): GALC CLEA ATTO 633 NPs (TWI-GALC NPs lot a and lot b) and free rm-GALC (GALC-lot a and lot b). (C-G) 
GALC activity of the organs. (C) Brain GALC activity. ***P < 0.001 hET versus WT; ****P < 0.0001 TWI, TWI Targ-NPs, and TWI Controls versus WT; +P < 0.05 TWI 
versus HET; #P < 0.05 TWI Controls versus TWI; ####P < 0.0001 TWI Targ-NPs versus TWI one-way ANOVA (Tukey’s test). Means± SEM (n= 3 to 12 per group). (D) 
Liver GALC activity. **P < 0.01 TWI versus WT and #P < 0.05 TWI Controls versus TWI, one-way ANOVA (Tukey’s test). ^P < 0.05 TWI Targ-NPs versus WT and ^^P< 
0.01 TWI Targ-NPs versus TWI, Student’s t test. Means ± SEM (n = 3 to 6 per group). (E) Kidney GALC activity. ***P < 0.001 TWI and TWI Controls versus WT and ****P < 
0.0001 TWI Targ-NPs versus WT, one-way ANOVA (Tukey’s test). Means ± SEM (n = 3 to 6 per group). (F) Sciatic nerve GALC activity. ****P < 0.0001 all groups versus 
WT, +P < 0.05 TWI versus HET, ++P < 0.01 WT, TWI Targ-NPs and TWI Controls versus HET, one-way ANOVA (Tukey’s test). Means ± SEM (n = 3 to 8 per group). (G) 
Spinal cord GALC activity. ****P < 0.0001 hET, TWI Targ-NPs and TWI Controls versus WT, +P < 0.05 TWI TargNPs versus HET, and ++P < 0.01 TWI and TWI Controls 
versus HET, one-way ANOVA (Tukey’s test). Means ± SEM (n = 3 to 7 per group). Reproduced from Del Grosso A, Galliani M, Angella L et al. Brain-targeted enzyme-loaded 
nanoparticles: A breach through the blood-brain barrier for enzyme replacement therapy in Krabbe disease. Science advances. Nov 2019;5(11):eaax7462.227 Copyright 2019 
The Authors. Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
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restore stable levels of PPT1 activity, comparable to free enzyme, in the fibroblasts from CLN1 patients. Nanocarrier 
encapsulation did not alter uptake or intracellular translocation of enzymes. In addition, the NPs were able to halve the 
level of palmitoylated proteins, restoring them to a state similar to that in normal cells (Figure 12B,C). As a result, NP- 
based enzyme delivery systems demonstrate potential in treating INCL by effectively restoring PPT1 activity and 
reducing lipofuscin accumulation in affected cells.

Mucopolysaccharidoses
MPSs are caused by deficiency in the enzymes required to metabolize glycosaminoglycans (GAGs), a group of 
extracellular heteropolysaccharides that play multiple roles in human physiology. As a result, the absence or dysfunction 
of the enzyme that breaks down GAGs results in the accumulation of GAGs in cells, blood, and connective tissues, and 
affected patients typically develop progressive multisystemic symptoms in early childhood.248 There are several types of 
MPS, each of which is classified according to a specific enzyme deficiency and the resulting symptoms.249 Some types of 
MPS can affect the CNS.10 MPS I (Hurler, Hurler-Scheie, Scheie syndrome) is caused by a deficiency of the enzyme α-L- 
iduronidase (IDUA). All forms of MPS I involve the CNS, but the severity varies.250 MPS II (Hunter syndrome) is 
caused by a deficiency of the enzyme iduronate-2-sulfatase (IDS). CNS involvement is common in MPS II, especially in 
severely ill patients.251 MPS III (Sanfilippo syndrome) has four subtypes, and is caused by the deficiency of an enzyme 
needed to break down heparan sulfate. MPS III particularly affects the CNS. It primarily affects the brain and is 
characterized by severe neurological symptoms, including developmental delays, severe behavioral problems, sleep 
disturbances, and progressive cognitive decline.252 MPS VII (Sly syndrome) is caused by a deficiency of β- 
glucuronidase. It also affects the CNS, with symptoms including developmental delays and cognitive impairment.253 

