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Abstract: Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications which exerts detrimental effects 
on mothers and children. Emerging evidence has pointed to the important role of the fatty acid transporter protein CD36 in the 
pathogenesis of GDM. As a heavily glycosylated transmembrane protein, CD36 is widely expressed in diverse cell types, including 
placental trophoblasts, monocytes/macrophages, adipocytes, and pancreatic cells et al. CD36 plays a key role in lipid metabolism and 
signal transduction in the pathophysiological mechanism of GDM. The modified expression and functionality of CD36 may contribute 
to inflammation and oxidative stress in maternal tissues, interfere with insulin signaling, and subsequently influence maternal insulin 
sensitivity and fetal growth, increasing the risk for GDM. This review provides an overview of the current knowledge regarding the 
expression and function of CD36 in various tissues throughout pregnancy and explores how CD36 dysregulation can activate 
inflammatory pathways, worsen insulin resistance, and disrupt lipid metabolism, thereby complicating the necessary metabolic 
adjustments during pregnancy. Furthermore, the review delves into emerging therapeutic approaches targeting CD36 signaling to 
alleviate the impacts of GDM. Understanding the involvement of CD36 in GDM could yield crucial insights into its mechanisms and 
potential interventions for enhancing maternal and fetal health outcomes. 
Keywords: CD36, gestational diabetes mellitus, lipid metabolism, inflammation, insulin resistance, treatment

Introduction
Gestational diabetes mellitus (GDM) is one of the most common disorders associated with pregnancy, characterized by 
the recognition of abnormal glucose tolerance during pregnancy for the first time, lacking the classic symptoms of 
polyphagia, polydipsia, polyuria, and weight loss observed in other forms of diabetes. Unlike those with type 1 or type 2 
diabetes mellitus (T2DM), pregnant women with GDM frequently normalize after childbirth. The incidence of GDM 
exhibits geographical variation, with the Middle East and North Africa showing the highest prevalence at 27.6%, and 
North America recording the lowest at 7.1%. The average estimated prevalence rate stands at 14%.1,2 There has been 
a steady increasing trend in GDM prevalence, mainly caused by the rising obesity epidemic and advancing maternal age.3 

Women with GDM are at an increased risk of shoulder dystocia, birth injuries, hypertensive disorders of pregnancy, 
postpartum depression, and subsequent development of T2DM. Fetuses of GDM women also face a greater risk of 
macrosomia, birth injuries, hypoglycemia, erythrocytosis, and hyperbilirubinemia.4,5
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The pathophysiology of GDM encompasses several pathological mechanisms, such as compromised lipid transport 
across the placenta, persistent low-level oxidative stress, inflammation, and disrupted lipid metabolism. CD36, 
a multiligand receptor involved in fatty acid transport, plays a pivotal role in these processes.6,7 This receptor mediates 
lipid transport in the placenta, linking maternal metabolic health with fetal development. Moreover, the interaction 
between CD36 and agonists like free fatty acids (FFAs) is thought to potentially activate adipocytes and macrophages, 
thereby generating reactive oxygen species (ROS), heightening oxidative stress, and stimulating the release of pro- 
inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), among others.8,9 Studies 
have reported that modulation of CD36 expression in endothelial and parenchymal cells has been shown to have 
a positive impact on GDM.10

This review focuses on the impact of CD36 in placental fatty acid transport, oxidative stress and inflammation, insulin 
resistance and abnormal lipid metabolism in GDM. In addition, it will discuss how changes in CD36 expression are 
linked to some of the adverse pregnancy reactions associated with GDM. This article also provides insights on current 
therapeutic approaches targeting CD36 for GDM.

