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Purpose: The purpose of this study was to evaluate the antibacterial activity and mechanism of linalool against Methicillin-resistant 
Staphylococcus aureus (MRSA).
Methods: The determination of the antibacterial activity of linalool against clinically isolated MRSA strains was based on the 
minimum inhibitory concentration (MIC) and growth curve analysis. Finally, the inhibition mechanism of linalool was elucidated 
through metabolomic analysis and molecular docking.
Results: Among the isolated strains, penicillin resistance was found to be the highest, while resistance to daptomycin/quinupristin- 
dalfopristin, linezolid, vancomycin, tetracycline, telithromycin, and levofloxacin was not observed. The MIC range of linalool was 
211.24–1.65 μg/mL, with MIC50 and MIC90 values of 13.2 μg/mL and 105.62 μg/mL, respectively. Metabolomic analysis revealed that 
linalool interferes with various substance metabolisms and energy metabolism in MRSA, with the glutathione pathway potentially 
being a key pathway affected by linalool. Molecular docking revealed that linalool exhibited good binding potential to the target 
glutathione.
Conclusion: This study suggests that linalool could be developed as a drug or preservative to inhibit MRSA growth.
Keywords: MRSA, linalool, antimicrobial resistance, metabolome, glutathione

Introduction
Staphylococcus aureus is a Firmicutes, Gram-positive bacterium, which is widely present in the symbiotic microbiota of 
the skin and nasal mucosa of the population.1,2 When the skin and mucous membranes are damaged, such as skin 
diseases, physical wounds, and surgical wounds, Staphylococcus aureus will take the opportunity to enter the tissues and 
even the bloodstream, which will cause different degrees of infection, and even cause sepsis to be life-threatening.3 It is 
estimated that the mortality rate from S. aureus bacteremia will rise, and the number of strains of microorganisms that are 
resistant to existing antibiotics is increasing.4 Infections caused by drug-resistant bacteria increase the risk of poor 
clinical outcomes and even death. Methicillin-resistant S. aureus (MRSA) was first described in England in 1961,5 soon 
after methicillin was introduced into clinical practice. Although antibiotics have been updated due to drug toxicity and 
other reasons, the term MRSA has been in use up to now. More seriously, different antibiotics introduce new resistances, 
including the penicillins, sulfonamides, tetracyclines, glycopeptides, and others, including plasmid-mediated horizontal 
transmission.6 According to the WHO report on drug resistance, the most serious problems include the resistance of 
Klebsiella pneumoniae to third-generation cephalosporins and carbapenem, Escherichia coli to third-generation cepha-
losporins and fluoroquinolone, Staphylococcus aureus to methicillin, Streptococcus pneumoniae to penicillin, and 
Salmonella sp. to fluoroquinolones. The development of new antimicrobial drugs is urgent.

Essential oils (EOs) of aromatic plants and their major chemical compositions are considered as potential 
substitutes for conventional antibiotics because of their outstanding antimicrobial, antioxidant, and anti- 
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inflammatory properties and the advantages of non-toxicity and low drug residue.7,8 In food production, it is one of the 
key points of research to find antibacterial preservatives that are easy for the public to accepted. The addition of 
antibiotics and synthetic preservatives, such as benzoic acid, sorbic acid, and nitrite, has raised concerns about the 
safety of food, and as a result, safer natural antimicrobials may be more acceptable.9 This may be another major 
application of EOs in addition to cosmetics and perfumes.10 Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic 
monoterpene alcohol that is widely found in EOs.11 Many EOs with linalool as the main active ingredient (lavender, 
coriander, basil) exhibit excellent antimicrobial activity.12–14 Linalool has also been shown to have antimicrobial 
activity when used alone and can also be used as an adjunct antimicrobial agent to increase antibiotic sensitivity.15–18 