In brief, the severity and specific symptoms of MPS vary from person to person, and treatment options are limited, 
usually focusing on controlling symptoms and improving the quality of life.254

Some progress has been made in applying therapies such as ERT or hematopoietic stem cell transplantation. The main 
treatment is weekly infusions of a functional enzyme, but this enzyme cannot cross the BBB to reach the CNS.255 Laronidase- 
functionalized multiple-wall lipid-core nanocapsules replaced the deficient IDUA enzyme and enhanced enzyme activity in 
different organs within 4 h and 24 h in MPS I.229 Another study used a delivery method based on g7-functionalized PLGA NPs 
(g7-NPs) loaded with the therapeutic enzyme IDS for treating MPS II.230 These NPs were administered to fibroblasts from 
patients with MPS II for 7 days in vitro, and it was found that the measured induced IDS activity was identical to that detected 
in healthy cells (Figure 13A), while the GAG content was reduced to non-pathological levels (Figure 13B). In vivo 
experiments in MPS II mice administered g7-NPs-IDS weekly revealed a significant reduction in gel deposition in the 
brain (Figure 13C) and liver (Figure 13D) tissues, as well as a reduction in LAMP2 (Figure 13E), CD68 (Figure 13F), and 
GFAP (Figure 13G) markers. These NPs reduced GAG accumulation in the brain and addressed the neurological symptoms of 
the disease, suggesting a generalized improvement in inflammatory response and pathology in the brain. Muntimadugu et al 
reported PLGA NPs coated with ICAM-1 for BBB crossing to deliver hyaluronidase (HAse) enzyme, thereby restoring the 

Figure 12 NP-based ERT for NCLs. (A) Liposome NPs exploit Tf-driven internalization to inhibit serum protein adsorption, deliver PPT1 enzyme to the TfR-mediated 
pathway, and restore stable levels of enzyme activity in the fibroblasts of patients with CLN1. (B) Dose-dependent internalization of vesicles (L-TF2-0 and L-TF2-2.5) or free 
PPT1 in fibroblasts derived from CLN1 patient. Data are reported as mean ± standard error. Two-way ANOVA Dunnett’s test vs L-TF2-0, *p < 0.0125. (C) Quantification of 
the palmitoylated protein after treatment in patient-derived fibroblasts. Data are reported as the average ± standard error. Unpaired t-test vs untreated (T0), ****p < 0.0001. 
Reproduced with permission from Santi M, Finamore F, Cecchettini A et al. Protein Delivery by Peptide-Based Stealth Liposomes: A Biomolecular Insight into Enzyme 
Replacement Therapy. Molecular pharmaceutics. Dec 7 2020;17(12):4510–4521.228 Copyright 2020 American Chemical Society.
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deficient enzyme activity and reducing the accumulation of glycosaminoglycans in MPS IX treatment.226 Hence, drawing 
from these studies, NPs offer potential in treating MPS by crossing the BBB, restoring enzyme activity, and reducing GAG 
accumulation, particularly in the CNS.

Glycoprotein Storage Disorders
Glycoprotein storage disorders, also called glycoproteinoses, are a group of autosomal recessive metabolic disorders in which 
a deficiency of the enzyme responsible for the breakdown of glycoproteins causes them to accumulate in lysosomes and is 
characterized by an abnormal accumulation of glycoproteins in various tissues of the body leading to cell and tissue 
dysfunction.256 There are several types of glycoproteinoses, each associated with a deficiency of a specific enzyme. 
Examples include aspartylglucosaminuria (aspartylglucosaminidase deficiency), fucosidosis (α-L-fucosidase deficiency), 
mannosidosis (α-mannosidase deficiency), sialidosis (neuraminidase deficiency), and Schindler disease (α- 
N-acetylgalactosaminidase).257 Symptoms can vary greatly depending on the specific disorder and severity of the enzyme 
deficiency. Common symptoms include developmental delays, mental retardation, skeletal abnormalities, coarse facial 
features, and organ hypertrophy. Some patients also experience neurological symptoms such as ataxia, seizures, and vision 
problems. Treatment of glycoproteinoses usually focus on controlling symptoms and improving the patient’s quality of life.258 