CD36: Structure and Function
CD36, an 88-kDa heavily glycosylated fatty acid translocase (FAT/CD36), was first identified in platelets. It belongs to 
the class B2 scavenger receptor family, which encompasses low-density lipoprotein (LDL), high-density lipoprotein 
(HDL)-bound scavenger receptor B1, and HDL-bound scavenger receptor B3.11–14 CD36 is widely expressed in various 
cell types, such as mononuclear cells, tissue macrophages, placental membranes, microvilli, placenta basement mem-
branes, lymphatic endothelial cells (LECs), adipocytes, hepatocytes, platelets and skeletal myocytes (Table 1).10,15–18

Table 1 Localization and Functions of CD36 in the Human Body

CD36-Expressing 
Cells or Tissues

Main Ligands of CD36 Role of CD36 Related Diseases References

Platelets Thrombospondin-1, 
Oxidized low-density 

lipoprotein (ox-LDL)

Activate platelets Heart attack, 
stroke

[19,20]

Macrophages and 

monocytes

ox-LDL, 

phosphatidylinositol, 

glycolipids and some 
bacterial components

Amplifies and initiates inflammatory pathways Atherosclerosis, 

Alzheimer’s, 

diabetes

[21–23]

Skeletal muscle and 
cardiomyocytes

Long chain fatty acids 
(LCFA)

Transfers LCFA that support muscle contraction Diabetes [24,25]

Pancreatic β-cells LCFA Increases the influx of free fatty acids into pancreatic 
β-cells to influence glucotoxicity dysfunction

Diabetes [26]

Endothelial cells LCFA, malaria parasite Participate in inflammation and oxidative stress, 
promoting the expression of various cytokines and 

inflammatory factors, induce apoptosis

Atherosclerosis, 
Alzheimer’s, 

diabetes, cerebral 

malaria

[27,28]

Immune lymphocyte Lipid molecules, 

glycolipids

Mediates phagocytosis of apoptotic cells infected 

with Plasmodium falciparum

Malaria [29]

Adipose tissues LCFA and their derivatives Adjust lipoprotein lipase (LPL) expression to 

mediate fatty acids (FAs) uptake

Diabetes [30]

Liver ox-LDL, FAs Involved in ox-LDL being processed by the liver and 

involved in FAs uptake

Fatty liver disease, 

non-alcoholic fatty 
liver disease

[31,32]
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The CD36 gene is positioned on chromosome 7 (7q11.2) and is composed of 17 exons and 18 introns. The gene 
encodes a 472-amino acid protein that is folded into a single peptide chain. This protein contains two transmembrane 
domains, two very short cytoplasmic domains, and a large glycosylated extracellular domain with a hairpin-like 
membrane topology.33 The extracellular domain of CD36 contains multiple binding sites enabling the recognition of 
various endogenous and exogenous ligands, such as FFAs, collagen, thrombospondin (TSP), and oxidized low-density 
lipoproteins (ox-LDL). Furthermore, it has the ability to participate in inflammation through its signal transduction 
capabilities.7,34–38 The amino-terminal region harbors binding domains for hexarelin, fatty acids (FAs), ox-LDL, 
phospholipids, TSP, and P. falciparum-infected erythrocytes, while the carboxyl tail facilitates signal transduction by 
interacting with multiple tyrosine kinases.35–38

Lipid Transport and Signaling Functions of CD36 in the Pathogenesis of 
GDM
In the pathological process of GDM, changes in CD36 levels in different types of cells will not only change the 
metabolism of the cells themselves, but also affect the progression of GDM (Table 2).

CD36 in Placenta and Trophoblasts
The placenta is differentiated from the cells of the trophoblast of the blastocyst and its substance is a structure located 
between the chorionic villi (the fetal side of the placenta) and the basement membrane (the maternal side of the placenta). 
The placenta functions as an intermediary for the exchange of materials between the mother and the fetus43–46, 
facilitating the regulation of various nutrient transporters, including those for glucose, FAs, amino acids, and vitamins, 
to support fetal development.43 Prior to crossing the placenta, lipids, including triglycerides, require hydrolysis to 
transform into FFAs.47 The presence of lipoprotein lipase (LPL) activity in isolated placental trophoblasts suggests 
that the placenta is capable of metabolizing triglyceride-packaged lipid species into non-esterified FAs.39,48 The 
trophoblast facilitates the transport of FAs through the placenta using specific binding and transport proteins (Figure 1, 
the right part). Notably, proteins like the 40-kDa placenta plasma membrane fatty acid binding protein (p-FABPpm), 
a family of 63–70-kDa fatty acid transport proteins (FATP 1–6), and FAT/CD36 are pivotal in this mechanism.47,49–53 