In addition, linalool also exhibits antioxidant, anti-inflammatory, and neuroprotective effects, highlighting its potential 
applications in the fields of medicine, food, and cosmetics.11 The activity of linalool against various microorganisms 
has been studied, including Pseudomonas aeruginosa E. coli and MRSA;13,19 however, the inhibitory mechanism 
against MRSA remains to be elucidated. Most studies on antibacterial mechanisms involve cataloging organisms and/ 
or genes using DNA or RNA sequencing methods to analyze changes in microbial communities. With the rise of 
metabolomics, it has evolved from biomarker discovery to the exploration of mechanisms. Due to the inherent 
sensitivity of metabolomics, subtle changes in biological pathways can be detected, providing deeper insights into 
the underlying mechanisms of various physiological conditions and pathological processes, including diseases.20,21 

The research focused on the inhibitory activity of linalool against MRSA, assessed through MIC measurements and 
growth curve analysis. Furthermore, a comprehensive metabolome analysis revealed the potential anti-MRSA mole-
cular mechanisms of linalool. This study offers valuable theoretical insights for the development of linalool as an 
effective product for inhibiting MRSA.

Materials and Methods
Reagents and Strains
Linalool (≥98%) was purchased from Shanghai Macklin Biochemical Technology Co., Ltd (Shanghai, China). Mueller 
Hinton Broth (MHB) and Mueller Hinton Agar (MHA) were purchased from OXOID International Ltd. (Basingstoke, 
United Kingdom). Polysorbate 80 was purchased from Sinopharm Group Chemical Reagent Co., Ltd (Shanghai, China). 
A total of 87 MRSA strains from Dazhu County People’s Hospital were used for measurements. These isolates were 
identified and subjected to antibiotic susceptibility testing using the automated VITEK2 system (Merieux Diagnostic 
Products (Shanghai) Co., Ltd, Shanghai, China). Bacterial strains were stored at −80°C as a stock solution in 20% 
glycerol until use.

Antibacterial Activity Evaluation
Determination of MIC (Minimum Inhibitory Concentration)
To further evaluate the antibacterial activity of linalool, MIC was measured using the double broth dilution method.22 

Briefly, linalool was dissolved in polysorbate 80 (final concentration 0.1%, 0.1% polysorbate 80 without antibacterial 
activity against MRSA) and diluted with MHB to obtain a series of concentrations (211.24, 105.62, 52.81, 26.40, 13.20, 
6.60, 3.30, 1.65 μL/mL). Then, these solutions were incubated with the bacterial suspension (in the logarithmic phase, 
1.5×106 CFU/mL) in 96-well micro-plates at 37°C for 24h. The blank group was with MHB without linalool. MIC was 
defined as the minimum linalool concentration at which no visible bacterial growth was noted. Each bacterium should be 
measured at least three times in repetition.

Growth Curve
The growth curve was plotted based on a previous method, with some modifications.23 First, different concentrations of 
linalool (1/2MIC, 1/4MIC, 1/8MIC) were added to test tubes with logarithmic phase bacteria. The group with the MHB 
containing no linalool was designated as the blank. The absorbance of suspensions at different incubation times (0, 2, 4, 
6, 8, 10, until 22 hours) was measured at 600 nm by using a spectral-scanning multi-template reader (Varioskan Flash, 
Thermo Fisher Scientific, Shanghai, China).
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Metabolomics Analysis
The logarithmic phase MRSA strains was treated with linalool (1/4MIC) at 37 °C for 4h. The blank group was untreated 
with linalool at 37 °C for 4h. The precipitated cells were collected by centrifugation (6000 rpm for 5 min at 4 °C) and 
washed three times with PBS. Subsequently, the cells were snap-frozen in liquid nitrogen and stored at −80°C until 
required for experiments.

Sample Preparation and Extraction
According to previous study,24 the bacterial cells were slowly thawed on ice. The sample was taken for protein 
quantification. Take another sample to a centrifuge tube, and mix it with 20% acetonitrile/methanol (1:5, V/V). Vortex 
for 3 minutes, centrifuge at 4°C (12000 rpm, 10 min). Transfer the supernatant into a new centrifuge tube and place it at 
−20°C for 30 minutes. Then centrifuge at 4°C (12000 rpm, 10 min). After centrifugation, transfer the supernatant to 
protein precipitation plate for further LC-MS analysis.