ERT has limited efficacy in glycoproteinoses because of the BBB. Therefore, nanomedicine delivery systems may have 
a promising application in improving the treatment of glycoproteinoses because of their ability to cross the BBB.

To sum up, for the CNS dysfunction caused by a variety of hereditary LSDs, effective delivery of active enzymes to 
the lesion sites in the brain is the key to treatment. In the context of ERT, NPs help deliver vital enzymes to the brain, 
thereby addressing the underlying causes of various metabolic diseases of the CNS. Although not much research has 
been done, this approach has shown promising applications in these LSD disorders. However, while NPs have been 
optimized for enhanced CNS targeting, achieving sufficient therapeutic enzyme concentrations in affected brain regions 
remains a challenge. Future research should focus on refining NP formulations to improve BBB crossing efficiency, 
enhancing targeting specificity, and prolonging enzyme activity within the CNS.

Figure 13 NP-based ERT for MPSs. (A) Induced IDS activity expressed in nmoles of 4MU (4-Methylumbelliferyl) released in 4 h per mg of protein (nmol/4 h/mg protein) (B) 
GAG content (μg GAG/mg protein) after 7 days treatment in fibroblasts from MPSII patients. (C-D) Histochemical and biochemical analysis of GAG in the (C) brain and (D) 
liver of Ids-ko mice treated with 0.9% NaCl (untreated, UT), g7-NPs, free IDS, g7-NPs-IDS, and in wt mice, after 6 weeks of treatment. (E-G) Quantification of positive cells 
to (E) LAMP2, (F) CD68, and (G) GFAP in the cerebral cortex and hippocampus. Data are mean ± SD. For each time point, asterisks indicate a statistically significant 
difference from UT cells (two-tailed Student’s t-test for A and B, Mann–Whitney U-test for C-G * p < 0.05, ** p < 0.01, *** p < 0.001), while hash marks indicate 
a statistically significant difference between IDS and u-NPs-IDS treated cells (two-tailed Student’s t-test for A and B, Mann–Whitney U-test for C-D, # p < 0.05, ## p < 0.01, 
### p < 0.001. Reproduced from Rigon L, Salvalaio M, Pederzoli F et al. Targeting Brain Disease in MPSII: Preclinical Evaluation of IDS-Loaded PLGA Nanoparticles. 
International journal of molecular sciences. Apr 24 2019;20(8).230 © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed 
under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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Challenges and Future Perspectives for Nanoparticle-Based Therapies
The field of NP-based gene therapy and ERTs for neurological disorders is rapidly advancing, demonstrating significant 
potential to overcome the challenges posed by the BBB. However, despite promising progress, several critical challenges 
and future directions need to be addressed to fully realize the clinical potential of these therapies.

First, targeted delivery and specificity are key areas of focus for future research. The complexity of the CNS, coupled 
with the challenges of crossing the BBB, requires a multidisciplinary approach involving nanotechnology, molecular 
biology, pharmacology, and clinical medicine. While current NPs can enhance drug accumulation in the brain through 
physicochemical optimization and surface modification, there is still a need to improve their brain-targeting capabilities 
and specificity. This will ensure that therapeutic agents are delivered precisely to affected areas without off-target 
effects.259 Future research should prioritize the development of brain-specific target and multifunctional NPs capable of 
targeting multiple markers to enhance both specificity and therapeutic efficacy.

Second, the scalability and manufacturing of NP delivery systems are also areas of concern. The transition from 
laboratory research to clinical application requires scalable and cost-effective manufacturing processes. The complexity 
of NP synthesis and functionalization presents significant hurdles.260 Developing standardized synthesis protocols and 
scalable manufacturing techniques is essential for the clinical application of NP-based therapies.