Segura et al demonstrated that placental FAT/CD36 expression is significantly elevated in pregnant women with GDM. 
This alteration is associated with an increased content of long-chain polyunsaturated fatty acids (LCPUFAs), including 
docosahexaenoic acid (DHA, 22:6 n-3), which is crucial for placental angiogenesis.39,54–56 DHA has the ability to 

Table 2 The Effect of CD36 on Different Cells and Progression of GDM

Cells Expression of 
CD36

Effect on Cells Effect on GDM Reference

Placental trophoblasts Upregulation* Increases the transport of fatty acids Increases the supply of fetal fatty 

acids

[39]

Vascular smooth 

muscle cells

– Increases the production of reactive oxygen 

species

Aggravates oxidative stress [40]

Adipocytes Upregulation* Increase the transport of fatty acids Aggravates oxidative stress [41]

Deficiency** Reduces PPARγ levels Promotes local tissue insulin 

resistance

[30]

Monocyte-derived 

macrophages

Upregulation* Initiates the inflammatory cascade Increases inflammation [7]

Hepatocytes Upregulation* Inhibits β-oxidation of fatty acids and increase 

triglyceride synthesis

Promotes the occurrence of 

hypertriglyceridemia

[31,42]

Notes: *: CD36 levels are pathologically up-regulated in GDM; **: Genetic deletion of CD36. 
Abbreviations: GDM, gestational diabetes mellitus; PPAR, peroxisome proliferator-activated receptor.
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selectively enhance the expression of vascular endothelial growth factor (VEGF), thereby elevating VEGF levels in the 
placenta and consequently stimulating blood vessel formation.55

CD36 Promotes Oxidative Stress and Inflammation
Oxidative Stress
CD36 promotes inflammation and oxidative stress,57 pathogenic processes strongly implicated in GDM. CD36 functions 
as both a fatty acid transporter and an essential signaling receptor, transducing intracellular cascades. In women with 
GDM, there is an increase in levels of oxidative stress markers in maternal circulation compared to those in normal 
pregnancy.58,59 During pregnancy, physiological changes lead to increased production of placenta-derived ROS in the 
blood, promoting the occurrence of oxidative stress.60 Elevated glucose oxidation occurs in pregnant women experien-
cing hyperglycemia, leading to an increased availability of electron donors for the electron transport chain. Consequently, 
more electrons are transferred to molecular oxygen, resulting in an escalation of ROS production, exacerbating oxidative 
stress.61 CD36 on vascular smooth muscle can also promote the production of ROS by activating NADPH oxidase.40 

Excessive concentrations of ROS lead to irreversible oxidative damage to a broad spectrum of biomolecules, including 
DNA, proteins, and lipids, thereby compromising a multitude of cellular functions. Nakamura et al believe that the 
increased production of ROS in cardiomyocytes and the activation of tumor suppressor p53 (p53 participates in the 
regulation of mitochondrial respiration through cytochrome c oxidase 2 (SCO2)) may lead to p53 enhanced 