UPLC-MS Conditions
The sample extracts were analyzed using an LC-ESI-MS/MS system (UPLC, ExionLC AD; https://sciex.com.cn/; MS, 
QTRAP® 6500+ System, https://sciex.com/). The analytical conditions were as follows: HPLC: column, ACQUITY 
BEH Amide (2.1 × 100 mm, 1.7 μm); solvent system, water with 2 mm ammonium acetate and 0.04% formic acid (A), 
acetonitrile with 2 mm ammonium acetate and 0.04% formic acid (B). The gradient started at 90% B (0–1.2 min), 
decreased to 60% B (9 min), then to 40% B (10–11 min), and finally ramped back to 90% B (11.01–15 min); flow rate, 
0.4 mL/min; temperature, 40°C; injection volume, 2 μL. The AB 6500+ QTRAP® LC-MS/MS System, equipped with an 
ESI turbo ion-spray interface, operated in both positive and negative ion modes and was controlled by Analyst 1.6 
software (AB Sciex). The ESI source operation parameters were as follows: ion source, turbo spray; source temperature, 
550°C; ion spray voltage (IS), 5500 V (positive) and −4500 V (negative); curtain gas (CUR), 35.0 psi; and DP and CE 
for individual MRM transitions were optimized further. A specific set of MRM transitions was monitored for each period, 
corresponding to the amino acids eluted during that period.

Data Processing and Statistical Analysis
For untargeted metabolomics, the acquired raw mass spectral data were imported into Analyst 1.6.3 for processing, which 
included peak extraction, retention time correction, adduct ion merging, missing value imputation, and background peak 
labeling. For targeted metabolomics, MultiQuant 3.0.3 was used to process the mass spectrometry data. The retention 
times and peak shapes of reference standards were used to construct standard curves for the targeted substances. The 
integrated peak area ratio of the samples is substituted into the standard curve’s linear equation to calculate, the absolute 
content of metabolites. Identified metabolites were annotated using the KEGG compound database (http://www.kegg.jp/ 
kegg/compound/), and the annotated metabolites were subsequently mapped to the KEGG Pathway database (http:// 
www.kegg.jp/kegg/pathway.html). Pathways with significantly regulated metabolites were then analyzed using metabo-
lite set enrichment analysis (MSEA), with significance determined by P-value from the hypergeometric test.

Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were 
performed. Differentially expressed metabolites (DEMs) were identified based on the following criteria: a variable 
importance in projection (VIP) score > 1 for the first principal component of the OPLS-DA model, a fold change ≥1.5 or 
≤0.667 between the two groups, and a P-value ≤ 0.05 from the t-test.25 Hierarchical cluster analysis and KEGG 
annotation of differential metabolites were then performed.

Glutathione and Superoxide Dismutase Measurement
The final concentration of linalool was determined in the MIC determination section, while 1×105 CFU/mL of MRSA 
cells were introduced into the treatment culture. The assay consisted of untreated MRSA cells, and linalool-treated 
MRSA cells (inoculum in MHB supplemented with 1/16 MIC, 1/8 MIC, 1/4MIC, respectively). The cells were incubated 
at 37°C with shaking at 200 rpm. Cells were collected by centrifugation at 10,000 rpm for 5 minutes, washed with PBS, 
and normalized to the same density. The samples were then homogenized in 1 mL of sterile water containing 50μg/mL of 
lysostaphin and incubation at 37°C for 30 minutes. The levels of superoxide dismutase (SOD) and glutathione (GSH) in 
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MRSA were measured according to the manufacturer’s instructions for the kits (Nanjing JianCheng Bioengineering 
Institute, China).