Third, long-term safety and biocompatibility have been focal points in the study of NP delivery systems. The long- 
term safety of NPs remains a critical concern, particularly regarding their potential accumulation in the liver and other 
organs, as well as unforeseen side effects, immune responses, and the ethical implications of gene editing.261 Future 
research should prioritize long-term biocompatibility and toxicity assessments in animal models, followed by careful 
monitoring in clinical trials to ensure that NPs do not cause adverse reactions over extended periods.

Finally, personalized medicine represents a future direction for the use of NPs in treating neurological disorders. The 
heterogeneity of neurological diseases suggests that a one-size-fits-all approach may be ineffective. Developing NP-based 
personalized therapies that take into account the unique genetic, epigenetic, and environmental factors of each patient 
could lead to more effective and tailored treatments.262

Overall, although NP-based delivery systems show remarkable promise in bypassing the BBB and providing targeted 
drug delivery to the CNS, several challenges limit their efficacy. Key limitations include potential off-target effects, 
immunogenic responses, and the need for precise control over NP biodegradability and clearance. Furthermore, achieving 
both high treatment efficacy and safety remains challenging, especially with concerns about long-term NP accumulation 
in CNS tissues and peripheral organs. Future research therefore prioritizes improving NP design to enhance targeting 
accuracy, BBB permeability, and controlled release mechanisms, fostering more effective and safer treatments for 
complex neurological diseases.

Conclusion
The burgeoning field of NP applications in neurological disorders, particularly in the realms of gene therapy and ERT, 
represents a significant stride in the pursuit of more effective treatments for neurological conditions. This review has 
described the mechanisms by which NPs cross the BBB, a key obstacle in neurotherapeutic delivery, and highlighted the 
multifaceted advantages of NPs as drug delivery systems for the treatment of neurological disorders. Owing to their 
multifunctionality and surface modifiability, NPs can be engineered to specific sizes, shapes, and surface characteristics 
that not only protect the loaded genetic material and enzymes from degradation in the in vivo environment but also 
facilitate the crossing of the BBB, which ensures that the therapeutic agents reach the intended site of action within the 
brain. NPs thus provide a unique platform for CNS drug delivery.

The current research landscape is rife with advancements in nanotechnology, and organic and inorganic NPs all have 
been widely explored for therapeutic applications in the treatment of neurological disorders, each with their own unique 
properties and applications. For example, liposomal NPs are of interest for their biocompatibility and ability to 
encapsulate both hydrophilic and hydrophobic drugs, while polymeric NPs offer enhanced stability and controlled 
release of therapeutic drugs. Inorganic NPs, such as quantum dots and silica NPs, have been studied for their robustness 
and potential in diagnostic imaging and therapeutic delivery. Despite these advances, the clinical translation of NP-based 
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therapies still faces challenges. Issues such as potential toxicity, long-term stability, and the body’s immune response to 
NPs need to be further addressed. In addition, quantitative production and batch-to-batch consistency are important for 
clinical applications. Therefore, future research should focus on optimizing the design and functionalization of NPs to 
improve their efficiency and safety. Furthermore, the field is moving towards personalized medicine, in which treatment 
plans are tailored to the individual patient. NPs offer the possibility of personalized therapies, but this requires a deeper 
understanding of disease mechanisms and patient-specific responses to treatment.

In conclusion, NPs have great potential for application in the treatment of neurological disorders, especially for gene 
therapy and ERT. Their ability to cross the BBB and deliver therapeutic agents directly to lesions in the brain paves way 
for more effective and minimally invasive treatments, but the road to clinical application is rife with challenges. 
Continued research, innovation, and interdisciplinary collaboration will be necessary to overcome these obstacles and 
realize the full potential of these therapies in improving patient prognosis. As research in this area progresses, it is 
expected that NP-based therapies will become a cornerstone in the treatment of neurological disorders.
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