Figure 1 The role of CD36 in insulin resistance and fetal nutrient supply. (The left part) The expression level of CD36 in lymphatic endothelial cells (LECs) has a direct impact on 
the development of insulin resistance. When CD36 expression is absent in small intestinal lymphatic (ie, lacteals) endothelial cells, it has different effects on insulin resistance in 
endothelial cells and adipocytes. For endothelial cells, deletion of CD36 expression on LECs inhibits the signaling of vascular endothelial growth factor-C (VEGF-C), thereby 
enhancing glycolysis, weakening fatty acid oxidation, and reducing the expression of vascular endothelial-calcium adhesion (VE-cadherin), ultimately destroying the integrity of the 
endothelial monolayer. For adipocytes, (a) CD36 deficiency in LECs would induce lipoprotein lipase (LPL) expression. (b) Increased expression of LPL increases the reaction with 
chylomicrons, resulting in the production of more free fatty acids (FFAs). (c) Excess FFAs promote the growth of adipose tissue, leading to the accumulation of visceral fat, 
inflammation, and ultimately insulin resistance in adipose tissue. (The right part) CD36 is expressed as a fatty acid transporter protein in various cells of the placenta. Fatty acids 
(FAs) bound to proteins and other substances are broken down into FFAs by enzymes in placental tissues before being transported by fatty acid transporter proteins. This allows for 
the transportation of FAs to the fetus through the placenta, providing the necessary supply. On the placental basal plasma membrane, there are three fatty acid transporter proteins: 
placenta plasma membrane fatty acid binding protein (p-FABPpm), fatty acid transport proteins (FATP), and fatty acid translocase (FAT/CD36). Cytoplasmic fatty acid binding protein 
(FABP) may facilitate translocation to the fetal circulation through placental basal plasma membranes. On the microvillous membrane, there are only two transporter proteins: 
FATPs and FAT/CD36. This distribution facilitates the unidirectional transfer of FAs from the mother to the fetus. 
Abbreviations: FAO, fatty acid oxidation; VEGFR-2, vascular endothelial growth factor receptor-2.

https://doi.org/10.2147/JIR.S502314                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 1578

Huang et al                                                                                                                                                                          

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



transcriptional regulation of CD36.62 For adipocytes, the expression of CD36 in adipocytes of obese people is up- 
regulated, and adipose tissue promotes fatty acid flow through CD36, leading to fat overload and oxidative stress.41,63 

Pancreatic β-cells are especially susceptible to ROS due to their low levels of free radical-quenching antioxidant 
enzymes.64 Therefore, oxidative stress triggers β-cell dysfunction by promoting apoptotic processes, disrupting ATP- 
sensitive potassium channels (KATP channels), and suppressing transcription factors related to β-cell neogenesis, 
ultimately reducing insulin secretion.65

Inflammation
An imbalance between the body’s antioxidant capacity and oxidative stress leads to an increase in ox-LDL within the 
endothelium of the blood vessels.66 At this juncture, monocytes can easily migrate into the vascular intima and 
differentiate into macrophages within the tissue. CD36 exhibits a strong binding affinity for ox-LDL on the membranes 
of macrophages. The upregulation of CD36 on monocyte-derived macrophages is thought to be a consequence of 
increased glucose-mediated translation efficiency of CD36 mRNA, closely correlated with diabetes and obesity.7,21,67 

Over-expressed CD36 on macrophages initially interacts with ox-LDL, serving as a Toll-like receptor (TLR) agonist that 
triggers the inflammatory cascade. Subsequently, CD36 binds to Lyn, a tyrosine kinase, at the MISY motif (amino acids 
460–463) located at the C-terminus of CD36.7 FFAs have been postulated as TLR agonists, potentially playing a role in 
the initiation of inflammatory signaling pathways under the coexistence of GDM and obesity.68 Through Lyn-mediated 
phosphorylation modification of TLR, CD36 binds to TLR and participates in the activation and amplification of 
downstream pro-inflammatory signaling pathways.6,7 Upon interaction with ox-LDL, CD36, expressed on macrophages, 
initiates the formation of a complex between Toll-like receptor-4 (TLR-4) and Toll-like receptor-6 (TLR-6), thereby 
triggering the activation of the downstream adaptor protein myeloid differentiation primary response protein (MYD88). 
Simultaneously, CD36 also binds to FFAs, indirectly promoting MYD88 activation by zinc finger-aspartate-histidine- 
cysteine 6, a specific palmitoyl-acyl transferase of MYD88. The activated MYD88 leads to the release of nuclear factor- 
κB (NF-κB) from another complex, enabling its translocation into the nucleus. Within the nucleus, NF-κB binds to DNA, 
initiating transcription and resulting in the production of pro-inflammatory cytokines such as TNF-α and IL-6 
(Figure 2).68–72 Moreover, oxidative stress induces apoptosis in hypertrophic adipocytes, attracts macrophages for 
dead cell and waste product removal, and stimulates the release of inflammatory factors, leading to localized inflamma-
tion. Simultaneously, oxidative stress promotes the release of pro-inflammatory and inflammatory factors through the 
signal pathway mediated by TLR, which aggravates systemic inflammation.73