Molecular Docking of Linalool to Key Targets
The AutoDock software (https://vina.scripps.edu/) was used to perform molecular docking between key targets and 
linalool.26 The crystal structures of the potential protein targets of Epicedium were retrieved from the RCSB Protein Data 
Bank (http://www.pdb.org/) and were subsequently modified using Autodock software. The target (PDB ID: 5VDN) was 
modified by removing ligands and water, adding hydrogens, and optimizing and patching amino acids. The modified 
structures were saved in PDBQT format. ChemBioDraw 3D was used to generate the 3D chemical structures and 
minimize their energy, with the results saved in MOL.2 format. The compounds were imported into Autodock, where all 
flexible bonds were set to be rotatable by default and saved in PDBQT format as docking ligands. Autodock Vina 1.1.2 
was used for docking, and PyMOL was used to visualize the docking results. The Binding Affinity (kcal/mol) represents 
the binding free energy between linalool and target molecule (glutathione); the higher the absolute value of the binding 
free energy, the more stable the ligand-receptor interaction.

Statistical Analysis
All the experiments were repeated three times, and the results were statistically analyzed using GraphPad Prism 9. The 
significance of the difference was assessed using one-way ANOVA and Duncan’s multiple comparisons (p < 0.05 was 
considered significant). The results are presented as means ± standard deviation (SD).

Results
Antibiotic Susceptibility of MRSA
A total of 87 MRSA strains (all resistant to methicillin) were clinically isolated and identified, and their antibiotic 
susceptibility was determined according to CLSI 2020 (Figure 1A). The highest resistance rate was observed for 
penicillin (97.66%). The tested strains were sensitive to dalfopristin/quinupristin, linezolid, vancomycin, tigecycline, 
and rifampicin. On the other hand, gentamicin, ciprofloxacin, and moxifloxacin showed more mediating values from 
sensitivity to excessive drug resistance. The separate tests for resistance screening against cefoxitin and clindamycin 
showed induction positivity rates of 34.88% and 7.81%, respectively (Figure 1B). Only 3 strains (2.34%) showed 
positive results for both tests.

Figure 1 Susceptibility of MRSA. (A and B) antibiotic susceptibility of MRSA, (C) growth-time curve of MRSA. 
Abbreviations: PEN, Penicillin; OX, Oxacillin; GEN, Gentamicin; CIP, ciprofloxacin; LVX, levofloxacin; MXF, Moxifloxacin; ERY, Erythromycin; CLI, clindamycin; D/Q, 
Dalfopristin/Quinupristin; LNZ, linezolid; VAN, Vancomycin; TET, Tetracyclines; TIG, Tigecycline; RFP, Rifampicin; SMZ/TMP, Sulfamethoxazole-Trimethoprim.
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Antibacterial Activity of Linalool Against MRSA
The MIC distribution of linalool for MRSA is shown in Table 1. There were 29 MRSA strains identified with a MIC of 
13.2 μg/mL, representing the highest number of strains at this concentration. However, the minimum concentration of 
1.65 ug/mL was still able to inhibit the growth of one MRSA strain. The MIC50 and MIC90 of linalool were 13.2 μg/mL 
and 105.62 μg/mL, respectively, indicating that linalool possesses excellent antibacterial activity against MRSA.

To assess the antibacterial kinetics of linalool, a growth-time curve was plotted using the MRSA strain with the 
highest MIC for vancomycin (0.5 μg/mL). Among the other tested antibiotics, the strain showed resistance to penicillin, 
gentamicin, erythromycin, and tetracycline, while it exhibited intermediate resistance to gentamicin, levofloxacin, and 
moxifloxacin. The remaining antibiotics were found to be effective. As shown in Figure 1C, after 2 hours of incubation, 
growth was observed in the blank, 1/8MIC, and 1/4MIC groups; however, the growth rate of the latter two was slower 
than that of the blank group. After 4 hours, the blank group entered exponential growth phase, while the groups treated 
with linalool did not show significant exponential growth. No bacterial growth was observed in the 1/2MIC group during 
the re-observation period.

Effect of Linalool on the Metabolic Profile of MRSA
Changes in MRSA Metabolites After Linalool Treatment
To further investigate how linalool effects MRSA at the intracellular metabolism level, metabolites were extracted, and 
untargeted metabolomics analysis was conducted using UPLC-MS. After processing the metabolite peak data, OPLS-DA 
was performed (Figure 2A), revealing clear separation between the samples of the two groups. The high R2 and Q2 

parameter values of OPLS-DA models (0.904 and 0.373, respectively), indicated good model fitness and high predict-
ability. The PLS-DA permutation test (Figure 2B) showed that the intercept of the Q2 regression line was less than 0, and 
the proportion of the substituted Y variable increased with a gradual decrease in substitution retention. This suggested 

Table 1 The MIC of Linalool Against MRSA

MIC (μg/mL) 211.24 105.62 52.81 26.40 13.20 6.60 3.30 1.65

Number of strains 3 7 18 13 29 13 3 1

Percentage (%) 3.45% 8.05% 20.69% 14.94% 33.33% 14.94% 3.45% 1.15%

Figure 2 Untargeted metabolomics statistical analysis. Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots (A). Partial least squares-discriminate 
analysis (PLS-DA) permutation plots in the (B).
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that the models were reliable and robust, without overfitting. These results confirmed a significant difference between the 
two groups, indicating that linalool had a significant impact on metabolism in MRSA.

Differentially Expressed Metabolites (DEMs) Screening and Analysis
In this study, a total of 1,582 putative metabolites were identified based on LC-MS retention time, peak area, total ion 
chromatography, and molecular weights. Then, under the criteria of VIP > 1, FC > 1.5 or <0.667, and p < 0.05, 28 and 9 
DEMs were selected from the positive and negative modes, respectively. The expression level of DEMs were visualized 
using volcano plots (Figure 3C and D). In total, 7 DEMs were upregulated and 21 were downregulated in the positive ion 
mode, while 4 DEMs were downregulated and 5 were upregulated in negative the ion mode (Figure 4A and B). DEMs in 
the negative ion mode were classified into benzene compounds, organic acids and their derivatives, organic oxygen 
compounds, organic heterocyclic compounds, phenylpropanoids, and polyketides. DEMs in the positive ion mode were 
divided into 6 categories, including benzenoids, lipids and lipid-like molecules, organic acids and derivatives, organic 
nitrogen compounds, organoheterocyclic compounds, phenylpropanoids, and polyketides. The hierarchical clustering 
results of DEMs are shown using heatmaps (Figure 3A and B). There was a correlation between these metabolites 
(Figure 4C–F). These results indicated that linalool treatment caused intracellular metabolic disorder in MRSA. Under 
linalool treatment, metabolic pathways such as amino acids biosynthesis, valine, leucine, and isoleucine biosynthesis, the 
pentose phosphate pathway, 2-oxocarboxylic acid metabolism, D-Alanine metabolism, and insulin secretion were 

Figure 3 Screening and cluster analysis of differential metabolites. Cluster heatmaps in the (A) negative ion mode and (B) positive ion mode. Rows: metabolites, Columns: 
samples. (C and D) Visual volcano plots of differential metabolites in the two ion modes.
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downregulated. On the other hand, organoheterocyclic compounds, organic acids and derivatives, lipids and lipid-like 
molecules, phenylpropanoids, and polyketides showed upregulation.

Targeted Metabolomics Was Used to Verify the Effect of Linalool on MRSA Metabolites
After processing the metabolite peak data, PCA was performed. According to the PCA score plots (Figure 5A), the blank 
group was completely separated from the linalool-treated group. A total of 75 metabolites were detected, and metabolites 
with a fold change ≥ 2 or ≤ 0.5 were selected as significant DEMs, including 6 DEMs (5 upregulated and 1 down-
regulated) (Figure 5B). After the quantitative analysis of the enriched DEMs, the Z-value was calculated through 