CD36 and Insulin Resistance
Insulin resistance refers to the impaired biological response of target tissues to insulin stimulation. While all tissues with 
insulin receptors can develop insulin resistance, the primary ones affected are adipose tissue, skeletal muscle, and the 
liver. The onset of insulin resistance typically hinders the disposal of glucose into insulin-resistant tissues, leading to 
inadequate energy provision to the body. Consequently, higher levels of insulin are needed to transport glucose into these 
tissues. This resultant hyperinsulinemia exacerbates insulin resistance, perpetuating a vicious cycle. Ultimately, the 
pancreatic β-cell activity becomes insufficient to meet the heightened insulin demand caused by insulin resistance, 
resulting in hyperglycemia.74 During normal pregnancy, placental hormones coordinate a significant rise in insulin 
resistance, leading to increased postprandial glucose levels and a 2- to 3-fold increase in insulin production.47 The 
majority of GDM cases (~80%) occur against a backdrop of chronic insulin resistance and develop into pancreatic β-cell 
damage, often influenced by genetic factors.75

The fatty acid transporter protein CD36 is implicated in the uptake of FAs by adipocytes, the promotion of 
adipogenesis, and the accumulation of visceral fat.76,77 Recent studies have revealed its dual role as both a transporter 
protein and a signaling molecule in adipose tissue, implicated in insulin resistance. In adipocytes, the expression of CD36 
could potentially influence the expression of peroxisome proliferator-activated receptor gamma (PPARγ), a key nuclear 
factor in adipogenesis.78 CD36, as a downstream target of PPARγ, is also implicated in adipogenesis. Furthermore, CD36 
is involved in adipocyte differentiation by regulating mitotic clonal expansion in the initial phase and modulating the 
expression of genes related to lipid biosynthesis.79,80 The regulation of PPARγ expression by CD36 levels could play 
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a role in the onset of insulin resistance in adipocytes. Nakamura et al argue that adiponectin, when stimulated by PPARγ, 
serves as a spacer between adipocytes by binding to T (truncated)-cadherin on the adipocyte surface. A decline in 
adiponectin production is proposed to reduce inter-cellular space, thereby restricting interstitial fluid perfusion, resulting 
in reduced metabolic activity in adipocytes and promoting insulin resistance.30 Thus the absence of CD36 on adipocytes 
results in reduced PPARγ levels, subsequently decreasing PPARγ-induced lipocalin expression. This hinders the 
differentiation of adipocytes and promotes the onset of insulin resistance in adipocytes.

Cifarelli et al found that mice with deletion of CD36 in LECs (Cd36ΔLEC) showed heightened permeability of 
mesenteric lymphatics, accumulation of inflamed visceral fat, and impaired glucose disposal. This deletion also increased 
the gene expression of LPL in the visceral adipose tissue of mice, potentially leading to increased availability of FAs 
from chylomicrons in the leaked lymph, resulting in adipocyte hypertrophy, inflammation, and glucose intolerance.17 

When CD36 expression is absent in small intestinal lymphatic (ie, lacteals) endothelial cells, it has different effects on 
insulin resistance in endothelial cells and adipocytes. For endothelial cells, deletion of CD36 expression on LECs is 
associated with reduced biological activity of vascular endothelial growth factor receptor-2 (VEGFR-2) and AKT (a key 