Figure 4 DEMs changes and correlation analysis. Fold change of DEMs in negative ion mode (A), heat map of DEMs association (C), and circlize (E). Fold change of DEMs in 
positive ion mode (B), heat map of DEMs association (D), and circlize (F).
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Figure 5 Targeted metabolite analysis. Principal component analysis (PCA) score plots of untreated (blank) and linalool treated MRSA (1/4MIC) (A). Visual volcano plots of 
DEMs (B). Z-value plot of DEMs (C), the x axis represented the normalized value of the substance, and the y axis represented the name of the metabolite. Radar map of 
DEMs (D), the value of the grid line corresponds to the fold of change of DEMs. Heatmap of clusters of significantly dDEMs (E), and chord plots (F).
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normalization (Figure 5C). The differential fold changes of the DEMs across different samples were compared, and 
a radar chart of the DEMs was generated (Figure 5D). The six DEMs were completely separated between the blank group 
and the 1/4MIC group. Except for glutathione oxidized, which was downregulated after 1/4MIC linalool treatment, the 
other five metabolites (2-Aminobutyric acid, L-Citrulline, L-Ornithine, L-Cystathionine, Nα-Acetyl-L-glutamine) were 
upregulated (Figure 6B). Clustering heat maps were created for the significantly differentially DEMs distributed in amino 

Figure 6 DEMs content and metabolic pathway enrichment. KEGG classification diagram of DEMs (A). Violin diagram of DEMs (B), the black horizontal line in the middle is 
the median, and the outer outline indicates the data distribution density.
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acid metabolism, organic acid and its derivatives, correlation analysis found that glutathione oxidized had a low 
correlation with other metabolites, whereas a high correlation between other metabolites (Figure 5E and F).

To further understand the underlying mechanism of metabolite changes, KEGG pathway enrichment analysis was 
performed. Significantly differentially expressed DEMs were enriched in 14 metabolic pathways and 2 pathways related 
to environmental information processing (Figure 6A). The pathways most involved with DEMs included metabolic 
pathways, biosynthesis of secondary metabolites, and biosynthesis of amino acids.

Linalool Causes MRSA Superoxide Dismutase (SOD) and Glutathione (GSH) 
Alterations
Linalool efficiently reduced intracellular GSH and SOD levels in MRSA at different concentrations (1/16, 1/8, 1/4 MIC). 
The results demonstrated that the intracellular SOD concentration in MRSA was significantly reduced after the addition 
of 1/8 MIC and 1/4 MIC linalool to the bacterial cultures for 4 to 12 hours (p < 0.01). At 4 hours, the GSH concentration 
in the blank group was lower than the group with linalool. However, with continued culture, the GSH content in the 
blank group increased, while the decrease in GSH levels was negatively correlated with the concentration of linalool 
(Figure 7).

Molecular Docking
The molecular docking results between linalool and glutathione are shown in Figure 8. The crystal structures of targets 
were obtained from the PDB database. The results demonstrate that linalool binds well to glutathione, with a binding 
affinity of −14.98 KJ/mol. Molecular docking suggests that linalool may exert an anti-MRSA effect by targeting this 
substance.

Discussion
As the biological activity of linalool was gradually reported, the inhibition of microorganisms has also become 
increasingly well-documented, such as Salmonella Typhimurium (MIC of 0.5%), Salmonella Senftenberg (MIC of 
2%), and Aeromonas hydrophila (MIC of 0.3125%).27–29 After testing, the MIC of linalool against MRSA was found 
to be between 211.24 and 1.65 μg/mL (0.25% to 0.002%), with an MIC50 of 13.2 μg/mL (0.016%), demonstrating good 
inhibitory activity. Several antibiotics were used to treat MRSA infections and target major bacterial processes, including 
cell wall synthesis, translation, transcription, and DNA synthesis.30 Although resistance has been observed in most 
antibiotics currently used in clinical practice, not all strains are resistant to every drug. More commonly, some strains 
exhibit both resistant and susceptible characteristics. Furthermore, with increasing duration of treatment, a slight increase 
in MIC for vancomycin is observed, for example, in the MRSA used in the study (the MIC for vancomycin was 0.5 μg/ 
mL). Strains of S. aureus that are susceptible to vancomycin (VSSA) have MICs of less than 2 μg/mL, while 
vancomycin-intermediate strains (VISA) exhibit MICs ranging from 4 to 16 μg/mL. For resistant strains, the MIC is 

Figure 7 Effect of linalool on MRSA GSH and SOD. Compared with the blank group at the same time point, *p < 0.05, **p < 0.01.
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≥16 μg/mL. Although sensitivity has not reached the level of resistance, the increase in MIC is still noteworthy as it 
relates to the first-line treatment for MRSA infection.31

Many studies, including our own, have demonstrated that EOs exhibited strong antibacterial activities.7,32–34 The 
antimicrobial mechanisms of EOs are also being investigated in depth, primarily focusing on the disruption of cell 
structures, biofilms, metabolic pathways, and other factors.35–37 Linalool inhibits bacterial growth by disrupting cell 
membranes and preventing biofilm formation. In Pseudomonas aeruginosa, it disrupts cell membrane integrity and 
interferes with the respiratory chain, leading to cell death.38 In Escherichia coli, linalool binds to plasmid DNA and alters 
its structure, reducing plasmid transfer between strains and thereby decreasing the spread of resistance.39 Biofilm is 
a polymer that forms on the surface where bacteria aggregate, and it is a significant factor contributing to antibiotic 
resistance and persistent infections, often leading to treatment failure.40 Linalool can inhibit the formation of various 
microbial biofilms by disrupting quorum sensing systems or inhibiting hyphal formation.41–43 As research progresses, 
there is increasing focus on the differences between the transcriptome and metabolome, shedding light on the antibacter-
ial mechanism of linalool. This research provides evidence of cell wall and membrane damage in Streptococcus mutans 
by detecting changes in amino acids and fatty acids.22 Central metabolic pathways control virulence and antibiotic 
resistance, making them potential targets for antibacterial drugs. The impact of linalool on the metabolism of MRSA cells 
appears to be complex. The downregulation of amino acid biosynthesis pathways suggests that linalool interferes with 
amino acid synthesis in MRSA cells, potentially affecting protein synthesis and other vital biological functions.44 This 
has been validated through targeted metabolomics. While we identified many amino acid metabolites, the ones with 
significant changes include glutathione oxidized, Nα-Acetyl-L-glutamine, L-Ornithine, L-Cystathionine, L-Citrulline, 
and 2-aminobutyric acid, with only glutathione oxidized showing a decrease. In the correlation analysis, glutathione 
oxidized showed weak correlations with other differentially expressed metabolites. Glutathione and glutathione- 
dependent enzymes help protect organisms from harmful environmental factors and play a crucial role in bacterial 
resistance.45 This suggests that the glutathione metabolism pathway involving glutathione oxidized may be a key route 
through which linalool inhibits MRSA. Additionally, the decrease in metabolites from the pentose phosphate pathway 
indicates that linalool could impact the energy metabolism in MRSA cells’, potentially affecting their survival and 
proliferative capacity.46 Simultaneously, the upregulation of metabolites associated with organic acids, lipids, and lipid- 

Figure 8 Linalool-GSH partial diagram of molecular docking.
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like molecules may indicate MRSA cell’s response mechanism to linalool. These changes may reflect an adaptive 
regulatory response to the external environment, potentially serving as a survival strategy against linalool. The results 
were further validated through assays (GSH and SOD level) and simulations (Auto dock). These findings offer insights 
into the antibacterial mechanism of linalool against MRSA, but further research is needed to elucidate the detailed 
mechanisms involved.

Conclusion
The study demonstrates that linalool exhibits potent antibacterial activity against methicillin-resistant Staphylococcus 
aureus, with MIC50 and MIC90 values of 13.2 μg/mL and 105.62 μg/mL, respectively. Growth curves further confirm this 
inhibitory effect, as MRSA showed no significant growth during the observation period when the concentration reached 
1/2 MIC. Further metabolomic analysis reveals that linalool disrupts the metabolism of MRSA, with core amino acid 
metabolism consistently being affected. The glutathione metabolism pathway may play a key role in linalool’s inhibition 
of MRSA growth. This study provides a theoretical foundation for the further development and application of linalool, 
while also identifying new targets for the research and development of antimicrobial drugs.

Abbreviations
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