Figure 2 CD36 is involved in inflammatory signaling. Serving as a high-affinity receptor for exogenous fatty acids (FAs), CD36 mediates the cellular uptake of FAs, enabling 
the activation of myeloid differentiation primary response protein (MYD88) by zinc finger-aspartate-histidine-cysteine 6 (ZDHHC6). Participation of CD36 in the 
recruitment of the MYD88 adaptor protein by Toll-like receptor (TLR) for nuclear factor-κB (NF-κB) activation exacerbates the inflammatory state, leading to increased 
production of pro-inflammatory cytokines and elevated expression levels. 
Abbreviations: FFAs, free fatty acids; IL-6, interleukin-6; oxLDL, oxidized low-density lipoproteins; TNF-α, tumor necrosis factor-α.
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regulatory molecule in the insulin signaling pathway), which in turn affects vascular endothelial growth factor-C (VEGF- 
C) signaling. Inhibition of VEGF-C signaling leads to decreased expression of enzymes related to fatty acid oxidation in 
LECs, resulting in the inhibition of fatty acid oxidation. At the same time, the expression of enzymes related to glycolysis 
is elevated in LECs, which enhances glycolysis. These changes in cellular activities can alleviate insulin resistance in 
endothelial cells and reduce the expression of vascular endothelial-calcium adhesion proteins, ultimately disrupting the 
integrity of the endothelial monolayer (Figure 1, the left part).81 For adipocytes, CD36 deficiency in LECs has the 
potential to directly impact lipid metabolism in adipocytes. Consequently, visceral adipose accumulates, promoting 
inflammation of adipose tissue and insulin resistance.17

CD36 and Abnormal Lipid Metabolism
CD36 can be distributed in the plasma membrane and cytoplasm of liver cells and adipocytes,82 so there are potential 
differences in the subcellular distribution of CD36. This difference has implications for normal fat metabolism in the 
liver.31 It has been reported that factors affecting CD36 expression levels (CD36 transcript levels) and factors affecting 
CD36 subcellular translocation (such as insulin levels and palmitoylation levels) are related to membrane-bound CD36 
levels.83–85 When a pregnant woman is under the conditions of a diabetic pregnancy, the level of membrane-bound CD36 
is increased due to the gestational state, along with chronically high levels of insulin.86 This translocation of CD36 to the 
plasma membrane in response to the metabolic state allows for increased FAs uptake by hepatocytes.87 As a result of 
insulin action, CD36 on the mitochondria of hepatocytes is transferred to the plasma membrane in large quantities, 
leading to the inhibition of β-oxidation of FAs in the mitochondria in which CD36 is involved, as well as an increase in 
the synthesis of hepatocyte triglycerides.31,88 This ultimately leads to the development of lipid overload in the liver, as 
well as hypertriglyceridemia, which is manifested in most pregnant women with diabetic pregnancies.31,42

GDM-Related Adverse Pregnancy Outcomes
Preeclampsia
Preeclampsia is described as the occurrence of hypertension along with significant proteinuria after 20 weeks of 
gestation, and it represents the foremost contributor to severe maternal complications and fetal demise on a global 
scale.89,90 Vascular endothelial injury, mediated by oxidative stress from increased placental ROS or decreased anti-
oxidant activity, is thought to be the fundamental pathology of preeclampsia. Thrombospondin −1 (TSP-1) functions as 
a ligand for CD36, dampening platelet sensitivity to activation signals at the vascular injury site. This modulation occurs 
through a tyrosine kinase-dependent mechanism downstream of CD36, thereby impacting platelet activation at the injury 
site and indirectly fostering vascular endothelial injury.91,92 One of the specific markers for preeclampsia is VEGF, and 
the expression of VEGF-C is also decreased in CD36-deficient LECs.17 This implies a potential role for CD36 in 
regulating the expression of the preeclampsia biomarker.

Macrosomia
Newborns are often classified as having “macrosomia” when their birthweight exceeds a specific threshold, commonly 
defined as 4000g.93,94 Numerous articles have demonstrated the association between GDM and the incidence of 
macrosomia. High maternal serum glucose levels allow for the passage of glucose to the fetus through the placenta, 
yet the heightened maternal insulin cannot be conveyed to the fetus via the placenta. By the second trimester, the fetal 
pancreas is capable of independently secreting insulin and commences its response to elevated blood glucose. When 
hyperinsulinemia and hyperglycemia coexist, it can lead to increased fetal fat and protein storage, ultimately resulting in 
macrosomia.95–97 The placental fatty acid transporter enzyme, FAT/CD36, exhibits heightened expression in patients with 
GDM, along with increased expression of FABPpm, FATP, and other proteins linked to placental fatty acid transport.98 

Consequently, there is an increase in the supply of FAs from the mother to the fetus, thereby heightening the risk of 
macrosomia.

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S502314                                                                                                                                                                                                                                                                                                                                                                                                   1581

Huang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Fetal Retina and Nervous System
DHA constitutes approximately 80% of all polyunsaturated FAs in the retina, and about 60% of the brain’s dry weight 
comprises FAs, with DHA being the primary omega-3 fatty acid.99 Despite the increased expression of FAT/CD36 in the 
placenta of pregnant women with GDM, leading to heightened placental DHA content,39 María et al observed a notable 
reduction in the major facilitator superfamily domain containing 2A (MFSD2A) in the placenta of women with GDM. 
This reduction impeded the transfer of DHA from the placenta to the fetus,100,101 resulting in an inadequate supply of 
fetal DHA. Such insufficiency may lead to visual symptoms in the fetus and could even impact the offspring’s learning 
and cognitive abilities later in life.102–105

CD36-Related Potential Treatments for GDM
Targeting CD36 shows therapeutic promise, both interrupting the fueling of inflammatory pathways and allaying the 
disruptive effects of redox imbalance on insulin action and β-cell viability in GDM (Table 3).

Targeting Redox Imbalance
Metformin is widely utilized as an oral medication in clinical practice for the treatment of GDM. Moon et al exposed 
INS-1 islet cell tumor cells from mice to a high-glucose environment for a specific duration. This exposure led to an 
increase in FFAs uptake by promoting CD36 expression and downregulating insulin and pancreatic duodenal homeobox1 
(Pdx1) mRNAs. Consequently, this inhibition of glucose-stimulated insulin secretion (GSIS) occurred alongside an 
elevation in ROS levels.106 Treatment with metformin in high glucose conditions suppressed the increased CD36 mRNA 
expression by significantly reducing ROS production and reversed the decreased insulin mRNA expression. Inhibiting 
CD36 suppressed high glucose-induced activation of c-Jun amino terminal kinases (JNKs), potentially averting cell 
apoptosis, and reversed high glucose-induced activation of cleaved Caspase-3, thereby alleviating inflammation and 
apoptosis, ultimately reducing pancreatic cell damage.106,111,112

Targeting Inflammatory Pathways
PPAR Receptor Agonist
The PPAR family of transcription factors, as transcription factors with important roles in the transcription of CD36, has 
so far identified three different PPAR isoforms in mammals, namely PPAR-α, PPAR-β/δ, and PPAR-γ.113 PPAR-α is 
a key transcription factor for the transcription of key enzymes in the βoxidation pathway occurring in, among others, 
hepatocyte mitochondria, including acyl CoA oxidase, carnitine palmitoyl transferase I, mitochondrial hydroxymethyl-
glutaryl CoA synthase.114,115 PPAR-α agonists, such as CP775146 and fenofibrate, increase the expression of CD36 in 
hepatocytes,107,108 which perhaps can alleviate the inhibition of fatty acid β-oxidation caused by the lack of CD36 in the 
mitochondrial membrane of hepatocytes due to high levels of insulin in pregnant women with GDM, prevent the 

Table 3 Compounds for the Treatment of Diseases Associated With CD36

Compounds Type of 
Compounds

Effect on CD36 Target Organs 
of CD36

Related 
Diseases

References

Metformin Non-target 

Biguanide

Blocks the increase of CD36mRNA expression and 

CD36 protein expression

Pancreas Diabetes [106]

Fenofibrate PPAR-α 
agonists

Increases FAs oxidation and increase the expression 

of CD36

Liver – [107,108]

Thiazolidinediones PPAR-γ 
agonists

Engages the expression of insulin receptor substrates Adipose Insulin 
resistance

[109]

miR-135a mimics microRNA Inhibits level of CD36 and variety of inflammatory 
related molecules

– – [110]

Abbreviations: GDM, gestational diabetes mellitus; PPAR, peroxisome proliferator-activated receptor; FAs, fatty acids.
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accumulation of lipids in the cells, and attenuates inflammation. PPAR-γ agonists such as thiazolidinediones can enhance 
insulin sensitivity in adipose tissue and prevent the development of insulin resistance in adipose tissue by directly 
engaging the expression of insulin receptor substrates.109

Receptor for Advanced Glycation End Product (RAGE) Inhibiting Drugs
Advanced glycation end products (AGEs), are products of nonenzymatic reactions between the aldehyde groups of 
sugars and the free amino groups of proteins, lipids, and DNA, and are highly cytotoxic; hyperglycemia leads to the 
accumulation of AGEs.116–118 Nε-(carboxymethyl)lysine (CML) is the key active component of AGEs that promotes the 
activation of ligands for AGEs (eg, TLR4 and RAGE) and modulates downstream inflammatory responses.119 

Bharathidevi et al proposed that RAGE silencing can inhibit TLR4 signaling and reduce TLR-involved inflammation, 
and the way to inhibit TLR signaling may be through down-regulating the expression of the adapter protein MYD88. 
Treating endothelial cells with CML can directly activate the expression of CD36.120 RAGE silencing may be able to 
reduce CD36 involvement with TLR4-mediated inflammatory responses, which can also directly reduce the risk of 
damage to the body of pregnant women with GDM due to the cytotoxicity of AGEs.

miR-135a Mimics
miR-135a is a type of microRNA that has been recognized to be abnormally expressed in a variety of tumors.121,122 Du 
et al found that miR-135a mimics can significantly overexpress miR-135a in vitro, resulting in significant inhibition of 
CD36 levels, a variety of inflammatory related molecules and TLR4 levels, thus inhibiting TLR4-mediated inflammatory 
response.110

Targeting the Subcellular Distribution of CD36
Palmitoyltransferases containing the Asp-His-His-Cys (DHHC) motif, including DHHC4 (localized in the Golgi 
apparatus) and DHHC5 (localized in the plasma membrane), have distinct roles in the translocation of CD36 from 
the cytoplasm to the plasma membrane.123 Wang et al proposed that when CD36 protein reaches the Golgi 
apparatus, DHHC4 performs palmitoylation modification on CD36, and then translocates from the Golgi apparatus 
to the cytoplasm under the general sorting effect of ADP-ribosylation factors 6 (ARF6) on palmitoylated membrane 
proteins.124,125 Wang et al believe that DHHC5 protects CD36 on the plasma membrane from depalmitoylation to 
ensure the membrane localization of CD36 and maintain the uptake of FAs by adipocytes through CD36.124,125 

Inhibiting DHHC4/5 may reduce plasma membrane-associated CD36 levels in adipocytes and prevent inflammation 
caused by lipid accumulation.

Conclusion
GDM, a metabolic disorder occurring during pregnancy, has implications for both maternal health and fetal growth and 
development, and its global prevalence is steadily increasing each year. During pregnancy, CD36 expression increases in 
tissues and organs including the placenta, adipose tissue, and pancreas. As a protein and signaling molecule facilitating 
fatty acid transport, CD36 plays a role in triggering and intensifying oxidative stress and inflammation, leading to insulin 
resistance, compromised β-cell function and abnormal lipid metabolism. Nonetheless, there is limited knowledge 
regarding the specific mechanism through which CD36 contributes to GDM. Subsequent studies may provide insight 
into the specific molecular mechanisms of CD36 in these processes and explore how to effectively regulate CD36 activity 
to treat or prevent GDM. Furthermore, it is crucial to consider the interactions between CD36 and other metabolic 
regulators and how these interactions influence metabolic status during pregnancy.
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